Lecture 3: Quiz

Name:

Problem 1

In one of the first slides, we defined geometry as the science of "Shape", "Size" and What is the third point.

Problem 2

Thales was known to be the first mathematician and philosopher. When did he live?

a) 600BC

b) 400BC

c) 200BC

d) 200AC

Problem 3

During the lecture, I mentioned whether Thales has ever met Pythagoras.

600BC

A) They met

B) They did not meet

Problem 4

Match the birth places:

<table>
<thead>
<tr>
<th>Pythagoras of</th>
<th>A) Samos</th>
<th>B) Miletus</th>
<th>C) Chios</th>
<th>D) Alexandria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thales of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euclid of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hippocrates of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Problem 5

What is Morley’s miracle?

A) A relation between side lengths of a quadrilateral.

B) \(a^2 + b^2 + c^2 = d^2 \) for a quadrilateral

C) The angle tri-sectors in an arbitrary triangle intersect in a equilateral triangle.

D) In a right triangle, \(h \) intersects hypotenuse \(c \) in segments \(a, b \) satisfying \(ab = h^2 \).

Problem 6
Thales theorem works also if the angle is 90 degree angle. Then:

The center of the circle is on the hypotenuse.	A
The center of the circle is on the centroid of the triangle.	B
The triangle is an isosceles triangle	C

Problem 7

Two of the following problems are not solvable with ruler and compass:

a) Angle doubling
b) Length trisection
c) Angle trisection
d) Quadrature of the circle

Problem 8

Match four miracles are basic results in geometry:

A. The intersection of lines through mid points
B. The intersection of angular bisectors
C. The intersection of perpend. line bisectors
D. The intersection of altitudes

Problem 9

Which formula appeared in the proof of Hippocrates theorem?

$U + V = T$	A		
$L + R = T$	B		
$L + R = U + V$	C		
$	U - V	= T$	D
$	L - R	= T$	E