PROBLEM SET VIII: PROBLEMS III, IV

PATRICK RYAN

Problem 1. Let \(f : V \to W \) be a linear map between normed vector spaces. Show that if \(V \) is finite-dimensional, then \(f \) is continuous.

Proof. Let \(\{ e_1, \ldots, e_n \} \) be a basis for \(V \). Then
\[
\| f(v) \|_W = \| f(v_1 e_1 + \cdots + v_n e_n) \|_W = \| v_1 f(e_1) + \cdots + v_n f(e_n) \|_W
\]
\[
\leq |v_1| \| f(e_1) \|_W + \cdots + |v_n| \| f(e_n) \|_W \leq \sum_{k=1}^n |v_k| \left(\max_{1 \leq k \leq n} \| f(e_k) \|_W \right).
\]
Define the 1-norm, \(\| \cdot \|_1 : V \to \mathbb{R} \), by
\[
\| v \|_1 = \sum_{k=1}^n |v_k|, \quad \text{with} \quad v = \sum_{k=1}^n v_k e_k.
\]
It suffices to show that \(\| v \|_1 \leq \alpha \| v \|_V \) for arbitrary constant \(\alpha \) and \(V \) a finite dimensional vector space. We have the following
\[
\| v \|_V = \left\| \sum_{k=1}^n v_k e_k \right\|_V \leq \sum_{k=1}^n |v_k| \| e_k \|_V \leq \left(\max_{1 \leq k \leq n} \| e_k \|_V \right) \| v \|_1.
\]
This implies \(\| v \|_V \leq \beta \| v \|_1 \) for some constant \(\beta \). Thus, our norm on \(V \), \(\| \cdot \|_V : V \to \mathbb{R} \), is continuous with respect to the topology induced by the 1-norm. Taking \(\| v - w \|_1 \leq \varepsilon \), we see that
\[
\| v \|_V - \| w \|_V \leq \| v - w \|_V \leq M \varepsilon,
\]
by the Triangle Inequality. Consider the compact set \(\Omega = \{ v \in V : \| v \|_1 = 1 \} \). By the compactness of our set and the continuity of the norm on \(V \), \(\| \cdot \|_V \) achieves a minimum on \(\Omega \). Denoting this minimum by \(\xi \), we have \(0 < \xi \leq \| v \|_V \), for any \(v \in V \) where \(\| v \|_1 = 1 \). Thus, \(\xi \| v \|_1 \leq \| v \|_V \). Selecting our constant \(\alpha \) appropriately yields our desired result. \(\square \)

Problem 2. Let \(P \) be a partially ordered set and suppose that every linearly ordered subset of \(P \) has an upper bound. Prove that \(P \) has a maximal element by completing the argument outlined in class. Assume (for a contradiction) that \(P \) has no maximal element.

(a) Show that for each linearly ordered subset \(Q \subseteq P \), there exists an element \(\lambda (Q) \in P \) such that \(q < \lambda (Q) \) for each \(q \in Q \).

We will say that a subset \(Q \subseteq P \) is a good chain if \(Q \) is well-ordered and each element \(x \in Q \) satisfies the formula \(x = \lambda \{ q \in Q : q < x \} \).

(b) Show that there is no largest good chain in \(P \).

(c) Show that if \(Q \) and \(Q' \) are good chains, then exactly one of the following conditions holds: (i) \(Q = Q' \); (ii) There exists an element \(q_0 \in Q \) such

Date: November 11, 2013.
that $Q' = \{ q \in Q : q < q_0 \}$; (iii) There exists an element $q'_0 \in Q'$ such that $Q = \{ q' \in Q' : q' < q'_0 \}$.

(d) Show that if $\{ Q_\alpha \}$ is a collection of good chains, then the union $\bigcup Q_\alpha$ is also a good chain.

(e) Find a contradiction between (b) and (d).

Proof. (a) Let $x \in Q$ be an upper bound for Q. Since x is not maximal, there exists some $\hat{x} \in P$ such that $\hat{x} > x$ (by the Axiom of Choice). Set $\lambda (Q) = \hat{x}$, so that for any $y \in Q$, we have $y \leq x < \lambda (Q)$.

(b) Let us assume that Q is the largest good chain in P. Let $Q^+ = Q \cup \{ \lambda (Q) \}$. For each $x \in Q$, we have that $x = \lambda (\{ q \in Q^+ : q < x \})$, since $\lambda (Q) > x$ for all $x \in Q$. Definitionally, $\lambda (Q) = \lambda (\{ q \in Q^+ : q < x \})$, so Q^+ is a good chain.

(c) If $Q = Q^'$ we are done. Thus, let us suppose that Q, Q' are good chains and $Q \neq Q'$. We show that either $Q \subset Q'$ or $Q' \subset Q$. Let Λ be the union of all subsets of P such that $P \subseteq Q$ and $P \subseteq Q'$. Then Λ is the largest such set, which is also well-ordered by the well-ordering of Q and Q'. Suppose that $\Lambda \neq Q$ and $\Lambda \neq Q'$. Then we may select $q \in Q$ and $q' \in Q'$ such that q is the minimal element of Q and $q \notin S$. Define q' analogously. Thus, $\Lambda \subseteq \{ x \in Q : x < q \}$ and $\Lambda \subseteq \{ x \in Q' : x < q' \}$. Then let x_m be the smallest element of Q such that $x_m < q$ and $x_m \notin \Lambda$. Then we have

$$\{ x \in Q : x < x_m \} \subseteq \Lambda \cup \{ x \in Q' : x < q' \} \subseteq Q.$$

Thus, $x_m = \lambda (\{ x \in Q : x < x_m \}) \subseteq Q'$ so $x_m \in Q \cap Q'$. However, x_m could have been appended to Λ, thereby contradicting the maximality of Λ. Thus

$$\Lambda = \{ x \in Q : x < q \} = \{ x \in Q' : x < q' \} \Rightarrow \lambda (\Lambda) = q = q'.$$

However, we could have appended q to Λ, again contradicting the maximality of Λ. Thus, either $Q \subset Q'$ or $Q' \subset Q$.

WLOG suppose that $Q \subset Q'$, and let $q' \in Q'$ be the smallest element of Q' such that $q' \notin Q$. We have $\{ x \in Q' : x < q' \} \subseteq Q$. Suppose that $Q \neq \{ x \in Q' : x < q' \}$, and let x_m be the smallest element in Q such that $x_m > q'$. However, by definition and total ordering, we have

$$x_m = \lambda (\{ x \in Q : x < x_m \}) = \lambda (\{ x \in Q : x < q' \}) = q'.$$

Contradiction. Thus, $Q = \{ x \in Q' : x < q' \}$. The second case follows analogously if $Q' \subset Q$.

(d) Let $\{ Q_\alpha \}$ be a collection of good chains. From (c), we know that for any two elements Q_θ, Q_ω of $\{ Q_\alpha \}$, we have $Q_\theta \subset Q_\omega, Q_\omega \subset Q_\theta$, or $Q_\theta = Q_\omega$. Thus, the union of any number of good chains will be equal to a good chain, and $\bigcup Q_\alpha$ is a good chain.

(e) The above implies that $\bigcup Q_\alpha$ is the largest good chain. This contradicts (b), so we conclude that P has a maximal element. \qed