PROBLEM SET X: PROBLEMS (3, 4)

PATRICK RYAN

Problem 1. Let \(V \) be a Banach space. Show that the dimension of \(V \) is either finite or uncountable (that is, \(V \) does not have a countably infinite basis).

Proof. Let \(V \) be a Banach space, and suppose that it has a countably infinite basis \(\{v_i\}_{i>0} \). Next, consider the subsets \(V_n = V(v_1, \ldots, v_n) \), which are finite dimensional subspaces of \(V \). It is clear that each subspace is closed in \(V \).

Now we show that \(V_n \) is nowhere dense in \(V \). Consider any \(\alpha \in V_n \) and \(\epsilon > 0 \). Then the open ball \(B_\epsilon(\alpha) \) contains the element

\[
\left(\alpha + \frac{\epsilon}{2 \|v_{n+1}\|} v_{n+1} \right),
\]

which is not an element of \(V_n \). Hence, each \(V_n = \overline{V_n} \) is nowhere dense in \(V \).

Since each \(V_n \) is closed and nowhere dense in \(V \), the complements, \((V_n)^c \), are open and dense in \(V \). Applying the Baire Category Theorem, the set \(\bigcap_{n>0} (V_n)^c \) is dense in \(V \), i.e.,

\[
\left(\bigcap_{n>0} (V_n)^c \right)^c = \bigcup_{n>0} V_n = V
\]
is nowhere dense in \(V \). Thus we have a contradiction, and we are done. \(\square \)

Problem 2. Let \(E \subseteq \mathbb{R}^n \) be a measurable set with \(0 < \mu(E) < \infty \). Let us regard \(L^1(E) \) as a metric space, and \(L^2(E) \) as a subset of \(L^1(E) \). Show that \(L^2(E) \) is meagre (that is, it is a countable union of nowhere dense subsets of \(L^1(E) \)).

Proof. Consider the sets

\[
\mathcal{S}_n = \left\{ f \in L^1(E) : \int_E |f|^2 > n \right\}
\]

and let \((\mathcal{S}_n)^c \) be its complement. Then we may write

\[
L^2(E) = \bigcup_n (\mathcal{S}_n)^c,
\]
as every element of \(L^2(E) \) must have square integral bounded by \(n \). It suffices to prove that \(\mathcal{S}_n \) is dense and open for every \(n \), as this implies that each \((\mathcal{S}_n)^c \) is nowhere dense.

Let \(h \in L^1(E)/\mathcal{S}_n \) such that

\[
\int_E |h|^2 \leq n.
\]

Date: December 1, 2013.
We wish to show that h is in the closure of S_n with respect to the L^1-norm. That is, there is a sequence $\{f_k\}$ in S_n such that

$$\lim_{k \to \infty} \|f_k - h\|_{L^1} = 0.$$

Since we have $\mu(E) > 0$, E has a sequence of subsets $\{E_k\}$ such that $\mu(E_k) = \mu(E) / (k^{3/2})$. Define

$$f_k = \begin{cases}
 h + \sqrt{n} \cdot \sqrt{k} & \text{for } x \in E_k, \\
 h & \text{for } x \in E - E_k.
\end{cases}$$

Then we have $f_k \in L^1(E)$ since

$$\int_E |f_k| = \int_E |h| + \sqrt{n} \cdot \left(\mu(E) / \sqrt{k} \right).$$

Since $k^{-3/2} \to 0$, we have $f_k \to h$ with respect to the L^1-norm. However,

$$\int_E |f_k|^2 = \int_E |h|^2 + \left(\mu(E) \sqrt{n} / \sqrt{k} \right) \int_E |h| + n \left(\mu(E) \sqrt{k} \right) > n.$$

Thus, $f_k \in S_n$. Hence, S_n dense in $L^1(E)$.

Now we show the openness of S_n to complete the proof. Consider f bounded. For any $f \in S_n$, write

$$f_\xi = \begin{cases}
 f & \text{for } |f| < \xi, \\
 0 & \text{else}.
\end{cases}$$

Then there exists some ξ such that

$$\int_E |f_\xi|^2 > n \implies \int_E |f|^2 > n.$$

Consider the support of f_ξ. For all $h \in L^1(E)$ such that $\|h|_{supp(f_\xi)} - h\|_{L^1} < \epsilon$, we will have $h|_{supp(f_\xi)} \in S_n$. This allows us to demonstrate

$$\|h - f\|_{L^1} < \epsilon \implies \|h|_{supp(f_\xi)} - h\|_{L^1} < \epsilon \implies h|_{supp(f_\xi)} \in S_n \implies h \in S_n.$$

Thus, we replace f by f_ξ and E by $supp(f_\xi)$. That is, we take f bounded by ξ.

Finally, write h such that $\|h - f\| < \epsilon$, hence

$$\int_E |h|^2 \geq \int_E |f|^2 - 2 \int_E |f (h - f)| + \int_E |h - f|^2 \geq \int_E |f|^2 - 2 \int_E |f (h - f)| > n - 2 \xi \epsilon.$$

Thus, we have S_n is dense and open for every n, which implies that

$$L^2(E) = \bigcup_n (S_n)^c$$

is nowhere dense, i.e., $L^2(E)$ is meagre.

\square