Lecture 13: Experimental mathematics

Experimental mathematics brings mathematics close to physics: we do experiments, for example with the help of a computer. Instead of talking about this abstractly, I tell you a concrete story which illustrates this.

Benfords law tells that the first digits of the sequence 2^n has a distribution which satisfies $p_k = \log_{10}(1 + 1/k)$. The digit 1 for example occurs with about 30 percent. During our discussion, we asked ourselves, what happens if we look at the first significant digit of n^2 or the first significant digit of the primes p_n.

First experiment: exponentials

We look at the numbers 2^n for $n = 1$ to $n = 1000000$ and look at the first digit:

For factorials, the limiting distribution is known to be the Benford distribution. There is no reason why $\log_{10}(n!) \mod 1$ should not be uniformly distributed.

Second experiment: squares

Now let’s look at the first significant digit of the squares $1^2, 4, 9, 1, 2, 9, 6, 8, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4$.

Third experiment: Primes

What is the first significant digit of the prime numbers?

Forth experiment: factorials

For factorials, the limiting distribution is known to be the Benford distribution. There is no reason why $\log_{10}(n!) \mod 1$ should not be uniformly distributed.
Fifth experiment: partitions

Also for the partition numbers, \(p(n) \), which give the number of possibilities in which the number \(n \) can be written as a sum of integers, we measure that the Benford distribution takes place. As far as we know this is not known.

```math
\text{data} = \text{Table}[
\hspace{1em} \text{First}[\text{IntegerDigits}[\text{PartitionsP}[n]]], \{n, 1, 10000\};
\text{S = Histogram[}\text{data}, 10, \text{ColorFunction} \rightarrow \text{Hue}]\]
```

Problems with known answers

1. Find the distribution of the first significant digit of \(n^2 + 2^n \).
2. Find the distribution of the first significant digit of the Fibonacci sequence 1,1,2,3,5,8,13,....
3. Find the distribution of the first significant digit of numbers \(n^{100} \).
4. Verify that for the factorials \(n! \), the first significant digit has the Benford distribution? (Benford)
5. Verify that for \(n^n \), the first significant digit has the Benford distribution? ¹

Problems with unknown answers

6. Find the distribution of the first significant digit of primes. One finds a \(n \) dependent generalized Benford law with \(\alpha(n) = 1/(\log(n) - 1.1) \). ²
7. Find the distribution of the first significant digit of \(\lfloor \exp(\sqrt{n}) \rfloor \) where where \(\lfloor x \rfloor \) is the largest integer smaller or equal to \(x \).
8. What is the distribution of the first significant digit of \(\lfloor n \log(n) \rfloor \) where \(\lfloor x \rfloor \) is the largest integer smaller or equal to \(x \).
9. What is the distribution of the first significant digit of the Partition numbers \(p(n) \)?
10. What is the distribution of the first significant digit of \(\lfloor n^2 \sin(n) \rfloor \) where \(\lfloor x \rfloor \) is the largest integer smaller or equal to \(x \).