Lecture 12: Dynamical systems and Chaos

Chaos

Simple transformations can produce chaotic outcomes. Make sure your calculator is in the "Rad" mode. Remember that 2π radians is equal to 360 degrees. You can check whether your calculator is in Radian mode, by computing $\cos(\pi)$ and get the result -1. Make sure your calculator is in rad mode. Use a scientific calculator. In the iphone calculator for example, turn the device to get to the scientific mode.

Order and Chaos with the calculator

1) Take a calculator, and pushing repetitively the button \cos. What do you observe?

2) Now repeat pushing the \sin button. What do you observe?

3) Now push x^2 repetitively.

4) Now push \sqrt{x} repetitively.

5) What do you see if you push the buttons \sin, then type $1/x$ and repeat this process again and again?

6) Experiment with the button \tan. Also here, change \tan and \cot.

7) Look for other "chaotic" key combinations? Experiment also with Deg and Rad changes and try especially the log functions.
Part II: The Cobweb construction

1. Objective

We graphically compute a few iterates of one dimensional maps.

2. Stability
Lecture 12: The Ulam-Collatz system

1. Objective

We look at a dynamical system of number theoretical nature.

2. The Collatz system

In the Collatz system, we start with an integer and map it with the following rule:

\[T(x) = \begin{cases} x/2 & \text{if } x \text{ even} \\ 3x + 1 & \text{if } x \text{ odd} \end{cases} \]

The question is whether the orbit always ends up with 1.

For example: \(x = 7 \) produces 7, 22, 11, 34, 17.

3. Experiment

1) Start with the initial condition 26:

2) Start with the initial condition 9:

3) Start with the initial condition 2048:

4) What is wrong with the following proof of the Collatz conjecture?

Proof. Consider only the odd numbers in the Collatz sequence. We show that each odd number is in average 3/4 times smaller than the previous one:

With probability 1/2 the number \(3x + 1 \) is divisible by 2 and not 4: this increases \(x \) by 3/2
With probability 1/4 the number \(3x + 1 \) is divisible by 4 and not 8: this decreases \(x \) by 3/4
With probability 1/8 the number \(3x + 1 \) is divisible by 8 and not 16: this decreases \(x \) by 3/8

To compute the probability, we take logarithms and compute

\[a = \sum_{n=1}^{\infty} \frac{1}{2^n} \log\left(\frac{3}{2^n}\right) . \]

The average decay rate of the size of a number is the factor \(e^a = 3/4 \).

3) The Collatz system certainly can be modified. Can you find one, for which there is a nontrivial loop?
Lecture 12: Part IV: Cellular automata

1. Objective

We look at a dynamical systems called Cellular automata. These are continuous maps on sequence spaces in which the evolution rule is translational invariant.

2. The Rule 18 CA

<table>
<thead>
<tr>
<th>neighborhood</th>
<th>new middle cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>0</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
</tr>
<tr>
<td>000</td>
<td>0</td>
</tr>
</tbody>
</table>

Because only cell neighborhoods of the form 100 and 001 lead to an offspring 1, we and 100 = 4, 001 = 1 in binary; we have $2^4 + 2^1 = 18$.

3. Run it