Lecture 9: Topology of Alphabet

1. The digits 0-9

1) The numbers 0, 4, 6, 9 are topologically equivalent.

2) The numbers 1, 2, 3, 5, 7 are topologically equivalent.

3) The number 8 is not topologically equivalent to any other digit.

4) Are there any numbers which are disconnected?

5) Which numbers are simply connected?

3. Classify the alphabet

ABCDE
Lecture 9: The Euler Characteristic

2. Euler Characteristic

1) Compute the Euler Characteristic $V - E + F$ for the cube

<table>
<thead>
<tr>
<th>Vertices V</th>
<th>Edges E</th>
<th>Faces F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2) Cutting the corners of the cube produces 8 new faces and renders the old faces octagonal. Count the Euler characteristic of the new object which is now a semi-regular polyhedron.

<table>
<thead>
<tr>
<th>Vertices V</th>
<th>Edges E</th>
<th>Faces F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3) Start again with the cube, but now cut each of the faces into 4 faces by drawing the diagonals in the squares. If the midpoints are lifted up a bit so that all triangles become equilateral, the new object is called a stellation of the cube. It is another semi-regular polyhedron.

<table>
<thead>
<tr>
<th>Vertices V</th>
<th>Edges E</th>
<th>Faces F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Topology of cloths

Which of the following pieces of cloth are topologically equivalent?
Lecture 9: Topology of Surfaces

1. Objective

By identifying sides of a square we obtain models of compact surfaces: the sphere, the torus, the projective plane and the Klein bottle. We want to explore here the topology of these spaces, especially the simply connectedness: can one pull any closed rope in this space to a point? Only the sphere is simply connected.

2. The torus

1) Draw some curves on the torus, which cannot be pulled together to a point.

2. The projective plane

2) Draw a curve on the projective plane, which cannot be pulled together to a point.

3. The Klein bottle
3) Move a letter R around on the Klein bottle, what happens with the letter as it moves over the boundary to the right and appears to the left?

4. The sphere

4) Draw a curve on the sphere. Visualize that you can pull it together to a point.

5. Euler characteristic

If you have more time: By triangulating the space, we are also able to compute the Euler characteristic of these spaces. The Euler characteristic of the sphere is 2, the Euler characteristic of the torus is 0, the Euler characteristic of the projective plane is 1, the Euler characteristic of the Klein bottle is 0. Can you show this in the examples?