Lecture 8: Probability theory

Probability theory is the science of chance. It starts with combinatorics and leads to a theory of stochastic processes. Historically, probability theory initiated from gambling problems as in Girolamo Cardano’s gamblers manual in the 16th century. A great moment of mathematics occurred, when Blaise Pascal and Pierre Fermat jointly laid a foundation of mathematical probability theory.

It took mathematicians longer to formalize ”randomness” precisely. Here is the setup as which it had been put forward by Andrey Kolmogorov: all possible experiments of a situation are modeled by a set \(\Omega \), the ”laboratory”. A measurable subset of experiments is called an ”event”. Measurements are done by real-valued functions \(X \). These functions are called random variables and are used to observe the laboratory.

As an example, let’s model the process of throwing a coin 5 times. An experiment is a word like \(hthht \), where \(h \) stands for ”head” and \(t \) represents ”tail”. The laboratory consists of all such 32 words. We could look for example at the event \(A \) that the first two coin tosses are tail. It is the set \(A = \{ttttt, ttthh, ttthh, tthtt, ttthh, tthth, tthht, tthhh\} \). We could look at the random variable which assigns to a word the number of heads. For every experiment, we get a value, like for example, \(X[ttthh] = 2 \).

In order to make statements about randomness, the concept of a probability measure is needed. This is a function \(P \) from the set of all events to the interval \([0, 1]\). It should have the property that \(P[\Omega] = 1 \) and \(P[A_1 \cup A_2 \cup ...] = P[A_1] + P[A_2] + ..., \) if \(A_i \) are disjoint events.

The most natural probability measure on a finite set \(\Omega \) is \(P[A] = ||A||/||\Omega|| \), where \(||A|| \) stands for the number of elements in \(A \). It is the ”number of good cases” divided by the ”number of all cases”. For example, to count the probability of the event \(A \) that we throw 3 heads during the 5 coin tosses, we have \(|A| = 10 \) possibilities. Since the entire laboratory has \(|\Omega| = 32 \) possibilities, the probability of the event is \(10/32 \). In order to study these probabilities, one needs combinatorics:

<table>
<thead>
<tr>
<th>How many ways are there to:</th>
<th>The answer is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>rearrange or permute (n) elements</td>
<td>(n! = n(n-1)...2 \cdot 1)</td>
</tr>
<tr>
<td>choose (k) from (n) with repetitions</td>
<td>(n^k)</td>
</tr>
<tr>
<td>pick (k) from (n) if order matters</td>
<td>(\binom{n}{k} = \frac{n!}{(n-k)!k!})</td>
</tr>
<tr>
<td>pick (k) from (n) with order irrelevant</td>
<td></td>
</tr>
</tbody>
</table>

The expectation of a random variable \(E[X] \) is defined as the sum \(m = \sum_{\omega \in \Omega} X(\omega)P[\{\omega\}] \). In our coin toss experiment, this is \(5/2 \). The variance of \(X \) is the expectation of \((X - m)^2 \). In our coin experiments, it is \(5/4 \). Its square root is called the standard deviation. This is the expected deviation from the mean. An event happens almost surely if the event has probability 1.

An important case of a random variable is \(X(\omega) = \omega \) on \(\Omega = R \) equipped with probability \(P[A] = \int_A \frac{1}{\sqrt{\pi}} e^{-x^2} \, dx \), the standard normal distribution. Analyzed first by Abraham de
Moivre in 1733, it was studied by Carl Friedrich Gauss in 1807 and therefore also called Gaussian distribution.

Two random variables \(X, Y\) are called **decorrelated**, if \(E[XY] = E[X] \cdot E[Y]\). If for any functions \(f, g\) also \(f(X) \) and \(g(Y)\) are decorrelated, then \(X, Y\) are called **independent**. Two random variables are said to have the same distribution, if for any \(a < b\), the events \(\{a \leq X \leq b\}\) and \(\{a \leq Y \leq b\}\) are independent. If \(X, Y\) are decorrelated, then the relation \(\text{Var}[X] + \text{Var}[Y] = \text{Var}[X + Y]\) holds which is just **Pythagoras theorem**, because decorrelated can be understood geometrically: \(X - E[X]\) and \(Y - E[Y]\) are orthogonal. A common problem is to study the sum of independent random variables \(X_n\) with identical distribution. One abbreviates this IID. Here are the three most important theorems which we formulate in the case, where all random variables are assumed to have expectation 0 and standard deviation 1. Let \(S_n = X_1 + ... + X_n\) be the \(n\)'th sum of the IID random variables. It is also called a **random walk**.

<table>
<thead>
<tr>
<th>LLN Law of Large Numbers</th>
<th>assures that (S_n/n) converges to 0.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLT Central Limit Theorem:</td>
<td>(S_n/\sqrt{n}) approaches the Gaussian distribution.</td>
</tr>
<tr>
<td>LIL Law of Iterated Logarithm:</td>
<td>(S_n/\sqrt{2n \log \log(n)}) accumulates in ([-1, 1]).</td>
</tr>
</tbody>
</table>

The LLN shows that one can find out about the expectation by averaging experiments. The CLT explains why one sees the standard normal distribution so often. The LIL finally gives us a precise estimate how fast \(S_n\) grows. Things become interesting if the random variables are no more independent. Generalizing LLN,CLT,LIL to such situations is part of ongoing research.

Here are two open questions in probability theory:

Are \(\pi, e, \sqrt{2}...\) normal: do all digits appear with the same frequency?
What growth rates \(\Lambda_n\) can occur in \(S_n/\Lambda_n\) having limsup 1 and liminf \(-1\)?

For the second question, there are examples for \(\Lambda_n = 1, \lambda_n = \log(n)\) and of course \(\lambda_n = \sqrt{n \log \log(n)}\) from LIL if the random variables are independent. Examples of random variables which are not independent are \(X_n = \cos(n \sqrt{2})\).

Statistics is the science of modeling random events in a probabilistic setup. Given data points, we want to find a **model** which fits the data best. This allows to understand the past, **predict the future** or **discover laws of nature**. The most common task is to find the **mean** and the **standard deviation** of some data. The mean is also called the **average** and given by \(m = \frac{1}{n} \sum_{k=1}^{n} x_k\). The variance is \(\sigma^2 = \frac{1}{n} \sum_{k=1}^{n} (x_k - m)^2\) with standard deviation \(\sigma\).

A sequence of random variables \(X_n\) define a so called **stochastic process**. Continuous versions of such processes are where \(X_t\) is a curve of random random variables. An important example is **Brownian motion**, which is a model of a random particles.

Besides gambling and analyzing data, also **physics** was an important motor to develop probability theory. An example is statistical mechanics where laws of nature are studied with probabilistic methods. A famous physical law is **Ludwig Boltzmann’s** relation \(S = k \log(W)\) for entropy, a formula which decorates Boltzmann’s tombstone. The **entropy** of a probability measure \(P[\{k\}] = p_k\) on a finite set \(\{1, ..., n\}\) is defined as \(S = -\sum_{i=1}^{n} p_i \log(p_i)\). Today, we would reformulate Boltzmann’s law and say that it is the expectation \(S = E[\log(W)]\) of the logarithm of the ”Wahrscheinlichkeit” random variable \(W(i) = 1/p_i\) on \(\Omega = \{1, ..., n\}\). Entropy is important because nature tries to maximize it.
Lecture 8: Probability theory

Buffon Needle problem

Problem We throw a needle of length one onto a grid spaced by 1 and look at the probability to hit a grid.

The answer is an integral. Since for a given angle θ the probability of hitting the grid is $|\sin(\theta)|$, the probability is

$$\int_0^{2\pi} |\sin(x)| \, dx/(2\pi) = 4/(2\pi) = 2/\pi .$$

Petersburg Paradox

During class we looked at the following vexing problem:

Problem We throw dices until tail appears. If k times head came first, we get 2^k dollars. What is a fair fee to pay each time?

The paradox is that nobody would want to buy a 20 dollar entry fee. Mathematically, you win with probability 2^{-k} an amount of 2^k leading to an infinite expectation.

One solution is to look what happens if there is a limit K to the jackpot. The expected win is now about $\log_2(K)$.

Martingale strategy

Here is a related but more primitive problem. Why does this "Martingale strategy" not work?

Problem We play roulette. Whenever we lose we double our input. We stop the first time we win.

Game 1: we enter a dollar and win. We stop playing.

Game 2: we enter a dollar and lose first. We bet 2 dollars. We lose again. We bet 4 dollars. Now we win. We have entered 7 dollars and won 8. We walk away with one dollar.
Playing Blackjack

Problem Is there an optimal strategy for blackjack?

This is a more complicated problem. There are many variations of the game. Depending on the game, there are tables telling in which situation it is best to hit for a new card. Here is an example.

By looking at the history of the cards played (add 1 for every low card 2-6 and subtract 1 for every high cards), one can increase the odds. Good card counters can turn a -0.5 percent disadvantage to a 1 percent advantage.

Playing the Lottery

Problem What is the chance to hit 6 right in a 6/49 lottery, where we chose 6 balls from 49? In Massachusetts, this is called the Megabucks doubler.

The odds to win the Jackpot is one to 13 million. There are variants of this. For Power Ball in Massachusetts we chose 5 from 49 and additionally one of 35 (thats the powerball). Are the odds better here?

The odds to win the grand prize is one to 175 million. The rules give smaller prizes too. If all 5 numbers are right, then the prize is 1 Million. If four right or three and a powerball right, the prize is 100 dollars. For the power ball or one ball and a powerball, the buying ticket of 2 dollars is doubled. (Source: www.powerball.com)