(1) Let S be an infinite set, and let \mathbb{R}^S denote the product $\prod_{s \in S} \mathbb{R}$, whose elements are functions $f : S \to \mathbb{R}$. Let $X \subseteq \mathbb{R}^S$ be the subset consisting of those functions f such that the set $\{s \in S : f(s) \neq 0\}$ is finite. Show that X is dense in \mathbb{R}^S with respect to the product topology, but not with respect to the box topology.

(2) Let $\{(X_i, d_i)\}_{i \geq 0}$ be a sequence of metric spaces, and suppose that $d_i(x, y) \leq 1$ for all $x, y \in X_i$. Let $X = \prod_{i} X_i$ and define a map $d : X \times X \to \mathbb{R}$ by the formula $d(x, y) = \sum_{i \geq 0} d_i(x_i, y_i)$ (here x_i and y_i denote the images of x and y in X_i). Show that d is a metric on X, and that the metric topology on X coincides with the product topology (where each X_i is endowed with the metric topology).

(3) A topological space X is said to be metrizable if it coincides with the metric topology for some metric $d : X \times X \to \mathbb{R}$. Show that a countable product of metrizable spaces is metrizable. Show that an uncountable product of metrizable spaces need not be metrizable.

(4) Let A be a linearly ordered set. For every pair of elements $a, b \in A$, we let $(a, b) = \{c \in A : a < c < b\}$, $(-\infty, b) = \{c \in A : c < b\}$, and $(a, \infty) = \{c \in A : a < c\}$. Show that there is a topology on A having as basis the collection of sets of the form A, (a, b), $(-\infty, b)$, and (a, ∞), for $a, b \in A$. This topology is called the order topology on A.

(5) Let A be any linearly ordered set, and regard A as a topological space with respect to the order topology of problem (4). Show that A is Hausdorff. Show that if A is well-ordered and has a largest element, then A is compact.