Lecture 6: Worksheets

We stack disks onto each other building \(n \) layers and count the number of discs. The number sequence we get are called **triangular numbers**.

\[
\begin{align*}
1 & \quad 3 & \quad 6 & \quad 10 & \quad 15 & \quad 21 & \quad 36 & \quad 45 & \quad \ldots
\end{align*}
\]

This sequence defines a **function** on the natural numbers. For example, \(f(4) = 10 \).

Can you find \(f(200) \)? The task to find this number was given to Carl Friedrich Gauss in elementary school. The 7 year old came up quickly with an answer. How?

Tetrahedral numbers

We stack spheres onto each other building \(n \) layers and count the number of spheres. The number sequence we get are called **tetrahedral numbers**.

\[
\begin{align*}
1 & \quad 4 & \quad 10 & \quad 20 & \quad 35 & \quad 56 & \quad 84 & \quad 120 & \quad \ldots
\end{align*}
\]

Also this sequence defines a **function**. For example, \(g(3) = 10 \). But what is \(g(100) \)? Can we find a formula for \(g(n) \)?

2. Verify that \(g(n) = n(n+1)(n+2)/6 \), satisfies \(Dg(n) = g(n) - g(n-1) = n(n+1)/2 \).

3. **Problem:** Given the sequence 1, 1, 2, 3, 5, 8, 13, 21, \ldots which satisfies the rule \(f(x) = f(x - 1) + f(x - 2) \). It defines a function on the positive integers. For example, \(f(6) = 8 \). What is the function \(g = Df \), if we assume \(f(0) = 0 \)?

4. **Problem:** Take the same function \(f \) given by the sequence 1, 1, 2, 3, 5, 8, 13, 21, \ldots but now compute the function \(h(n) = Sf(n) \) obtained by summing the first \(n \) numbers up. It gives the sequence 1, 2, 4, 7, 12, 20, 33, \ldots What sequence is that?

5. **Problem:** Find the next term in the sequence

\[
2 \quad 6 \quad 12 \quad 20 \quad 30 \quad 42 \quad 56 \quad 72 \quad 90 \quad 110 \quad 132
\]

6. **Problem:** Find the next term in the sequence

3, 12, 33, 72, 135, 228, 357, 528, 747, 1020, 1353, \ldots

To do so, compute successive derivatives \(g = Df \) of \(f \), then \(h = Dg \) until you see a pattern.