(1) Up to rotational symmetry, how many ways are there to color the faces of a regular dodecahedron using two colors?

(2) Let S be the species of derangements (so that, for every finite set I, $S[I]$ is the set of permutations of I without fixed points). Find a formula for the cycle index series $Z_S(s_1, s_2, \ldots)$.

Let G be a finite group. Recall that the Burnside ring $\text{Burn}[G]$ is generated by symbols $[X]$, where X is a finite G-set, modulo the following relations:

- If X and Y are isomorphic G-sets, then $[X] = [Y]$.
- For every pair of finite G-sets X and Y, $[X \sqcup Y] = [X] + [Y]$.

(3) Let $\{H_i\}_{1 \leq i \leq m}$ be a collection of representatives for the conjugacy classes of subgroups of G (so that every subgroup $H \subseteq G$ is conjugate to H_i for some unique i). Show that, as an abelian group, $\text{Burn}[G]$ is freely generated by the elements $[H_i \backslash G]$. That is, show that every element of $\text{Burn}[G]$ can be written uniquely as a sum

$$\sum_{1 \leq i \leq m} c_i[H_i \backslash G],$$

for some integers c_i.