Recall that species \(S \) is said to be molecular if there is exactly one \(S \)-structure, up to isomorphism. Equivalently, \(S \) is molecular if there exists an integer \(n \) such that \(S[\langle m \rangle] \) is empty for \(m \neq n \), and \(S[\langle n \rangle] \) is acted on transitively by the symmetric group \(\Sigma_n \). Every species \(S \) can be decomposed uniquely as a sum \(\sum \alpha S_\alpha \) of molecular species. Furthermore, there is a one to one correspondence between (isomorphism classes of) molecular species and (isomorphism classes of) pairs \((G, X)\), where \(G \) is a finite group acting faithfully on a finite set \(X \). This correspondence assigns to a pair \((G, X)\) the species \(S(G, X) \), where \(S(G, X)[I] = \text{Bij}(X, I)/G \).

If \(S \) is any species, the cycle index of \(S \) is given by

\[
Z_S(s_1, s_2, \ldots) = \sum_{\rho \in \Sigma_n} Z_{\text{Aut}(I, \eta)}(s_1, \ldots)
\]

where the sum is over all isomorphism classes of \(S \)-structures \((I, \eta)\). If \(G \) is a finite group acting faithfully on a set \(X \) and \(S = S(G, X) \) is the corresponding molecular species, then there is only one isomorphism class of \(S \)-structures, and its automorphism group is given by \(G \). We therefore have

\[
Z_S(s_1, s_2, \ldots) = Z_G(s_1, s_2, \ldots) : \]

in other words, we can regard the cycle index of a group \(G \) as a special case of the cycle index of a species.

Remark 1. Let \(G \) be a finite group acting on a set \(X \). The definition of the cycle index \(Z_G(s_1, s_2, \ldots) \) does not require that the action of \(G \) on \(X \) is faithful. However, there is no harm in assuming that. Suppose that we are given an arbitrary action of a finite group \(G \) on a finite set \(X \), given by a map \(\rho : G \rightarrow \text{Perm}(X) \). Let \(N = \ker(\rho) \) be the kernel of \(\rho \); that is, the subgroup of \(G \) consisting of elements which fix every \(x \in X \). Then \(N \) is a normal subgroup of \(G \), and the quotient group \(G/N \) acts on \(X \). Moreover, we have

\[
Z_G(s_1, \ldots) = Z_{G/N}(s_1, \ldots).
\]

Here is a more direct description of the cycle index of a species:

Proposition 2. Let \(S \) be a species. Then the cycle index of \(S \) is given by

\[
Z_S(s_1, s_2, \ldots) = \sum_{n \geq 0} \frac{1}{n!} \sum_{\sigma \in \Sigma_n} |S[\langle n \rangle]|^{\sigma} s_1^{k_1} s_2^{k_2} \cdots,
\]

where \(k_m \) denotes the number of \(m \)-cycles in the permutation \(\sigma \).

Proof. We can rewrite the right hand side as

\[
\sum_{n \geq 0} \frac{1}{n!} \sum_{\sigma \in \Sigma_n} \sum_{\eta \in S[\langle n \rangle]} \begin{cases} s_1^{k_1} s_2^{k_2} \cdots & \text{if } S[\sigma](\eta) = \eta \\ 0 & \text{otherwise.} \end{cases}
\]
Rearranging the order of summation, this is given by
\[
\sum_{n \geq 0} \sum_{\eta \in \mathcal{S}(n)} \frac{1}{n!} \sum_{\sigma \in G} Z_{\sigma},
\]
where \(G = \text{Stab}(\eta) \) denote the stabilizer of the point \(\eta \) and \(Z_{\sigma} \) is the cycle monomial of \(\sigma \) (regarded as a permutation of the set \(\{1, 2, \ldots, n\} \)). We can rewrite this as
\[
\sum_{n \geq 0} \sum_{\eta \in \mathcal{S}(n)} \frac{|G|}{n!} Z_{G}(s_1, \ldots).
\]
Note that the contribution coming from a particular element of \(\mathcal{S}(\langle n \rangle) \) is the same for all other \(\eta' \) belonging to the \(\Sigma_n \) orbit of \(\eta \). The number of elements in this orbit is given by \(\frac{n!}{|G|} \). We may therefore write our sum as
\[
\sum_{n \geq 0} \sum_{\eta \in \mathcal{S}(\langle n \rangle) / \Sigma_n} Z_{G}(s_1, \ldots),
\]
which reproduces the definition of \(Z_S \).

Example 3. Let \(S \) be any species, and consider the power series
\[
Z_S(x, 0, 0, \ldots).
\]
Writing
\[
Z_S = \sum_{n \geq 0} \frac{1}{n!} \sum_{\sigma \in \Sigma_n} |S(\langle n \rangle)|^{\sigma} s_1^{k_1} s_2^{k_2} \cdots,
\]
we note that the contribution from any non-identity permutation vanishes. We therefore obtain
\[
Z_S(x, 0, 0, \ldots) = \sum_{n \geq 0} \frac{|S(\langle n \rangle)|}{n!} x^n,
\]
thereby recovering the exponential generating function of \(S \).

Example 4. Let \(S \) be any species, and consider the power series \(Z_S(x, x^2, x^3, \ldots) \). This is given by
\[
Z_S(x, x^2, \ldots) = \sum_{n \geq 0} \frac{1}{n!} \sum_{\sigma \in \Sigma_n} |S(\langle n \rangle)|^{\sigma} x^n.
\]
Applying Burnside’s formula, we see that this is given by
\[
\sum_{n \geq 0} |S(\langle n \rangle) / \Sigma_n| x^n.
\]
This is the ordinary generating function for the unlabelled enumeration problem of counting \(S \)-structures, up to isomorphism (this formula also follows immediately from Definition ??).

Let’s now compute an example.

Question 5. Let \(S \) be the species of sets with no structure: that is, \(S[I] = \{\ast\} \) for every finite set \(I \). What is the cycle index of \(S \)?
According to Proposition 2, the answer is given by

$$\sum_{n \geq 0} \frac{1}{n!} \sum_{\sigma \in \Sigma_n} s_{k_1}^{s_{k_1}} s_{k_2}^{s_{k_2}} \cdots$$

where k_i denotes the number of i-cycles of σ. We can rewrite this as

$$\sum_{n \geq 0} \frac{1}{n!} \sum_{k_1 + 2k_2 + \cdots = n} C_{k_1} s_{k_1}^{s_{k_1}} s_{k_2}^{s_{k_2}} \cdots,$$

where $C_{\vec{k}}$ denotes the number of permutations having exactly k_i i-cycles. Let’s first determine the numbers $C_{\vec{k}}$.

Fix a decomposition $n = k_1 + 2k_2 + 3k_3 + \cdots$. Suppose σ is a permutation with k_1 1-cycles, k_2 2-cycles, and so forth. How many possibilities are therefore σ? First, let’s count the number of ways to partition σ into labelled subsets, k_1 of which have size 1, k_2 of which have size 2, and so forth. This is given by the multinomial coefficient

$$\frac{n!}{(1!)^{k_1} (2!)^{k_2} (3!)^{k_3} \cdots}.$$

Our counting problem has a slightly different answer. The cycles of σ are not labelled, so we must divide by the product $k_1!k_2!\cdots$. Also, a permutation is not determined by the decomposition of $\{1, 2, \ldots, n\}$ into orbits: we must also specify a cyclic permutation of each orbit. Consequently, we should multiply by $(0!)^{k_1} (1!)^{k_2} (2!)^{k_3} \cdots$. We therefore obtain

$$C_{\vec{k}} = \frac{n!}{k_1!k_2!\cdots} \frac{(0!)^{k_1} (1!)^{k_2} (2!)^{k_3} \cdots}{n!} \frac{(1!)^{k_1} (2!)^{k_2} (3!)^{k_3} \cdots}{(k_1!k_2!\cdots)(1^{k_1}2^{k_2}\cdots)}.$$

Plugging this in, we get

$$Z_S = \sum_{n \geq 0} \frac{1}{n!} \sum_{n = k_1 + 2k_2 + 3k_3 + \cdots} \frac{n!}{(k_1!k_2!\cdots)(1^{k_1}2^{k_2}\cdots)} s_{k_1}^{s_{k_1}} s_{k_2}^{s_{k_2}} \cdots$$

$$= \sum_{k_1, k_2, k_3, \ldots} \prod_{i \geq 1} s_i^{k_i} \frac{1}{k_i!^{k_i}}$$

$$= \prod_{i \geq 1} \sum_{k \geq 0} \frac{1}{k!} \left(\frac{s_i}{i} \right)^k$$

$$= \prod_{i \geq 1} e^{s_i/i}$$

$$= e^{s_1 + s_2/2 + s_3/3 + \cdots}.$$