Math 155 (Lecture 6)

September 13, 2011

In this lecture, we will continue our discussion of natural operations on species.

Definition 1. Let S and T be species. We define a new species ST, called the *product* of S and T, as follows:

(a) Let I be a finite set. We define $(ST)[I]$ to be the finite set given by the disjoint union

$$
\prod_{I = I_0 \cup I_1} S[I_0] \times T[I_1].
$$

Here the product is taken over all decompositions of I into disjoint subsets I_0 and I_1.

(b) If $\pi : I \to J$ is a bijection of finite sets, we take $(ST)[\pi] : (ST)[I] \to (ST)[J]$ to be the bijection given by the disjoint union of the maps

$S[I_0] \times T[I_1] \to S[\pi(I_0)] \times T[\pi(I_1)]$

determined by the bijections $I_0 \to \pi(I_0)$ and $I_1 \to \pi(I_1)$.

Example 2. Suppose we are given a finite set C of colors. For each finite set I, let $S^C[I]$ denote the set of all colorings of I by the set C: that is, the set C^I of all maps $I \to C$. Then S^C is a species, called the *species of coloring by C*.

Now suppose that C is given as a disjoint union of subsets C_0 and C_1. Then every coloring $f : I \to C$ of a set I determines a decomposition of I into disjoint subsets I_0 and I_1, given by

$$I_0 = f^{-1}C_0 \quad I_1 = f^{-1}C_1.$$

Moreover, to recover the coloring of I, we need this decomposition together with a coloring of I_0 by C_0 and a coloring of I_1 by C_1. In other words, we have a bijection

$$S^C[I] = \prod_{I = I_0 \cup I_1} S^{C_0}[I_0] \times S^{C_1}[I_1].$$

These bijections give an *isomorphism* between the species S^C and the product species $S^{C_0}S^{C_1}$.

Proposition 3. Let S and T be species with exponential generating functions $F_S(x)$ and $F_T(x)$. Then the product species ST has exponential generating function $F_{ST}(x) = F_S(x)F_T(x)$.

Proof. We compute

$$F_S(x)F_T(x) = \left(\sum_{p \geq 0} \frac{|S[p]|}{p!} x^p\right) \left(\sum_{q \geq 0} \frac{|T[q]|}{q!} x^q\right) = \sum_{p,q \geq 0} \frac{|S[p]|}{p!} \frac{|T[q]|}{q!} x^{p+q} = \sum_{n \geq 0} \sum_{p+q=n} \frac{n!}{p!q!} \frac{|S[p]|}{p!} \frac{|T[q]|}{q!} x^n.$$
On the other hand, we have

\[
F_{ST}(x) = \sum_{n \geq 0} \frac{|(ST)[(n)]|}{n!} x^n = \sum_{n \geq 0} \sum_{(n) = I_0 \cup I_1} \frac{|S[I_0] \times T[I_1]|}{n!} x^n.
\]

Every decomposition \((n) = I_0 \cup I_1 \) into disjoint subsets determines a pair of natural numbers \(p = |I_0|, q = |I_1| \) with \(p + q = n \), and we have \(|S[I_0] \times T[I_1]| = |S[(p)] \times T[(q)]| \). Each of these factors occurs precisely \(\binom{n}{p} = \frac{n!}{p!q!} = \binom{n}{q} \) times in the second sum, so that

\[
F_{ST}(x) = \sum_{n \geq 0} \sum_{p+q=n} \frac{n!}{p!q!} \frac{|S[(p)] \times T[(q)]|}{n!} x^n = F_S(x)F_T(x)
\]
as desired.

Example 4. Let \(C \) be a finite set with \(c \) elements, and let \(S^C \) be the species of \(C \)-colorings appearing in Example 2. Then \(|S^C[I]| = |C^I| = c^{|I|} \) for every finite set \(I \), so that

\[
F_{S^C}(x) = \sum_{n \geq 0} \frac{c^n}{n!} x^n = e^{cx}.
\]

If \(C \) is given as a disjoint union of subsets \(C_0 \) and \(C_1 \) having sizes \(c_0 \) and \(c_1 \), then we have an isomorphism of species \(S^C \simeq S^{C_0}S^{C_1} \). Proposition 3 gives an identity of generating functions

\[
F_{SC}(x) = F_{S^C_0}(x)F_{S^C_1}(x),
\]
which reduces to the familiar identity

\[
e^{cx} = e^{c_0x}e^{c_1x}.
\]

Example 5. Let \(S \) be the species of undecorated sets: \(S[I] \) has a single element for every finite set \(I \). The exponential generating function \(F_S \) is given by \(\sum_{n \geq 0} \frac{1}{n!} x^n = e^x \). Let \(T \) be the species of derangements. The product \(ST \) assigns to each finite set \(I \) the collection all decompositions \(I = I_0 \cup I_1 \), together with a derangement of \(I_1 \). It follows that \(ST \) is isomorphic to the species of permutations (every permutation of the set \(I \) has a fixed point set \(I_0 \subseteq I \), and determines a derangement of the complement \(I_1 = I - I_0 \)). It follows that

\[
\frac{1}{1-x} = F_{ST}(x) = F_S(x)F_T(x) = e^xF_T(x).
\]

We therefore recover our formula

\[
F_T(x) = \frac{e^{-x}}{1-x}
\]
for the exponential generating function of derangements.

Definition 6. Let \(S \) and \(T \) be species, and assume that \(T[\emptyset] = \emptyset \). We define a new species \(S \circ T \) as follows. For each finite set \(I \), let \((S \circ T)[I] \) denote the set of all triples \((\sim, x, \{y_J\}_{J \in I/\sim})\) where \(\sim \) is an equivalence relation on \(I \), \(x \in S[I/\sim] \), and for each \(J \in I/\sim \), \(y_J \) is an element of \(T[J] \) (here we identify the elements of \(I/\sim \) with equivalence classes in \(I \)).

Our goal in this section is to prove the following result:

Theorem 7. Let \(S \) and \(T \) be species, and assume that \(T[\emptyset] = \emptyset \). Then we have an equality of power series \(F_{S \circ T}(x) = F_S(F_T(x)) \). In other words, the construction \(S \mapsto F_S \) is compatible with composition.
Example 8. Let S be the species of nonempty sets: that is, we have

$$S[I] = \begin{cases} \{\ast\} & \text{if } I \neq \emptyset \\ \emptyset & \text{if } I = \emptyset. \end{cases}$$

For every finite set I, we see that $(S \circ S)[I]$ is the set of all equivalence relations \sim on I such that each equivalence class is nonempty (this condition is automatic) and I/\sim is nonempty (which is true if and only if I is nonempty). We therefore have

$$(S \circ S)[I] \simeq \begin{cases} \emptyset & \text{if } I = \emptyset \\ \text{partitions of } I & \text{if } I \neq \emptyset. \end{cases}$$

The exponential generating function for S is given by $FS = \sum_{n \geq 1} \frac{x^n}{n!} = e^x - 1$. It follows from Theorem 7 that the exponential generating function for $S \circ S$ is given by

$$FS\circ S(x) = FS(FS(x)) = FS(e^x - 1) = e^{e^x-1} - 1.$$

From this, we recover our formula for the exponential generating function for the Bell numbers:

$$\sum_{n \geq 0} \frac{b_n}{n!} x^n = 1 + FS\circ S(x) = 1 + e^{e^x-1} - 1 = e^{e^x-1}.$$

Warning 9. To make sense of Theorem 7, we need to define the composition $FS(F_T(x))$. This is given by

$$\sum_{n \geq 0} \frac{S[(n)]}{n!} F_T(x)^n.$$

This sum is sensible because of our assumption that $T[\emptyset] = \emptyset$, which guarantees that the constant term of $F_T(x)$ vanishes (so that $F_T(x)^n$ is divisible by x^n).

Proof of Theorem 7. For each natural number $k \geq 0$, let X_k denote the species which assigns to each finite set I the subset $X_k[I] \subseteq (S \circ T)[I]$ consisting of those triples $(\sim, x, \{y_j\})$ where the quotient I/\sim has exactly k elements. Then $(S \circ T)[I]$ is a disjoint union of the subsets $X_k[I]$ as k ranges over all natural numbers (note that the set $X_k[I]$ is empty if $k > |I|$), so that

$$FS\circ T(x) = \sum_{k \geq 0} F_{X_k}(x).$$

Similarly, we have

$$FS(F_T(x)) = \sum_{k \geq 0} \frac{S[(k)]}{k!} F_T(x)^k.$$

We will complete the proof by showing that

$$F_{X_k}(x) = \frac{S[(k)]}{k!} F_T(x)^k.$$

Let $X_k[I]$ denote the species which assigns to each finite set I the disjoint union

$$\prod_{I = I_1 \cup \cdots \cup I_k} T[I_1] \times \cdots \times T[I_k] \times S[(k)].$$

The sets $X_k[I]$ and $X_k[I]$ are almost the same: the only difference is that an element of $X_k[I]$ specifies a partition of I into unlabelled pieces, while $X_k[I]$ specifies a partition into labelled pieces. We therefore have

$$|X_k[I]| = k!|X_k[I]|,$$
so that $F_{\Xi_k}(x) = k! F_{X_k}(x)$.

Using Proposition 3 repeatedly, we see that $F_T(x)^k$ is the exponential generating function for the species T^k. Unwinding the definitions, we see that T^k assigns to a finite set I the disjoint union

$$\coprod_{I = I_1 \cup \cdots \cup I_k} T[I_1] \times \cdots \times T[I_k],$$

where the coproduct is taken over all decompositions of I into disjoint labelled subsets I_1, \ldots, I_k. We therefore have

$$|\Xi_k[I]| = |T^k[I]| |S[\langle k \rangle]|$$

for each finite set I. Passing to generating functions, we get

$$F_T(x)^k |S[\langle k \rangle]| = F_{\Xi_k}(x) = k! F_{X_k}(x),$$

so that $F_{X_k}(x) = \frac{S[\langle k \rangle]}{k!} F_T(x)^k$ as desired. \hfill \square