This document is in the public domain.
Unit 1: Pythagorean theorem

Lecture

1.1. A finite rectangular array A of real numbers is called a matrix. If there are n rows and m columns in A, it is called a $n \times m$ matrix. We address the entry in the i'th row and j'th column with A_{ij}. A $n \times 1$ matrix is a column vector, a $1 \times n$ matrix is a row vector. A 1×1 matrix is called a scalar. Given a $n \times p$ matrix A and a $p \times m$ matrix B, the $n \times m$ matrix AB is defined as $(AB)_{ij} = \sum_k A_{ik}B_{kj}$. It is called the matrix product. The transpose of a $n \times m$ matrix A is the $m \times n$ matrix $A^T_{ij} = A_{ji}$. The transpose of a column vector is a row vector.

1.2. Denote by $M(n,m)$ the set of $n \times m$ matrices. It contains the zero matrix O with $O_{ij} = 0$. In the case $m = 1$, it is the zero vector. The addition $A + B$ of two matrices in $M(n,m)$ is defined as $(A+B)_{ij} = A_{ij} + B_{ij}$. The scalar multiplication λA is defined as $(\lambda A)_{ij} = \lambda A_{ij}$ if λ is a real number. These operations make $M(n,m)$ a vector space: the addition is associative, commutative with a unique additive inverse $-A$ satisfying $A - A = 0$. The multiplications are distributive: $A(B + C) = AB + AC$ and $\lambda(A + B) = \lambda A + \lambda B$ and $\lambda(\mu A) = (\lambda \mu)A$.

1.3. The space $M(n, 1)$ is also called \mathbb{R}^n. It is the n-dimensional Euclidean space. The vector space \mathbb{R}^2 is the plane and \mathbb{R}^3 is the physical space. These spaces are dear to us as we draw on paper and live in space. The dot product between two column vectors $v, w \in \mathbb{R}^n$ is the matrix product $v \cdot w = v^T w$. Because the dot product is a scalar, the product is also called the scalar product. In the matrix product of two matrices A, B, the entry at position (i, j) is the dot product of the i'th row in A with the j'th column in B. More generally, the dot product between two arbitrary $n \times m$ matrices can be defined by $A \cdot B = \text{tr}(A^T B)$, where the trace of a matrix is the sum of its diagonal entries. This means $\text{tr}(A^T B) = \sum_{i,j} A_{ij}B_{ij}$. We just take the product over all matrix entries and add them up. The dot product is distributive $(u + v) \cdot w = u \cdot w + v \cdot w$ and commutative $v \cdot w = w \cdot v$. We can use it to define the length $|v| = \sqrt{v \cdot v}$ of a vector or the length $|A|$ of a matrix, where we took the positive square root. The sum of the squares is zero exactly if all components are zero. The only vector satisfying $|v| = 0$ is therefore $v = 0$.

1.4. An important key result is the Cauchy-Schwarz inequality.

Theorem: $|v \cdot w| \leq |v||w|$
Proof. If \(w = 0 \), there is nothing to prove as both sides are zero. If \(w \neq 0 \), then we can divide both sides of the equation by \(|w| \) and so achieve that \(|w| = 1 \). Define \(a = v \cdot w \). Now, \(0 \leq (v - aw) \cdot (v - aw) = |v|^2 - 2av \cdot w + a^2|w|^2 = |v|^2 - 2a^2 + a^2 = |v|^2 - a^2 \) meaning \(a^2 \leq |v|^2 \) or \(v \cdot w \leq |v| |w| \).

1.5. It follows from the Cauchy-Schwarz inequality that for any two non-zero vectors \(v, w \), the number \((v \cdot w)/(|v||w|) \) is in the closed interval \([-1, 1]\). There exists therefore a unique angle \(\alpha \in [0, \pi] \) such that \(\cos(\alpha) = (v \cdot w)/(|v||w|) \). If this angle between \(v \) and \(w \) is equal to \(\alpha = \pi/2 \), the two vectors are orthogonal. If \(\alpha = 0 \) or \(\pi \) the two vectors are called parallel. There exists then a real number \(\lambda \) such that \(v = \lambda w \). The zero vector is considered both orthogonal as well as parallel to any other vector.

1.6. Two vectors \(v, w \) define a (possibly degenerate) triangle \(\{0, v, w\} \) in Euclidean space \(\mathbb{R}^n \). The above formula defines an angle \(\alpha \) at the point 0 (which could be the zero angle). The side lengths \(a = |v|, b = |w|, c = |v - w| \) of the triangle satisfy the following cos formula. It is also called the Al Kashi identity.

Corollary: \(c^2 = a^2 + b^2 - 2ab \cos(\alpha) \)

Proof. We use the definitions as well as the distributive property (FOIL out):
\[
c^2 = |v - w|^2 = (v - w) \cdot (v - w) = v \cdot v + w \cdot w - 2v \cdot w = a^2 + b^2 - 2ab \cos(\alpha). \]

1.7. The case \(\alpha = \pi/2 \) is particularly important. It is the Pythagorean theorem:

Theorem: In a right angle triangle we have \(c^2 = a^2 + b^2 \).

Examples

1.8. The dot product \[
\begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix} \]

is \([1, 3, 1] = [1, -2, -1] = 1 - 6 - 1 = -6\). We have
\(|v| = \sqrt{11}, |w| = \sqrt{6} \) and angle \(\alpha = \arccos(-6/\sqrt{66}) \).

1.9. The dot product of \(A = \begin{bmatrix} 3 & 1 \\ 2 & -1 \end{bmatrix} \) and \(B = \begin{bmatrix} 2 & 2 \\ 4 & -1 \end{bmatrix} \) is \(\text{tr}(A^T B) = 6 + 2 + 8 + (-1) = 15 \). The length of \(A \) is \(\sqrt{12} \), the length of \(B \) is 5. The angle between \(A \) and \(B \) is \(\alpha = \arccos(15/(5\sqrt{12})) = \arccos(\sqrt{3}/2) = \pi/6 \).

1.10. \(A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \) and \(B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \) are perpendicular because \(\text{tr}(A^T B) = 0 \). The angle between them is \(\pi/2 \). The length of \(A \) is \(a = \sqrt{10} \). The length of \(B \) is \(b = \sqrt{4} = 2 \). The length of \(A + B = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \) is \(c = \sqrt{14} \). We confirm \(a^2 + b^2 = c^2 \). Note that \(AB \neq BA \). Multiplication is not commutative.

1.11. Find the angles in a triangle of length \(a=4, b=5 \) and \(c=6 \). Answer: Al Kashi gives \(2 \cdot 4 \cdot 5 \cos(\gamma) = 4^2 + 5^2 - 6^2 = 5 \) so that \(\gamma = \arccos(5/40) \). Similarly \(2 \cdot 4 \cdot 6 \cos(\beta) = 27 \) so that \(\gamma = \arccos(27/48) \) and \(2 \cdot 5 \cdot 6 \cos(\alpha) = 45 \) so that \(\alpha = \arccos(45/60) \).
Figure 1. A cuboid of integer side length a, b and c such that $a^2 + b^2, a^2 + c^2, b^2 + c^2$ are squares is an **Euler brick**. Its side diagonals are now integers. The smallest one $(a, b, c) = (44, 117, 24)$ was found in 1719. If also $a^2 + b^2 + c^2$ is a square, meaning that the space diagonal is an integer too, we have a **perfect Euler brick**. Nobody has found one. It is a famous open problem due to Euler, whether there exists one.

Figure 2. This Povray scene was generated by a method which involves a lot of vector calculus and linear algebra: this open source **ray tracer** bounces around light in the virtual scene and computes the reflections. A camera then captures the photons, similarly as a real camera does. Textures are implemented by images, here a postcard of Harvard square from 1930. It is a image file encoding three 1688×1104 matrices R, G, B, red, green and blue values at each pixel. The scene is an “homage” to the novel “On Time and the River” by Thomas Wolfe who was a Harvard undergraduate here from 1920-1922 (notice the 22!).

This homework is due on Thursday.

Problem 1.1: Given \(A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \).

a) Find \(A^T \), then build \(B = A + A^T \) and \(C = A - A^T \). The first matrix is called **symmetric**, the second is called **anti-symmetric**.

b) Compute \(AA^T \) and \(A^T A \). Then evaluate \(\text{tr}(A^T A) \) and \(\text{tr}(AA^T) \).

c) Why are these two numbers computed in b) the same? Is it true in general for two \(n \times m \) matrices that \(\text{tr}(A^T B) = \text{tr}(B^T A) \)? (There is a short verification using the sum notation).

Problem 1.2: Use the definitions to find the angle between the vector \(v = [1, 1, 0, -3, 0, 1]^T \) and \(w = [1, 1, 9, -3, -5, -3]^T \). What? Is this not a bit esoteric? These vectors are in \(\mathbb{R}^6 \). It actually is very applied: the value \(\cos(\alpha) \) is the **correlation** between the two data points \(v \) and \(w \). If the cosine is positive, the data have positive correlation. If the cosine is negative, they have negative correlation.

Problem 1.3:

a) Verify the triangle identity \(|v - w| \leq |v| + |w| \) in general by FOILing out \((v - w) \cdot (v - w)\), then generate an example of two vectors in the plane \(\mathbb{R}^2 \), where this happens. Draw the situation.

b) Verify that if \(v \) and \(w \) have the same length, then \((v - w)\) and \((v + w)\) are perpendicular. Describe the result in one sentence so that a junior high school student would understand it.

Problem 1.4: Write the vector \(F = [2, 3, 4]^T \) as a sum of a vector parallel to \(v = [1, 1, 1]^T \) and a vector perpendicular to \(v \). If we interpret \(F \) as a **force** acting on a kite of mass 1 and \(v \) as the velocity then \(F \cdot v \) has an interpretation as power, the rate of change of the energy of the kite. The vector parallel to \(v \) would by Newton be the acceleration of the kite.

Problem 1.5:

a) Find two vectors in \(\mathbb{R}^2 \) for which all coordinate entries are 1 or \(-1\) and which are both perpendicular to each other.

b) Design four vectors in \(\mathbb{R}^4 \) for which all coordinate entries are 1 or \(-1\) which are all perpendicular to each other.

Optional and needs not to be turned in: Can you invent a strategy which allows you for example to find 16 vectors in \(\mathbb{R}^{16} \) which are all perpendicular to each other and have still entries in \(\{-1, 1\}\)?
Unit 2: Gauss-Jordan elimination

Lecture

2.1. If a \(n \times m \) matrix \(A \) is multiplied with a vector \(x \in \mathbb{R}^m \), we get a new vector \(Ax \) in \(\mathbb{R}^n \). The process \(x \rightarrow Ax \) defines a linear map from \(\mathbb{R}^m \) to \(\mathbb{R}^n \). Given \(b \in \mathbb{R}^n \), one can ask to find \(x \) satisfying the system of linear equations \(Ax = b \). Historically, this gateway to linear algebra was walked through much before matrices were even known: there are Babylonian and Chinese roots reaching back thousands of years.

2.2. The best way to solve the system is to row reduce the augmented matrix \(B = [A|\,b] \). This is a \(n \times (m + 1) \) matrix as there are \(m + 1 \) columns now. The Gauss-Jordan elimination algorithm produces from a matrix \(B \) a row reduced matrix \(\text{rref}(B) \). The algorithm allows to do three things: subtract a row from another row, scale a row and swap two rows. If we look at the system of equations, all these operations preserve the solution space. We aim to produce leading ones \(\mathbb{1} \), which are matrix entries 1 which are the first non-zero entry in a row. The goal is to get to a matrix which is in row reduced echelon form. This means: A) every row which is not zero has a leading one, B) every column with a leading 1 has no other non-zero entries besides the leading one. The third condition is C) every row above a row with a leading one has a leading one to the left.

2.3. We will practice the process in class and homework. Here is a theorem

\[\text{Theorem: Every matrix } A \text{ has a unique row reduced echelon form.} \]

Proof. 2 We use the method of induction with respect to the number \(m \) of columns in the matrix. The induction assumption is the case \(m = 1 \) where only one column exists. By condition B) there can either be zero or 1 entry different from zero. If there is none, we have the zero column. If it is non-zero, it has to be at the top by condition C). We are in row reduced echelon form. Now, let us assume that all \(n \times m \) matrices have a unique row reduced echelon form. Take a \(n \times (m + 1) \) matrix \([A|b] \). It remains in row reduced echelon form, if the last column \(b \) is deleted (see lemma). Remove the last column and row reduce is the same as row reducing and then delete the last column. So, the columns of \(A \) are uniquely determined after row reduction. Now note that for a row of \([A|b]\) without leading one at the end, all entries are zero so that also

\[\text{For more, look at the exhibit on the website: google “catch 22 Harvard” to get there} \]

\[\text{The proof is well known: i.e. Thomas Yuster, Mathematics Magazine, 1984} \]
the last entries agree. Assume we have two row reductions \([A'|b']\) and \([A'|c']\) where \(A'\) is the row reduction of \(A\). A leading \(\mathbf{1}\) in the last column of \([A'|b']\) happens if and only if the corresponding row in \(A\) was zero. So, also \([A',c']\) has that leading \(\mathbf{1}\) at the end.

Assume now there is no leading one in the last column and \(b'_k \neq c'_k\). We have so \(x\), a solution to the equation \(A'_{kq}x_q + A'_{k,q+1}x_{q+1} + \ldots A'_{k,m}x_m = b'_k\). Since solutions to equations stay solutions when row reducing, also \(A'_{kq}x_q + A'_{k,q+1}x_{q+1} + \ldots + A'_{k,m}x_m = c'_k\). Therefore \(b'_k = c'_k\).

\[\square\]

2.4. A separate lemma allows to break up a proof:

Lemma: If \([A|b]\) is row reduced, then \(A\) is row reduced.

Proof. We have to check the three conditions which define row reduced echelon form. \(\square\)

2.5. It is not true that if \(A\) is in row reduced echelon form, then any sub-matrix is in row reduced echelon form. Can you find an example?

Examples

2.6. To row reduce, we use the three steps and document on the right. To save space, we sometimes report only after having done two steps. We circle the leading \(\mathbf{1}\). Note that we did not immediately go to the leading \(\mathbf{1}\) by scaling the first. It is a good idea to avoid fractions as much as possible.

\[
\begin{bmatrix}
3 & 4 & 5 & 6 & 7 \\
20 & 30 & 40 & 50 & 60 \\
1 & 2 & 3 & 4 & 4
\end{bmatrix}
\rightarrow \text{row 3}
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 \\
20 & 30 & 40 & 50 & 60 \\
3 & 4 & 5 & 6 & 7
\end{bmatrix}
\begin{bmatrix}
\mathbf{1} & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 6 \\
3 & 4 & 5 & 6 & 7
\end{bmatrix} \rightarrow \text{row 1}
\begin{bmatrix}
\mathbf{1} & 2 & 3 & 4 & 5 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
\mathbf{1} & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 6 \\
3 & 4 & 5 & 6 & 7
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 \\
0 & -1 & -2 & -3 & -4 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\mathbf{1} & 2 & 3 & 4 & 5 \\
0 & \mathbf{1} & 2 & 3 & 4 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\mathbf{1} & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 6 \\
3 & 4 & 5 & 6 & 7
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 \\
0 & -1 & -2 & -3 & -4 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\mathbf{1} & 2 & 3 & 4 & 5 \\
0 & \mathbf{1} & 2 & 3 & 4 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

2.7. Finish the following **Suduku problem** which is a game where one has to fix matrices. The rules are that in each of the four \(2 \times 2\) sub-squares, in each of the four rows and each of the four columns, the entries 1 to 4 have to appear and so add up to 10.

\[
\begin{bmatrix}
2 & 1 & x & 3 \\
3 & y & z & 1 \\
4 & 3 & a & 2 \\
b & c & d & e
\end{bmatrix}
\]

We have the equations

\[
\begin{align*}
x + 3 &= 10, \\
y + z &= 10, \\
a + 2 &= 10, \\
b + c + d + e &= 10
\end{align*}
\]

for the rows, \(2 + 3 + 4 + b = 10, \ 1 + y + 3 + c = 10, \ x + z + a + d = 10, \ 3 + 1 + 2 + e + 10\) for the columns and \(2 + 1 + 3 + y = 10, \ x + 3 + z + 1 = 10, \ 4 + 3 + b + c = 10, \ a + 2 + d + e = 10\) for the four squares. We could solve the system by writing down the corresponding augmented matrix and then do row reduction. The solution is

\[
\begin{bmatrix}
2 & 1 & 4 & 3 \\
3 & 4 & 2 & 1 \\
4 & 3 & 1 & 2 \\
1 & 2 & 3 & 4
\end{bmatrix}
\]
The system of equations
\[
\begin{align*}
|x + u| &= 3 \\
|y + v| &= 5 \\
|z + w| &= 9 \\
|x + y + z| &= 8 \\
|u + v + w| &= 9
\end{align*}
\]
is a tomography problem. These problems appear in magnetic resonance imaging. A precursor was was X-ray Computed Tomography (CT) for which Allen MacLeod Cormack got the Nobel in 1979 (Cormack had a sabbatical at Harvard in 1956-1957, where the idea hatched). Cormack lived until 1998 in Winchester MA. He originally had been a physicist. His work had tremendous impact on medicine.

\[\text{Figure 1.} \quad \text{A MRI scanner can measure averages of tissue densities along lines. MRI (Magnetic Resonance Imaging) is a radiology imaging technique that avoids radiation exposure to the patient). Solving a system of equations allows to compute the actual densities and so to do the magic of “seeing inside the body”.
}\]

We build the augmented matrix \([A|b]\) and row reduce. First remove the sum of the first three rows from the 4th, then change the sign of the 4’th column:
\[
\begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 0 & 3 \\
0 & 1 & 0 & 0 & 1 & 0 & 5 \\
0 & 0 & 1 & 0 & 0 & 1 & 9 \\
1 & 1 & 1 & 0 & 0 & 1 & 8 \\
0 & 0 & 0 & 1 & 1 & 1 & 9
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 3 \\
0 & 1 & 0 & 0 & 0 & 0 & 5 \\
0 & 0 & 1 & 0 & 0 & 0 & 9 \\
0 & 0 & 0 & 1 & 0 & 0 & 9 \\
0 & 0 & 0 & 0 & 1 & 0 & 0
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{bmatrix}
\]
Now we can read of the solutions. We see that \(v\) and \(w\) can be chosen freely. They are free variables. We write \(v = r\) and \(w = s\). Then just solve for the variables:
\[
\begin{align*}
x &= -6 + r + s \\
y &= 5 - r \\
z &= 9 - s \\
u &= 9 - r - s \\
v &= r \\
w &= s
\end{align*}
\]
Problem 2.1: For a polyhedron with \(v \) vertices, \(e \) edges and \(f \) triangular faces Euler proved his famous formula \(v - e + f = 2 \). An other relation \(3f = 2e \) called a Dehn-Sommerville relation holds because each face meets 3 edges and each edge meets 2 faces. Assume the number the number \(f \) of triangles is 288. Write down a system of equations for the unknowns \(v, e, f \) in matrix form \(Ax = b \), then solve it to find \(v \) and \(e \).

Problem 2.2: Row reduce the matrix \(A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 0 \\ 1 & 2 & 0 & 0 \end{bmatrix} \).

Problem 2.3: a) In the “Nine Chapters on Arithmetic”, the following system of equations appeared \(3x + 2y + z = 39, 2x + 3y + z = 34, x + 2y + 3z = 26 \). Solve it using row reduction by writing down an augmented matrix and row reduce.

Problem 2.4: a) Which of the following matrices are in row reduced echelon form?
\[A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}. \]
b) Two \(n \times m \) matrices in reduced row-echelon form are called of the same type if they contain the same number of leading l’s in the same positions. For example, \(\begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \) and \(\begin{bmatrix} 1 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \) are of the same type. How many types of \(2 \times 2 \) matrices in reduced row-echelon form are there?

Problem 2.5: Given \(A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \). Compare \(\text{rref}(A^T) \) with \((\text{rref}(A))^T \). Is it true that the transpose of a row reduced matrix is a row reduced matrix?
Unit 3: Definitions, Theorems and Proofs

3.1. Theorems are mathematical statements which can be verified using proofs. Theorems are the backbone of mathematics. A proof assures that the theorem is true and remains valid also in the future. Let’s look at an example of a theorem. It has already been known and proven by Euclid of Alexandria. It deals with integers and primes, positive integers larger than 1 which are only divisible by 1 or itself. The theorem tells that every positive integer is either 1 or prime or the product of two or more primes. To formulate the theorem more elegantly, we extend the notion of product and say that a prime is the product of \(k = 1 \) primes and that the number 1 is a product of \(k = 0 \) primes. Also we would say the number 20 = 2*2*5 is the product of \(k = 3 \) primes, even so the prime 2 appears twice. This is similar to the water molecule \(H_2O = H \ast H \ast O \) containing \(k = 3 \) atoms, as hydrogen \(H \) appears twice and oxygen \(O \) once. Now, like every molecule decomposes into atoms, every number decomposes into primes:

Theorem: “Every integer \(n \geq 1 \) is a product of \(k \geq 0 \) primes”.

This is a remarkable statement because there are infinitely many integers. We cannot go through an infinite list and check things for each. It could a priori happen that for some very large number, like the Fermat number \(F_{1000} = 2^{(2^{1000})} + 1 \), which cannot even be written down in our universe, the statement would fail.

3.2. In order that such a statement can be verified or refuted, one needs first of all to make sure that the objects are described by clear definitions. In the above sentence, this means that we need to know what the “integers” are, what a “product” is and what “prime numbers” are. This is already tricky in general. Most confusions which have happened historically in science (and still today!) are based on sloppy definitions.

Problem A: What is problematic with the definition: “a vector is an object with magnitude and direction”? (Quote Britannica)

\(^1\)There are less than \(2^{300}\) elementary particles available in our universe (as far as we know).

\(^2\)Amuse yourself and try to find definitions of “entropy”, “multiverse”, “intelligence” or “life”
Problem B: Why is 1 not considered a prime number?

3.3. Once, the definitions of the ingredient of the statement is clear, it is helpful to clarify its **meaning**. We get intuition by looking at **examples**. We see for example that \(100 = 2 \times 2 \times 5 \times 5\) is indeed a product of prime numbers. We see that 7 is a prime number. Examples are great but it is important at this stage also to realize:

Principle: Checking a statement by showing a few examples is not a proof.

We will come back to this later in the course.

Problem C: The following statements are examples to theorems we have seen in the first two lectures:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Belongs to theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3^2 + 4^2 = 5^2)</td>
<td></td>
</tr>
<tr>
<td>(63 = [3, 4] \cdot [5, 12] \leq 5 \times 13 = 65)</td>
<td></td>
</tr>
<tr>
<td>([0, 1, 0, 0, 1]) can not be row reduced to ([0, 0, 1, 1, 0]).</td>
<td></td>
</tr>
</tbody>
</table>
3.4. One of the important proof techniques is the principle of mathematical induction. It is mostly applied to integers but it can also be used for matrices as we have seen in the second lecture. The principle applies for statements $S(n)$ which depend on a number n.

Principle: $S(1)$ and $S(n) \Rightarrow S(n+1)$ implies $S(n)$ for all $n \geq 1$.

3.5. Here is an example

Theorem: $S(n): 1 + 2 + 3 + \cdots + n = (n^2 + n)/2$.

Proof: the statement $S(n)$ is true for $n = 1$. Assume $S(n)$ is true. Now $S(n+1)$ tells $1 + 2 + \cdots + n + (n+1) = ((n+1)^2 + (n+1))/2$. Using the induction assumption this means $(n^2 + n)/2 + (n+1) = ((n+1)^2 + (n+1))/2$ which is true. We know therefore that the statement is true for all n.

3.6. Let’s look at the theorem on primes above. In order to make this a statement which we can extend from n to $n+1$, we modify the statement to

Theorem: $S(n):$ Every $k \in \{2, 3, 4 \cdots n\}$ has a prime factorization.

3.7. $S(2)$ is true as $\{2\}$ only contains one number which is prime. Now assume $S(n)$ meaning that the statement is true for n, prove that $S(n+1)$ is true. There are two cases: if $n + 1$ is prime, then $S(n+1)$ is true. If $n + 1$ is not prime, then $n = ab$ where a and b are numbers larger than 1 but smaller or equal than n. By induction assumption, both a and b decay into primes: $a = p_1 p_2 \cdots p_k$ and $b = q_1 q_2 \cdots q_l$ where p_j and q_j are primes. Therefore, $n + 1 = p_1 p_2 \cdots p_k q_1 q_2 \cdots q_l$.

3.8. It is important to understand the statement and not overreach it. We have not proven that every integer has a unique decomposition into prime factors. This was not known by Euclid (he might not even have thought about it). It was only proven 2000 years later by Gauss. A common mistake which happens in mathematical proofs is that one cites a theorem which is known but over reaches its scope or forgets one of the assumptions.

Principle: Do not extend the scope of an already established fact without justification.

3.9. If you think such mistakes happen to rookies only, this is not the case. Leonard Euler, probably the greatest mathematician of all times once attempted a proof of Fermat’s last theorem by working with extended number systems like $\mathbb{Z}[\sqrt{-3}]$ which are all the numbers of the form $a + \sqrt{-3}b$, where a, b are integers. You see, one can add and multiply such numbers like integers and remain in the class. Euclid’s proof also shows that there is a prime factorization. But there can be different prime factorizations. An example is $4 = 2 \times 2 = (1 + \sqrt{-3})(1 - \sqrt{-3})$. A similar mistake was done by Gabriel Lamé who announced in 1847 a proof of Fermat’s last theorem telling that for $n \geq 3$, no solutions to $x^n + y^n = z^n$ exist unless $xyz = 0$. Lamé’s genius

\[3\]Already used by Plato and a second order axiom in the Peano axiom system.
idea was to decompose \(x^n + y^n \) into linear factors using numbers satisfying \(\xi^n = 1 \), so called roots of unity. Also here, Euclid shows that a prime factorization exists, but it is also here not unique. The mistake was actually quite important. It led to a “theory of ideals” by Ernst Kummer which allowed to prove Fermat’s last theorem in certain cases.

Principle: Mistakes can open new doors and find ideas. A creative search process can lead to mistakes at first.

3.10. Of course, we have to try to avoid mistakes in the final product at all costs. Euler certainly earned the right to make some mistakes by creating a lot of mathematics, which will remain true for all eternity. But mistakes can be much more basic. Here is a beautiful example due to Polya:

Theorem: \(S(n) \): In a collection of \(n \) horses all have the same color.

Proof: The induction assumption is clear as for \(n=1 \), all horses have the same color. Now assume the statement is true for all groups of \(n \) horses. Now take \(n+1 \) horses and take the first away. These are \(n \) horses so that all have the same color. Now put the first back and take the last one away. Again we have \(n \) horses, so that all have the same color. Therefore all have the same color.

Problem D: What is wrong in the proof of Polya’s horse theorem?

Here are some more amusements:

Theorem: Cats have nine tails.

3.11. Proof: No cat has no tail. A cat with a tail has a tail more than no cat. No cat has eight tails. Therefore, cats have nine tails.

\[\text{4see Mario Livio: Brilliant blunders, 2013}\]

\[\text{5George Polya: Induction and Analogy in Math, 1954 (Thanks to Jun Hou Fung for suggestion):}\]
3.12. For the following definition of “Prime numbers” we follow6:

\textit{A prime is a number with no divisors.}

\textit{Boxes of chocolates always contain a prime number so that, whatever the number of people present somebody has to have that one left over.}

3.13. Why do we start to do induction at $n = 1$ and not from the other end? The following song explains why: (just as a bit of background to appreciate the song: Aleph-Null = \aleph_0 is the cardinality of the \textbf{natural numbers} \mathbb{N}. \aleph_1 is the next larger cardinality. The cardinality of the \textbf{real numbers} \mathbb{R} is 2^{\aleph_0} (as the Cantor diagonal argument shows that the real numbers can not be counted) which is the cardinality of all subsets of natural numbers. Cantor had shown that there are different infinities. A beautiful mind like Cantor of course asked whether there is an infinity in between these two infinities.

The statement $2^{\aleph_0} = \aleph_1$ is the \textbf{continuum hypothesis} abbreviated CH. Work of Paul Cohen Kurt Gödel in the sixties shows that one can not prove the statement nor its negation from ZFC set theory (an axiom system of our standard mathematics from which one can derive the Peano axioms including the principle of induction). Cantor had for a long time tried to prove CH, in vain. We know now that his efforts to prove this were doomed from the beginning. This possibility always exists. There is the possibility (very unlikely although) that we can not prove that every even number larger than 2 is a sum of two primes, even in the case if it would be true!7. The continuum hypothesis problem had been the first of Hilbert’s problems of 1900.

\begin{center}
\textit{Aleph-null bottles of beer on the wall,}
\textit{Aleph-null bottles of beer,}
\textit{You take one down, and pass it around,}
\textit{Aleph-null bottles of beer on the wall.}
\end{center}

3.14. And here is another Ainsley quote:

\begin{center}
\textit{At the end of a proof you write Q.E.D,}
\textit{which stands not for Quod Erat Demonstrandum}
\textit{as the books would have you believe, but for Quite Easily Done.}
\end{center}

6R. Ainsley: “Bluff your way in maths, 1990”

7See Apostolos Doxiadis: Uncle Petros and the Goldbach conjecture, Novel of 1992
Homework

Exercises A)-D) are done in the seminar. This homework is due on Tuesday:

Problem 3.1 Write down a proof by induction showing that \(1 + 3 + 5 + 7 + \cdots + (2n - 1) = n^2 \) for every integer \(n \geq 1 \).

Problem 3.2 Given a \(n \times n \) matrix \(A \), its trace is defined as the sum of the diagonal elements \(\sum_k A_{kk} \). We can define in \(M(n,m) \) the inner product \(\text{tr}(A^T B) \). First check that this inner product makes sense and that \(A^T B \) is indeed a square matrix. Repeat each step of the proof of the Cauchy-Schwarz inequality and see that it still works.

Problem 3.3 Let us define a vector \(v \star w = (v \cdot w)v/|v|^2 \). It is called the vector projection of \(w \) onto \(v \).
 a) Is the operation \(\star \) commutative?
 b) Is the operation \(\star \) associative?
 c) Verify that \(v \) is perpendicular to \(w - (v \star w) \).

Problem 3.4 Try to design yourself an elementary geometric proof of the Pythagorean theorem which does not use any algebra. First try this without looking up. Then look up one the many proofs available and pick the one you like most and write or draw it out.

Problem 3.5 Given a \(n \times m \) matrix \(A \), assume that \(\text{rref}(A) \) has \(r \) leading 1 and that \(\text{rref}([A|b]) \) has \(s \) leading 1. What condition on \(r \) and \(s \) and \(n \) and \(m \) implies that the system of equations \(Ax = b \) has no solution? Experiment first with small examples.
Unit 4: Cross product

Lecture

4.1. The three dimensional space \(\mathbb{R}^3 \) is special. It is not only the only Euclidean space in which the Kepler problem is stable \(^1\), it also features a cross product \(v \times w \) which is in the same space. Such a product can be defined in \(\mathbb{R}^n \) but it produces a vector in \(\mathbb{R}^{n(n-1)/2} \). It happens that for \(n = 3 \) that the result is again in \(\mathbb{R}^3 \). The problem of “multiplying triplets” has been pondered by William Hamilton in the first half of the 19th century and is related to the fascinating story of quaternions. The discovery of quaternions was simultaneously the birth place of the dot and cross product.

4.2. The cross product of two vectors \(v = [v_1, v_2, v_3]^T \) and \(w = [w_1, w_2, w_3]^T \) is

\[
\begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3
\end{bmatrix} \times
\begin{bmatrix}
 w_1 \\
 w_2 \\
 w_3
\end{bmatrix} =
\begin{bmatrix}
 v_2 w_3 - v_3 w_2 \\
 v_3 w_1 - v_1 w_3 \\
 v_1 w_2 - v_2 w_1
\end{bmatrix}.
\]

Take the dot product with \(v \) or \(w \) to see that \(v \times w \) is perpendicular to both \(v \) and \(w \). Obvious is also \(v \times w = -w \times v \). The product is handy for constructions in \(\mathbb{R}^3 \). The vectors \(v, w, v \times w \) are oriented like the first three fingers on the right hand: if \(v \) is the thumb, \(w \) is the pointing finger, then \(v \times w \) is the middle finger. Let \(v \cdot w = |v||w| \cos(\alpha) \):

Theorem: \(|v \times w| = |v||w| \sin(\alpha) \) and \(v \cdot (v \times w) = w \cdot (v \times w) = 0. \)

Proof. We will verify in class by brute force the Lagrange’s identity \(|v \times w|^2 = |v|^2|w|^2 - (v \cdot w)^2 \) which is also called Cauchy-Binet formula. Now use \(|v \cdot w| = |v||w| \cos(\alpha) \) to get the result with \(\cos^2(\alpha) + \sin^2(\alpha) = 1. \)

4.3. Given a triangle with side lengths \(a, b, c \) and angles \(\alpha, \beta, \gamma \), where \(\alpha \) is opposite to \(a \) etc. We have the following sin-formula

Corollary: \(\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}. \)

Proof. We can use the theorem and express the area of the triangle as \(ab \sin(\gamma) \) or \(bc \sin(\alpha) \) or \(ac \sin(\beta). \) By equating these three quantities and dividing out the common factor, we get the sin-formula.

\(^1\)by a theorem of Joseph Bertrand of 1873 and work of Sundman-von Zeipel
4.4. This is useful in applications as to define the area of the parallelogram as $|v \times w|$. That this is justified can be seen in two dimensions and:

Corollary: $|v \times w|$ is the **parallelogram area** spanned by v and w.

Proof. Use the formula $|v \times w| = |v||w| \sin(\alpha)$ and note that $|w| \sin(\alpha)$ is the height of the parallelogram spanned by v and w. The base length is $|v|$.

4.5. The scalar $u \cdot (v \times w)$ is called the **triple scalar product** of u, v, w. Its **sign** defines an **orientation** of the three vectors. It is also the **determinant** of the matrix

$$\begin{vmatrix}
 u_1 & v_1 & w_1 \\
 u_2 & v_2 & w_2 \\
 u_3 & v_3 & w_3
\end{vmatrix}.$$

The absolute value of $u \cdot v \times w$ defines the **volume of the parallelepiped** spanned by u, v and w. Without the absolute value, we also speak of **signed volume**.

4.6. **Side remark:** In higher dimensions, the cross product is called **exterior product**. One uses \wedge rather than \times which is used in three dimensions. If $I = (i, j)$ is a choice of two elements in $\{1, 2, \ldots, n\}$ and v, w are two vectors in \mathbb{R}^n, then $(v \wedge w)_I = v_i w_j - v_j w_i$. The formula $|v \wedge w| = |v||w| \sin(\alpha)$ still holds and the proof is the same. We only need again to verify the **Cauchy-Binet** formula $|v|^2 |w|^2 - (v \cdot w)^2 = |v \wedge w|^2$. But this is better done using matrices. If A is the matrix which contains v, w as columns, then $\det(A^T A) = \sum_P \det(A_P)^2$, where the sum on the right is over all 2×2 submatrices A_P of A. The expression $\det(A_P)$ is called a **minor**. Cauchy-Binet formula is super cool. By the way, if we have k vectors and build $A \in M(n, k)$, a matrix which has these vectors as columns. Now, $\det(A^T A)$ is the volume of the parallelepiped spanned by these vectors. And Cauchy-Binet writes this as a sum of squares of k-dimensional volumes of projections which is in some sense a generalization of Pythagoras.

Examples

4.7. What is the area of the triangle $A = (1, 1, 1), B = (3, 5, 2)$ and $C = (2, 0, 3)$? We find the cross product between the vector $[2, 4, 1]^{T}$ going from A to B and the vector $[1, -1, 2]^{T}$ going from A to C. The cross product is

$$\begin{bmatrix} 2 \\ 4 \\ 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 9 \\ -3 \\ -6 \end{bmatrix}.$$

Its length is $3\sqrt{14}$. The area of the triangle is half of it: $3\sqrt{14}/2$.

4.8. Find the volume of the parallelepiped for which one of the vertices is $(0, 0, 0)$ and the other neighbors are A, B, C from before? We find the signed volume

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \cdot \left(\begin{bmatrix} 3 \\ 4 \\ 2 \end{bmatrix} \times \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 12 \\ -5 \\ -8 \end{bmatrix} = -1.$$

and take the absolute value. A negative number indicates that OA, OB, OC is left handed.

Figure 1. The just newly released Swiss 200 Frank bill shows the right hand rule: thumb = v, pointing finger = w, then v × w is the middle finger. Source: Swiss National Bank, issued August 22, 2018.

Figure 2. The Lorentz force F is a vector $F = qv \times B$ determined by the velocity v of a charged particle with charge q moving in a magnetic field B.

Figure 3. Given a particle of mass m at position r moving with the velocity r' then $L = mr \times r'$ is the angular momentum.
Homework

Problem 4.1: Find a vector w perpendicular to the vectors $u = [1, 1, 1]^T$ and $v = [3, 4, 5]^T$. Then use this result to find a vector x perpendicular to both v and w.

Problem 4.2: A 3D scanner is used to build a 3D model of a face. It detects a triangle which has its vertices at $P = (0, 1, 1), Q = (1, 1, 0)$ and $R = (1, 2, 3)$. Find the area of that triangle as well as a vector perpendicular to the triangle. (*)

Problem 4.3: a) Find the volume of the parallelepiped which has the vertices $O = (0, 0, 0), P = (2, 3, 1), Q = (4, 3, 1), R = (6, 6, 2), A = (1, 1, 1), B = (3, 4, 2), C = (5, 4, 2), D = (7, 7, 3)$.

Problem 4.4: Investigate which of the following formulas are always true for all vectors u,v,w,x,y. If it is true, either explain, cite a source (i.e. on the web), or a by hand or computer algebra verification. If it is not true, find a counter example.

\begin{align*}
a) \quad & u \times (v \times w) = (u \times v) \times w \\
b) \quad & u \cdot (v \times w) = v \cdot (w \times u) \\
c) \quad & u \times (v + w) = u \times v + u \times w \\
d) \quad & u \times (v \times w) = (u \cdot w)v - (u \cdot v)w. \\
e) \quad & (u \times v) \cdot (x \times y) = (u \cdot x)(v \cdot y) - (u \cdot y)(v \cdot x). \\
\end{align*}

Problem 4.5: Given two vectors $p = [a, b, c]^T$ and $q = [u, v, w]^T$, build the matrices $P = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix}$ and $Q = \begin{bmatrix} 0 & u & v \\ -u & 0 & w \\ -v & -w & 0 \end{bmatrix}$ Compare $p \times q$ and $QP - PQ$. Describe what you see.

(*) The STL format which is used for 3D printing, has an extremely simple form. It consists of entries like

```
facet normal 0.15 -0.97 -0.20
outer loop
vertex -1.6996 -0.5597 -2.8360
vertex -1.8259 -0.5793 -2.8374
vertex -1.7232 -0.5399 -2.9509
endloop
endfacet
```

The first line gives the normal vector, then there is a loop with three vertices giving the triangle. There is obviously some redundancy as one could get the normal vector from the points using the cross product. But there is purpose: the redundant information makes working with the data structure faster, second, one can also look at situations, where the normal vector is not perpendicular to the surface, one can change the way how the is “shaded”, like how light is reflected at the surface. Third, redundancy is always good to catch errors. Our genetic information in the DNA is stored in a highly redundant way. This allows error correction.

Oliver Knill, knill@math.harvard.edu, Math 22a, Harvard College, Fall 2018
\textbf{Unit 5: Surfaces}

\section*{Lecture}

\subsection*{5.1.}
If A is a matrix, the solution space of a system of equations $Ax = b$ is called a \textbf{linear manifold}. It is the set of solutions of $Ax = 0$ translated so that it passes through one of the points. The equation $3x + 2y = 6$ for example describes a line in \mathbb{R}^2 passing through $(2,0)$ and $(0,3)$. The solutions to $Ax = 0$ form a \textbf{linear space}, meaning that we can add or scale solutions and still have again solutions. We can rephrase the just said in that a linear space is a linear manifold which contains 0. For example, for $x + 2y + 3z = 6$ we get a plane which is parallel to the plane $x + 2y + 3z = 0$. The former is a linear manifold (also called affine space), the later is a linear space. It is the solution space to $A x = 0$ with $A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ and $x = \begin{bmatrix} x, y, z \end{bmatrix}^T$. Both planes are perpendicular to $n = [1, 2, 3]^T$. To find an equation for the plane through 3 points P, Q, R, define $n = PQ \times PR = [a, b, c]^T$ then write down $ax + by + cz = d$, where d is obtained by plugging in a point. The cross product comes handy.

\subsection*{5.2.}
The following important example deals with $A = [a_1, \ldots, a_m]$ in $M(1, m)$.

\textbf{Theorem:} The vector $n = A^T$ is perpendicular to the plane $Ax = d$.

\textit{Proof.} Given two points y, z in the plane. Then we have $Ay = d$ and $Az = d$. Then $x = y - z$ is a vector inside the plane. Now $A^T x = Ax = A(y - z) = Ay - Az = d - d = 0$. This means that x is perpendicular to the vector A^T. \hfill \Box

In three dimensions, this means that the plane $ax + by + cz = d$ has a normal vector $A^T = n = [a, b, c]^T$. Keep this in mind, especially because \mathbb{R}^3 is our home.

\subsection*{5.3.}
This \textbf{duality result} will later will identified as a \textbf{fundamental theorem of linear algebra}. It will be important in data fitting for example. The \textbf{kernel} of a matrix A is the linear space of all solution $Ax = 0$. The kernel consists of all roots of A. The \textbf{image} of a matrix A is the linear space of all vectors $\{Ax\}$. We abbreviate $\ker(A)$ for the kernel and $\text{im}(A)$ of the image. We will come back to this later.

\textbf{Theorem:} The image of A^T is perpendicular to the kernel of A.

\textit{Proof.} If x is in the kernel of A, then $Ax = 0$. This means that x is perpendicular to each row vector of A. But this means that x is perpendicular to the column vector of
A^T. So, \(x \) is perpendicular to the image of \(A^T \). This line of argument can be reversed to see that if \(x \) is perpendicular to the image of \(A^T \), then it is in the kernel of \(A \). \(\square \)

5.4. Given a function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \), the solution set \(\{ f(x_1, \cdots, x_n) = d \} \) is a hyper surface. We often say “surface” even so “surface” is reserved to \(n = 3 \). The simplest non-linear surfaces are **quadratic manifolds**

\[
x \cdot Bx + Ax = d
\]

defined by a symmetric matrix \(B \) and a row vector \(A \) and a scalar \(d \). We assume that \(B \) is not the zero matrix or else, we are in the case of a linear manifold. We also can assume \(B \) to be symmetric \(B = B^T \). For notation, we write \(\text{Diag}(a, b, c) = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} \) and \(1 = \text{Diag}(1, 1, 1) \).

5.5. **Ellipsoids** For \(B = 1 \) and \(A = 0 \) and \(d = 1 \) we get the sphere \(|x|^2 = 1 \). In \(\mathbb{R}^2 \), a sphere is a circle \(x^2 + y^2 = 1 \). In three dimensions we have the familiar sphere \(x^2 + y^2 + z^2 = 1 \). An more general ellipsoid with \(B = \text{Diag}(1/a^2, 1/b^2, 1/c^2) \) is \(x^2/a^2 + y^2/b^2 + z^2/c^2 = 1 \). By intersecting with \(x = 0 \) or \(y = 0 \) or \(z = 0 \), we see traces, which are all ellipses.

![Figure 1](image.png)

- **Figure 1.** The sphere \(x^2 + y^2 + z^2 = 1 \) and an example of an ellipsoid \(x^2/a^2 + y^2/b^2 + z^2/c^2 = 1 \).

5.6. **Hyperboloids.** For \(B = \text{Diag}(1, 1, -1) \) and \(d = 1 \), we get a one-sheeted hyperboloid \(x^2 + y^2 - z^2 = 1 \). For \(B = \text{Diag}(1, 1, -1) \) and \(d = -1 \), we get a two-sheeted hyperboloid \(x^2 + y^2 - z^2 = -1 \). A more general hyperboloid is of the form \(x^2/a^2 + y^2/b^2 - z^2/c^2 = d \) with \(d \neq 0 \). The intersection with \(z = 0 \) gives in the one-sheeted case a circle, in the two-sheeted case nothing. The \(x = 0 \) trace or the \(y = 0 \) trace are both hyperbola.

5.7. **Paraboloids.** For \(B = \text{Diag}(1, 1, 0) \) and \(A = [0, 0, -1] \) and \(d = 0 \) we get the paraboloid \(x^2 + y^2 = z \), for \(B = \text{Diag}(1, -1, 0) \) and \(A = [0, 0, -1] \) and \(d = 0 \) we get the hyperbolic paraboloid \(x^2 - y^2 = z \). We can recognize paraboloids by intersecting with \(x = 0 \) or \(y = 0 \) to see parabola. Intersecting the elliptical paraboloid \(x^2 + y^2 = z \) with \(z = 1 \) gives an ellipse. Intersecting the hyperbolic paraboloid \(x^2 - y^2 = z \) with \(z = 1 \) gives a hyperbola.

5.8. **Special surfaces.** If \(B = \text{Diag}(1, 1, -1) \) and \(d = 0 \), we get a cone \(x^2 + y^2 - z^2 = 0 \). For \(B = \text{Diag}(1, 1, 0) \) and \(d = 1 \) we get the cylinder \(x^2 + y^2 = 1 \).
Figure 2. The one-sheeted hyperboloid $x^2 + y^2 - z^2 = 1$ and the two-sheeted hyperboloid $x^2 + y^2 - z^2 = -1$.

Figure 3. An elliptic paraboloid $z = x^2 + y^2$ and the hyperbolic paraboloid $z = x^2 - y^2$.

Figure 4. The cone $x^2 + y^2 = z^2$ and the cylinder $x^2 + y^2 = 1$.

5.9. Side remark: The 1-sphere $S^1 = \{x^2 + y^2 = 1\} \subset \mathbb{R}^2$ and the 3-sphere $S^3 = \{x^2 + y^2 + z^2 + w^2 = 1\} \subset \mathbb{R}^4$ carry a multiplication: S^1 is in the complex numbers $\mathbb{C} = \{x + iy\}$ and S^3 is in the quaternions $\mathbb{H} = \{x + iy + jz + kw\}$. The 1-sphere is the gauge group for electromagnetism, the 3-sphere (also called $SU(2)$) is responsible for the weak force. No other Euclidean sphere carries a multiplication for which $x \rightarrow x * y$ is smooth. Michael Atiyah once pointed out that this algebraic particularity might not be a coincidence and responsible for the structure of the standard model of elementary particles (one of the most accurate theories ever built by humanity). The strong force appears as one can let a set of 3×3 matrices $SU(3)$ act on \mathbb{H}. Atiyah suggested that gravity could be related to the octonions \mathbb{O}. There $S^7 = \{|x| = 1\} \subset \mathbb{R}^8$ carries still a multiplication, but it is no more associative. The list of normed division algebras $\mathbb{R}, \mathbb{C}, \mathbb{H}$ and \mathbb{O}.

\footnote{See the talk of 2010 of Atiyah (https://www.youtube.com/watch?v=zCCxOE44M_M).}
5.10. Given a polynomial \(p \) of \(n \) variables, one can look at the surface \(\{ p(x) = 0 \} \). It is called a \textit{variety}.

Figure 5. More examples of \textit{varieties}, solution sets to polynomial equations. To the left we see \textit{cubic surface} \(x^3 - 3xy^2 - z = 0 \) called the \textit{monkey saddle}. To the right we see \textit{torus} \((3 + x^2 + y^2 + z^2)^2 - 16(x^2 + y^2) = 0 \) which is an example of a \textit{quartic manifold}.

Figure 6. The variety \(x^4 - x^2 + y^2 + z^2 = d \) for \(d = -0.02, 0 \) and \(d = 0.02 \).

Examples

5.11. Q: Find the plane \(\Sigma \) containing the line \(x = y = z \) and the point \(P = (3, 4, 5) \). A: \(\Sigma \) contains \(Q = (0,0,0) \) and \(R = (1,1,1) \) and so the vectors \(v = [1,1,1]^T \) and \(w = [3,4,5]^T \). The cross product between \(v \) and \(w \) is \([1,-2,1]^T \). It is perpendicular to \(\Sigma \). So, the equation is \(x - 2y + z = d \), where \(d \) can be obtained by plugging in a point \((3,4,5)\). This gives \(d = 0 \) so that \(x - 2y + z = 0 \).

5.12. Can we identify the surface \(x^2 + 2x + y^2 - 4y - z^2 + 6z = 0 \)? \textbf{Completion of the square} gives \(x^2 + 2x + 1 + y^2 - 4y + 4 - z^2 + 6z - 9 = 1 + 4 - 9 = -4 \). Now \((x + 1)^2 + (y - 2)^2 - (z - 3)^2 = -4 \). This is a two-sheeted hyperboloid centered at \((-1,2,3)\).

5.13. Intersecting the \textbf{cone} \(x^2 + y^2 = z^2 \) with the plane \(y = 1 \) gives a hyperbola \(z^2 - x^2 = 1 \). Intersection with \(z = 1 \) gives a circle \(x^2 + y^2 = 1 \). Intersecting with \(z = x + 1 \) gives \(y^2 = 2x + 1 \), a parabola. Because bisecting a cone can give hyperbola, an ellipse or a parabola as cuts, one calls the later \textbf{conic sections}.

5.14. The case of \textbf{singular quadratic manifolds} is even richer: \(x^2 - y^2 = 1 \) is a \textbf{cylindrical hyperboloid}, \(x^2 - y^2 = 0 \) is a union of two planes \(x-y = 0 \) and \(x+y = 0 \). The surface \(x^2 = 1 \) is a union of two parallel planes, the surface \(x^2 = 0 \) is a plane.
Homework

Problem 5.1: a) What kind of curve is $x^2 + 2x + y^2 + 1 = 0$?
b) What surface is $x^2 + y^2 - 4y + z^2 + 8z = 100$?

Problem 5.2: What kind of curves can you get when you intersect a hyperbolic paraboloid $x^2 - y^2 = z$ with a plane?

Problem 5.3: Find explicit planes which when intersected with the hyperboloid $x^2 + 2y^2 - z^2 = 1$ produces an ellipse, or a hyperbola or a parabola.

Problem 5.4: Find the equation of a plane which is tangent to the three unit spheres centered at $(3, 4, 5), (1, 1, 1), (2, 3, 4)$.

Problem 5.5: Build a concrete function $f(x, y, z)$ of three variables such that some level surface $f(x, y, z) = c$ is a pretzel, a surface with three holes. Hint: the surface $g * h = 0$ is the union of the surfaces $g = 0$ and $h = 0$. Now, $g * h = c$ can produce surfaces in which things are glued nicely. If you should look up a surface on the web or literature, you have to give the reference. You can use the computer to experiment, or then describe your strategy in words.

Figure 7. In the pretzel baked to the right we have used a polynomial $f(x, y, z)$ of degree 12. A problem in algebraic geometry would be to find the “smallest degree polynomial” which works and then find the most elegant polynomial.
Seminar

6.1. Geometric intuition and pictures allow to prove results visually. An example:

\begin{figure}
\begin{center}
\includegraphics[width=0.5\textwidth]{figure1}
\end{center}
\caption{This is a proof without words.}
\end{figure}

Problem A: What formula does Figure (1) prove?

6.2. By drawing a rectangle of side length a and b, we can see that the area $a \times b$ is the same as the area $b \times a$. For the cross product or matrices, this is wrong.

\begin{figure}
\begin{center}
\includegraphics[width=0.5\textwidth]{figure2}
\end{center}
\caption{A Cuisenaire proof that $4 \times 5 = 5 \times 4$. Four yellow sticks of length 5 have the same area than 5 purple sticks of length 4.}
\end{figure}

\footnote{Cover of the book "Proofs without words"}
6.3. Pictures help to get intuition about a mathematical result. The Pythagorean theorem was first proven geometrically. The visual proof we look at here could well have been the first which was found.

![Visual proof of Pythagorean theorem](image)

Figure 3. A visual proof of the Pythagorean theorem. It is probably one of the first proofs.

Problem B: Use Figure (3) for a proof of the Pythagorean theorem. You can either describe in words, or label some parts of the picture. Remember that we want to show $c^2 = a^2 + b^2$.

![Visual proof of geometric-algebraic inequality](image)

Figure 4. A visual proof of $\sqrt{ab} \leq (a + b)/2$.

6.4. The **geometric-algebraic inequality** assures that the geometric mean is smaller or equal than the algebraic mean. In order to appreciate that proof, we have first to verify an identity relating the lengths a, b cut by the altitude line and height h.

Problem C: First check why the triangle in Figure 4 is a right angle. Then use Pythagoras three times to prove $ab = h^2$. Finally check the geometric-algebraic inequality.

6.5. **Theorem:** The radius of the inscribed circle in a 3 : 4 : 5 triangle is 1

Problem D: Use Figure (5) from the “9 Chapters” to prove the theorem.

Figure 5. The 3-4-5 triangle. Can you use the picture to prove that \(a = 1 \)?

6.6. Find the formula for the volume of a tetrahedron given by 4 points \(A, B, C, D \).

Figure 6. The tetrahedron volume is 1/6 of a parallelepiped volume. Not only the Egyptians knew it, this figure can also be found in the “nine chapters”. We build a statue which can be 3D printed.

Problem E: Use Figure (6) to prove that the volume is a sixth of the volume of the corresponding parallelepiped.

"Illustrating Mathematics using 3D printers", by O. Knill and E. Slavkovsky.
Homework

Exercises A-D are done in the seminar. This homework is due on Tuesday:

Problem 6.1 The 3D Pythagoras theorem states that the square of the area of ABC is the sum of the squares of the areas of the triangles OAB, OBC and OCA (which are each half of a rectangle). Use Figure (7) with $A = (a,0,0), B = (0,b,0), C = (0,0,c)$ to verify this theorem. Use the cross product to get the areas.

![Figure 7. The 3D Pythagoras theorem.](image)

Problem 6.2 Find a formula for the distance of a point P to a line through two points A, B. The final formula should not use any trig functions.

Problem 6.3 Find a formula for the distance of a point P to a plane through three points A, B, C. The final formula should not use any trig functions.

Problem 6.4 Find a formula for the distance between the line through a point A, B and a line through the point C, D. The final formula should not use any trig functions.

Problem 6.5 Look up the rules for quaternion multiplication $(u_0, u_1, u_2, u_3) \star (v_0, v_1, v_2, v_3)$ and verify that $(0, v_1, v_2, v_3) \star (0, w_1, w_2, w_3) = (−v \cdot w, v \times w)$. Historically, this is an important identity as the dot and cross product have been introduced together in the form of quaternions.
Unit 7: Curves

Lecture

7.1. Given \(n \) continuous functions \(x_j(t) \) of one variable \(t \), we can look at the vector-valued function \(r(t) = [x_1(t), \ldots, x_n(t)]^T \). We call it a \textbf{parametrized curve}. An example is \(r(t) = [3 + 2t, 4 + 6t] \) which is a line through the point \((3, 4)\) and containing the vector \([2, 6]\). \(^1\) If \(t \) is in the \textbf{parameter interval} \(a \leq t \leq b \), then the image of \(r \) is \(\{r(t) \mid a \leq t \leq b\} \), which defines a \textbf{curve} in \(\mathbb{R}^n \). The curve \textbf{starts} at the point \(r(a) \) and \textbf{ends} at the point \(r(b) \). An other important example is the \textbf{circle} \(r(t) = [\cos(t), \sin(t)] \), where \(t \) is in the interval \([0, 2\pi]\). Its image is a circle in the plane \(\mathbb{R}^2 \). The parametrization \(r(t) \) contains more information than the curve itself: the parabolic curve \(r(t) = [t, t^2] \) defined on \(t \in [-1, 1] \) for example is the same as the curve \(r(t) = [t^3, t^6] \) for \(t \in [-1, 1] \), but in the second parametrization, the curve is traveled with different speed. Curves in \(\mathbb{R}^3 \) can be admired in our physical space like \(r(t) = [x(t), y(t), z(t)] = [t \cos(t), t \sin(t), t] \) which is a spiral. You can see that this particular curve is contained in the cone \(x^2 + y^2 = z^2 \).

7.2. If the functions \(t \to x_j(t) \) are differentiable, we can form the derivative \(r'(t) = [x_1'(t), \ldots, x_n'(t)] \). While this technically is again a curve, we think of \(r'(t) \) as a vector attached to the point \(r(t) \) and say that \(r'(t) \) is \textbf{tangent} to \(r(t) \). The length \(|r'(t)| \) of the velocity is called the \textbf{speed} of \(r \). If also higher derivatives of the functions \(x_j(t) \) exist, we can form the second derivative \(r''(t) \) called the \textbf{acceleration} or third derivative \(r'''(t) = r^{(3)}(t) \) called the \textbf{jerk}. Then come \textbf{snap} \(r^{(4)}(t) \), \textbf{crackle} \(r^{(5)}(t) \) and \textbf{pop} \(r^{(6)}(t) \) and the \textbf{Harvard} \(r^{(7)}(t) \) introduced in the fall of 2016 in a multi-variable exam.

7.3. Given the first derivative function \(r'(t) \) as well as the initial point \(r(0) \), we can get back the function \(r(t) \) thanks to the \textbf{fundamental theorem of calculus}. Because of \textbf{Newton’s law} which tells that a mass point of mass \(m \) subject to a force field \(F \) depending on position and velocity satisfies the \textbf{Newtonian differential equation} \(mr''(t) = F(r(t), r'(t)) \), the following result is important:

\begin{quote}
Theorem: \(r(t) \) is uniquely determined from \(r''(t) \) and \(r(0) \) and \(r'(0) \).
\end{quote}

\begin{proof}
In each coordinate we get \(x_k'(t) = \int_t^0 x_k''(s) \, ds + x_k'(0) \) and \(x_k(t) = \int_0^t x_k'(s) \, ds + x_k(0) \). We have just applied twice the \textbf{fundamental theorem of calculus}.
\end{proof}

\(^1\)To reduce clutter, we write row vectors \([2, 6]\) rather than column vectors
A special case is if \(r''(t) \) is constant. A special case is the **free fall situation**. The coordinate functions are then quadratic. Assume \(r''(t) = [0, 0, -10] \), and \(r'(0) = [0, 0, 0] \) and \(r(0) = [0, 0, 20] \), then \(r(t) = [0, 0, 20 - 5t^2] \). If you jump from 20 meters into a pool, you need \(t = 2 \) seconds to hit the water.

7.4. Given a curve \(r(t) \) for which the velocity \(r'(t) \) is never zero, we can form the **unit tangent vector** \(T(t) = r'(t)/|r'(t)| \). If \(T'(t) \) is never zero, we can then form \(N(t) = T'(t)/|T'(t)| \), the **normal vector**. The vector \(B = T \times N \) is called the **binormal vector**. The scalar \(|T'(t)|/|r'(t)|\) is called the **curvature** of the curve.

Theorem: In \(\mathbb{R}^3 \), we have \(K = |T'|/|r'| = |r' \times r''|/|r'|^3 \).

Proof. We will do this computation in class. \(\square \)

7.5. Even if \(r(t) \) is perfectly smooth, the curvature can become infinite. Let’s look at the example \(r(t) = t^2, t^3, 0 \). Then \(r'(t) = [2t, 3t^2, 0] \) and \(r''(t) = [2, 6t, 0] \) and \(r'(t) \times r''(t) = [0, 0, 6t^2] \). The curvature is \((6/t)(4 + 9t^2)^{-3/2}\) which has a singularity at \(t = 0 \).

7.6. Even when \(r(t) \) is perfectly smooth and never zero, the normal vector can depend in a discontinuous way on \(t \). Example: \(r(t) = [t, t^3/3] \). Now \(r'[t] = [1, t^2] \) and \(T(t) = [0, t^2]/\sqrt{1 + t^4} \). We see that \(T'(t) \) takes different signs in the second coordinate. After normalization we have \(\lim_{t \to 0, t > 0} N(t) = [0, 1] \) and \(\lim_{t \to 0, t < 0} N(t) = [0, -1] \). At the **inflection point** of the graph of the cube function, the concavity has changed from concave down to concave up. This has changed the direction of the normal vector \(N \).

7.7. Side remark. We have looked at parametrized vectors only. If the entries \(A_{ij}(t) \) of a matrix depend on times we have a matrix valued curve \(A(t) \). This appears in differential equations, in quantum mechanics (operators moving in time) or - most importantly - in moving pictures! A movie is just a matrix valued curve.

7.8. Side remark. A planar curve \(r(t) = [x(t), y(t)]^T \) in the plane defined on \(t \in [0, 2\pi] \) is called a **simple closed curve** if \(r(0) = r(2\pi) \) and there are no values \(0 \leq s \neq t < 2\pi \) for which \(r(t) = r(s) \). For a smooth curve, meaning that the first two derivatives exist, we can look at the polar angle \(\alpha(t) \) of the vector \(r'(t) \). Define the **signed curvature** of the curve as \(\kappa(t) = \alpha'(t)/|r'(t)| \). We have \(|\kappa(t)| = K(t) \). The **Hopf Umlaufsatz** tells \(\int_0^{2\pi} \kappa(t) \; dt = 2\pi \). In the case of the circle for example, \(\kappa(t) = 1 \).

7.9. Side remark. We can verify that any curve \(r(t) \) parametrized on \([a, b]\) such that \(r'(t) \neq 0 \) for all \(t \in [a, b] \) can be parametrized as \(R(t) \) on \([a, b]\) such that \(|R'(t)| = 1 \) for all \(t \). Proof: we look for a monotone function \(s(t) \) such that the derivative of \(r(s(t)) \) has length 1. This means we want \(|r'(s(t))|s'(t) = 1| \). In other words, look for a function \(s(t) \) such that \(s'(t) = 1/|r'(s(t))| = F(s(t)) \) and \(s(a) = 0 \). This is what we call a differential equation. There is a general existence theorem for differential equations (proven later) which assures that there exists a unique solution \(s(t) \). End of proof. The result is very intuitive. You can drive from \(r(a) \) to \(r(b) \) along the curve traced by \(r(t) \) by just keeping the speed 1. This gives your your new parametrization. Your new time interval will be \([0, L]\) where \(L \) is the arc length (the length of your trip). We will come to arc length computation in the next lesson.
7.10. **Side remark.** Continuous curves can be complicated: If you look at the pollen particle in a microscope, it moves erratically on a curve which is nowhere differentiable as it is constantly bombarded with air molecules which bounce it around. This is **Brownian motion.** There are also **Peano curves** or **Hilbert curves** $[0, 1] \rightarrow [0, 1]^2$ or space filling Hilbert curves $r(t) : [0, 1] \rightarrow \mathbb{R}^3$ which cover every point of the **cube** Q. These curves define a continuous bijection from $[0, 1]$ to $[0, 1]^3$. (The inverse is not continuous. Still, the construction shows that there are the same number of points in $[0, 1]$ than in $[0, 1]^3$).

![Figure 1](image1.png)

Figure 1. The four first stages in the construction of a space filling curve.

Examples

7.11. Assuming the **Newton equations** $mr''(t) = F(t)$, find the path $r(t)$ of a body of mass $m = 1/2$ subject to a force $F(t) = [\sin(t), \cos(t), -10]$ with $r(0) = [3, 4, 5]$ and $r'(0) = [1, 2, 7]$. Solution: we have $r''(t) = [2 \sin(t), 2 \cos(t), -20]$. Integration gives $r'(t) = [-2 \cos(t), 2 \sin(t), 20 t] + [c_1, c_2, c_3]$. Fixing the constants gives $r'(t) = [3 - 2 \cos(t), 2 + 2 \sin(t), 7 - 20 t]$. A second integration gives $r(t) = [3t - 2 \sin(t), 2t - 2 \cos(t), 7t - 10 t^2] + [c_1, c_2, c_3]$ with other constants $C = [c_1, c_2, c_3]$. Comparing $r(0) = [0, -2, 0] + [c_1, c_2, c_3] = [3, 4, 5]$ gives $r(t) = [3 + 3t - 2 \sin(t), 6 + 2t - 2 \cos(t), 5 + 7t - 10 t^2]$.

7.12. Let $r(t) = [L \cos(t), L \sin(t), 0]$. Then $r'(t) = [-L \sin(t), L \cos(t), 0]$ and $r''(t) = [-L \cos(t), -L \sin(t), 0]$ and $r'(t) \times r''(t) = [0, 0, L^2]$ and $|r'(t)| = L$ so that $|r'(t) \times r''(t)/|r'(t)|^3 = 1/L$. A circle of radius L has curvature $1/L$!

7.13. A closed simple curve C in \mathbb{R}^3 is a **knot.** For any positive integer n, m we can look at the **torus knot** $r(t) = [(3 + \cos(nt)) \cos(mt), (3 + \cos(mt)) \sin(nt), \sin(mt)]$. The **total curvature** of a knot is defined as $\int_0^{2\pi} K(t) \, dt$. See Figure 2.

![Figure 2](image2.png)

Figure 2. Torus knots $T(2, 3), T(7, 3), T(12, 13)$ and $T(30, 43)$. Their total curvatures are 38.6, 245.6, 487.2, 2167.3.

2A general theorem of Fay and Milnor assures that a knot of total curvature $\leq 4\pi$ is trivial.
Problem 7.1: A stone of mass $m = 0.1$ in the Pandora Halleluya mountains is exposed to the force $F(t) = \log(e + t), e^{t/100}, \sin(t)$. It is initially at $r(0) = [0, 0, 100]$ and has zero initial velocity $r'(0) = [0, 0, 0]$. Where is it at $t = 10$? In this course, we always write $\log(t) = \ln(t)$.

Problem 7.2: We want to produce a logo for a new company and experiment. Draw the curve $r(t) = [\cos(t), \sin(t)] + [\cos(5t), \sin(7t)]/4 + [\cos(13t), \sin(9t)]/4$ and find the velocity, acceleration, and curvature at $t = 0$.

Problem 7.3: Parametrize the curve $r(t)$ obtained by intersecting the cylinder $x^2/9 + y^2/4 = 1$ with the plane $z = x + 5y$.

Problem 7.4: Verify that the torus knot $r(t) = [x(t), y(t), z(t)] = [(2 + \cos(mt)) \cos(nt), (2 + \cos(mt)) \sin(nt), \sin(mt)]$ lives on the torus $(3 + x^2 + y^2 + z^2)^2 - 16(x^2 + y^2) = 0$.

Problem 7.5: In the lecture on surfaces, we have sliced some bagels. Let us assume that the doughnut is given by $(x^2 + y^2 + z^2 + 16)^2 - 100(x^2 + y^2) = 0$. Verify that if we intersect this torus with the plane $3x = 4z$, then we get the Villarceau circles $r(t) = [4 \cos(t), 3 + 5 \sin(t), 3 \cos(t)]$ as well as the circle $r(t) = [4 \cos(t), -3 + 5 \sin(t), 3 \cos(t)]$.

Figure 3. Villarceau circles.

Oliver Knill, knill@math.harvard.edu, Math 22a, Harvard College, Fall 2018

3The notation \ln appears only in calculus books. Mathematicians use \log.
Unit 8: Arc length

Lecture

8.1. We assume in this lecture that curves are continuously differentiable meaning that the velocity is continuous. We would write \(r \in C^1([a, b], \mathbb{R}^d) \). Given a parametrized curve \(r(t) \) defined over an interval \(I = [a, b] \), its arc length is defined as

\[
L = \int_a^b |r'(t)| \, dt.
\]

For \(f(t) = |r'(t)| \) the integral is defined as the \(\lim \sup \) (we don’t know yet whether \(\lim \) exists),

\[
\int_a^b f(t) \, dt = \lim \sup_{n \to \infty} \frac{S_n}{n} = \lim \sup_{n \to \infty} \frac{1}{n} \sum_{k=\frac{a}{n}}^{\frac{b}{n}} f(k/n).
\]

This Archimedes integral is a special Riemann integral. It satisfies \(\min(f) \leq (b-a)^{-1} \int_a^b f(t) \, dt \leq \max(f) \). The intermediate value theorem implies that there is \(y \in [a, b] \) such that \(f(y) = (b-a)^{-1} \int_a^b f(t) \, dt \). The minimum and maximum exists by Bolzano’s extreme value theorem. Related to Bolzano is the Heine-Cantor theorem assuring that a continuous function \(f \) on a closed finite interval \([a, b]\) is uniformly continuous: there exists a function \(M(t) \) satisfying \(\lim_{t \to 0} M(t) = 0 \) with \(|f(x) - f(y)| \leq M(|x - y|) \) for all \(x, y \in [a, b] \). Stronger is Lipschitz continuity, which is \(M(t) = M \cdot t \) for some constant \(M \). The next proof shows in general that continuous functions are Riemann integrable; the \(\lim \sup \) is actually a limit:

Theorem: Arc length exists and is independent of the parameterization.

\(\square \)

Proof. (i) To see parameter independence, assume a time change \(\phi(t) \) with a monotone smooth function \(\phi : [a, b] \to [\phi(a), \phi(b)] \). If \(r(t) \) on \([\phi(a), \phi(b)]\) and \(R(t) = r(\phi(t)) \) on \([a, b]\) are the two parametrizations and \(f(t) = |r'(t)| \) and \(F(t) = |R'(t)| = |r'(\phi(t))| |\phi'(t)| \), then by substitution, the arc length of \(r(t) \) is \(\int_{\phi(a)}^{\phi(b)} f(t) \, dt = \int_a^b f(\phi(t)) \phi'(t) \, dt \) which is \(\int_0^b F(t) \, dt \), the arc length of \(R(t) \).

(ii) From (i) we can assume \([a, b] = [0, 1] \). By uniform continuity, there are \(M_n \to 0 \) such that if \(|y - x| \leq 1/n \), then \(|f(y) - f(x)| \leq M_n \). The intermediate value theorem, gives for every \(I_k = [x_k, x_{k+1}] = [k/n, (k+1)/n] \subset [0, 1] \), a \(y_k \in I_k \) such that \(\int_{x_k}^{x_{k+1}} f(x) \, dx = f(y_k)/n \). Now, \(\int_0^1 f(x) \, dx = (1/n) \sum_k f(y_k) \) and \(|S_n - \int_0^1 f(x) \, dx| = (1/n) \sum_k |f(x_k) - f(y_k)| \leq (1/n) \sum_k |f(x_k) - f(y_k)| \leq 1/n \sum_k M_n = M_n \to 0. \) \(\square \)
EXAMPLES

8.2. The arc length of the circle \(r(t) = [R \cos(t), R \sin(t)] \) with \(t \in [0, 2\pi] \) is
\[\int_0^{2\pi} |r'(t)| \, dt = \int_0^{2\pi} R \, dt = 2\pi R. \]

8.3. The arc length of the parabola \(r(t) = [t, t^2/2] \) with \(t \in [-1, 1] \) is
\[\int_{-1}^{1} \sqrt{1 + t^2} \, dt. \]
We will do this integral in class. The result is \(\sqrt{2} + \text{arcsinh}(1) \).

8.4. The arc length of the curve \(r(t) = [\log(t), \sqrt{2t}, t^2/2] \) for \(t \in [1, 2] \). It is
\[\int_{1}^{2} \sqrt{1/t^2 + t^2 + 2} \, dt = \int_{1}^{2} (t + 1/t) \, dt = \log(2) + 3/2. \]

ILLUSTRATIONS

Figure 1. A polygon approximation of a curve produces a Riemann sum approximation of the length integral.

Figure 2. A Riemann sum approximation of a continuous function produces in the limit the “area under the curve”.

Figure 3. Brownian motion produces continuous paths which are not differentiable. The arc length integral does not exist.
8.5. A function \(f \) is called Lipschitz continuous on \([a, b]\) if there exists a constant \(M \) such that \(|f(t) - f(s)| \leq M|t - s| \) for all \(t, s \in [a, b] \). It turns out that for Lipschitz functions the derivative \(f' \) exists “almost everywhere”. To make sense of this, a more mature integration theory is needed. The Riemann integral is totally inadequate and does not fit the bill. We need the Lebesgue integral. The fundamental theorem of calculus for Lipschitz function is known as the Rademacher theorem:

Theorem: If \(f \) is Lipschitz, then \(\int_a^b f'(t) \, dt = f(b) - f(a) \).

8.6. In order to define the Lebesgue integral, one first introduces a so called \(\sigma \)-algebra \(\mathcal{A} \). \(^1\) It is the smallest set of subsets of \(\mathbb{R} \) which is closed under the operation of taking countable unions and intersections and complements and which contains the class of intervals. The Lebesgue measure on intervals \([a, b] = b - a\) can then be extended to \(\mathcal{A} \) where it inherits all the properties we want, like \(|A \cup B| = |A| + |B| - |A \cap B| \). For indicator functions which are functions \(f(x) = 1_A(x) \) which is 1 if \(x \in A \) and 0 else, the Lebesgue integral is defined as \(\int 1_A(x) \, dx = |A| \).

8.7. First write the function \(f \) as \(f^+ - f^- \), where \(f^+ \) and \(f^- \) are both non-negative. This is a simplification because we need to define the integral only for non-negative functions. A simple step function is a finite sum \(\sum_i a_i 1_{A_i} \), with \(A_i \in \mathcal{A} \). For such functions, define \(\int_I f \, dx = \sum_i a_i |A_i| \). The Lebesgue integral is now defined as \(\sup_{g \leq f} \int_I g \, dx \), where the supremum is taken over all simple step functions \(g \) smaller or equal than \(f \). If the limit exists, the function is called Lebesgue integrable.

8.8. The Lebesgue integral is also a Monte Carlo integral \(\lim_{n \to \infty} \frac{1}{n} \sum_{a \leq x_k < b} f(x_k) \), where \(x_k \) are random choices in \([a, b]\). This is justified by the law of large numbers. The transition Riemann \(\to \) Lebesgue replaces a regular lattice \(k/n \) with a random one.

8.9. The Lebesgue integral can integrate also non-continuous functions: let \(g(x) \) be 0 on rational numbers and 1 on irrational numbers. Then \(\int_I g \, dx = |I| \) because all except a countable number of \(x \) are irrational. The Riemann integral would give 0.

8.10. The proof that a continuous function is Lebesgue integrable is even simpler than for the Riemann integral: first again use that \(f \) is uniform continuous on \([a, b]\), there exists \(M_n \to 0 \) such that whenever \(|x - y| \leq 1/n \), also \(|f(x) - f(y)| \leq M_n \). Take the intervals \(I_k = [k/n, (k + 1)/n] \cap [a, b] \) and step functions \(g = \sum c_k 1_{I_k} \) and \(h = \sum d_k 1_{I_k} \), where \(c_k \) is the minimum of \(f \) on \(I_k \) and \(d_k \) the maximum. Now \(\int_a^b |g - h| \, dx \leq \sum |c_k - d_k||I_k| \leq M_n \sum |I_k| = M_n(b - a) \). Now \(f \) is sandwiched between step functions \(g, h \) which for \(n \to \infty \) have the same integral.

8.11. We don’t prove Rademacher here. One needs to show that \(f' \) is Lebesgue integrable and that \(g(x) = f(a) + \int_a^x f'(t) \, dt \) agrees with \(f(x) \). In modern language Rademacher tells \(\text{Lipschitz} = \text{Sobolev} \ W^{1, \infty}([a, b]) = \{ f' \in L^\infty([a, b]) \} \). More general is absolute continuity \(= W^{1,1}([a, b]) = \{ f' \in L^1([a, b]) \} \).

\(^1\)For details see i.e. O.Knill, Probability theory and stochastic processes, 2011
Problem 8.1: Find the arc length of the catenary \(r(t) = [t, \cosh(t)] \), where \(\cosh(t) = (e^t + e^{-t})/2 \) is the hyperbolic cosine and \(t \in [-1, 1] \). Hint. You can use the identity \(\cosh^2(t) - \sinh^2(t) = 1 \), where \(\sinh(t) = (e^t - e^{-t})/2 \) is the hyperbolic sine. We have \(\cosh' = \sinh, \sinh' = \cosh \).

Galileo was the first to investigate the catenary. It is the curve, a freely hanging heavy rope describes, if the end points have the same height. Galileo mistook the curve for a parabola. It was Johannes Bernoulli in 1691, who obtained its true form after some competition involving Huygens, Leibniz and two Bernoullis. The name “catenarian” (=chain curve) was first used by Huygens in a letter to Leibnitz in 1690.

Problem 8.2: Find the arc length of the cycloid \(r(t) = [t - \sin(t), 1 + \cos(t)] \) from 0 to 2\(\pi \). The upside down cycloid is the solution to the famous Brachistochrone problem, the curve along which a ball descends fastest. Hint. You might want to use the double angle formula \(2 - 2 \cos(t) = 4 \sin^2(\frac{t}{2}) \).

Problem 8.3: Find the length of the curve \(r(t) = [12t, 8t^{3/2}, 3t^2] \), where \(t \in [0, 3] \).

Problem 8.4: Compute numerically the arc length of the knot \(r(t) = [\sin(4t), \sin(3t), \cos(5t), \cos(7t)] \) from \(t = 0 \) to \(t = 2\pi \). By drawing the first coordinates only and using color as the fourth coordinate, we can see that there are no non-trivial knots in \(\mathbb{R}^4 \). You can not tie your shoes in \(\mathbb{R}^4 \)!

Problem 8.5: What is the relation between \(|\int_0^1 r'(t) \, dt| \) and \(\int_0^1 |r'(t)| \, dt \)? Give an interpretation of both sides.

Figure 4. The catenary and the cycloid.

Oliver Knill, knill@math.harvard.edu, Math 22A, Harvard College, Fall 2018
Unit 9: Intuition

Seminar

9.1. It is important in mathematics to gain intuition about objects, definitions and theorems and proofs. The fact that this is not easy can be illustrated by showing that intuition can mislead us. We can state “false theorems” which we would believe to be true but which are false. We start with the notion of “continuity” for which an intuitive definition tells: we can “draw the graph of a continuous function without having to lift the pen”. Of course, we can not work with this definition to prove theorems.

9.2. Starting with Cauchy and pushed heavily by Weierstrass, continuity is defined precisely using the infamous $\varepsilon-\delta$ definition: f is continuous at x, if for every $\varepsilon > 0$ there exists $\delta > 0$ such that if $|x - y| \leq \delta$, then $|f(x) - f(y)| \leq \varepsilon$. Using more fancy mathematical quantifier notation \forall (for all) and \exists (exists) and \Rightarrow (implies) and ε (is element of) you can impress your friends (and annoy readers and graders) by writing

$$\forall \varepsilon > 0 \exists \delta > 0 \forall y \in [a, b], |x - y| \leq \delta \Rightarrow |f(x) - f(y)| \leq \varepsilon.$$

The fact that his definition is not intuitive at all and that most students just learn this “epsilonic” by intimidation is illustrated by the following variation by Ed Nelson. We make it our first exercise:

Problem A: What does the following statement mean?

$$\forall \delta > 0 \exists \varepsilon > 0 \forall y \in [a, b], |x - y| \leq \delta \Rightarrow |f(x) - f(y)| \leq \varepsilon.$$

9.3. In the first lecture we have seen how a polygonal approximation of a curve allows to compute the arc length of a curve. Here is a first “anti-theorem”. Your task is to figure out what is wrong.

1E. Nelson, Internal set theory: A new approach to nonstandard analysis, 1977
9.4. We compute the **circumference of a circle** by a polygonal approximation. The following statement uses the intuition that if a polygon is close to a curve, then its length is close to the curve:

![Figure 1. The circumference of a circle is 8.](image)

9.5. This leads to the following anti-theorem: A continuous planar curve is a function $t \rightarrow r(t) = [x(t), y(t)]$, where both functions $x(t), y(t)$ are continuous functions.

False Theorem: The circumference of the unit circle is 8.

Problem B: What is wrong with the argumentation?

9.6. We could also think that the arc length of a continuous curve is finite.

False Theorem: The arc length of a continuous curve is finite.

![Figure 2. The first 4 approximations of the Koch snowflake.](image)

Problem C: Find a formula for the length of the kth Koch curve approximation if initially, the triangle has side length 1

2Again thanks to Jun Hou Fung for suggestion
9.7. If a curve \(t \to r(t) = [x(t), y(t)] \) has the property that \(x(t) \) and \(y(t) \) stay bounded and have no jump discontinuities, we would think that the curve is continuous.

False Theorem: A bounded curve without jumps is continuous.

9.8. A counter example is the **devil comb** \(r(t) = [t, \sin(1/t)] \) for \(t \in [0, 1] \). It does not have a jump discontinuity and it is bounded. The function is not defined at \(t = 0 \) but we can define \(r(0) = [0, 0] \) to make it defined anywhere on \([0, 1]\).

Problem D: Why is this function \(r(t) \) not continuous at \(t = 0 \)?

9.9. Finally, we could think:

False Theorem: A continuous function is differentiable at some point.

9.10. A counter example was given by Weierstrass. It is called the Weierstrass function. G.H. Hardy proved in 1916 that the function

\[
f(x) = \sum_{n=1}^{\infty} a^{-n} \cos(a^n x)
\]

does not have any point of differentiability if \(a > 1 \).

![Image of Weierstrass function](image.jpg)

Figure 3. The Weierstrass function for \(a = 2 \), displayed on \([0, \pi]\).

Problem E: Show that \(f(x) = \sum_{n=1}^{\infty} 2^{-n} \cos(2^n x) \in [-1, 1] \).
Exercises A-E are done in the seminar. This homework is due on Tuesday:

Problem 9.1 Prove that there was a time in your life when the length of your largest tooth in millimeters was your height in meters.

Problem 9.2 Use the intermediate value theorem to prove the mean value theorem: if \(f \) is continuously differentiable and \(f(0) = f(1) = 0 \), then there exists a point in \((0, 1)\) with \(f'(x) = 0 \).

Problem 9.3 Look up, formulate and understand the proof of the “Wobbly table theorem”. This theorem appears to have been found in 2008 by David Richeson. You find an exposition in some of Harvard Math 1a handouts.

Problem 9.4 We can draw curves in 4 dimensions by assigning to each point a **Hue value**, which is a color parametrized by \([0, 1]\). Given a curve \((x(t), y(t), z(t))\) and a color value \(c(t)\) define the curve \(r(t) = [x(t), y(t), z(t), c(t)]\) in four dimensional space. Use this idea to argue why there are no non-trivial knots in four dimensions.

![Figure 4. The “Hue curve” in color space.](image)

Problem 9.5 What does your intuition say? We will come back to this later when we look at surface area. Given a nice smooth surface \(S \) like a paraboloid which is triangulated with triangles of size \(\epsilon \). If \(S_n \) is the polygonal approximation. Does the surface area \(|S_n|\) of the polyhedron and the surface area of the surface \(S \) satisfies \(|S_n| \to |S|\)?

Oliver Knill, knill@math.harvard.edu, Math 22a, Harvard College, Fall 2018
Unit 10: Coordinates

Lecture

10.1. It was René Descartes who in 1637 introduced coordinates and brought algebra close to geometry. The Cartesian coordinates \((x, y)\) in \(\mathbb{R}^2\) can be replaced by other coordinate systems like polar coordinates \((r, \theta)\), where \(r = \sqrt{x^2 + y^2} \geq 0\) is the radial distance to the \((0, 0)\) and \(\theta \in [0, 2\pi)\) is the polar angle made with the positive \(x\)-axis. Since \(\theta\) is in the interval \([0, 2\pi)\), it is best described in the complex notation \(\theta = \text{arg}(x + iy)\). The conversion from the \((r, \theta)\) coordinates to the \((x, y)\)-coordinates is

\[
\begin{align*}
x &= r \cos(\theta) \\
y &= r \sin(\theta)
\end{align*}
\]

The radius is \(\sqrt{x^2 + y^2}\), where if non-zero, we always take the positive root. The angle formula \(\text{arctan}(y/x)\) only holds if \(x\) and \(y\) are both positive. The angle \(\theta\) is not uniquely defined at the origin \((0, 0)\), most software just assumes \(\text{arg}(0) = 0\).

10.2. We can write a vector in \(\mathbb{R}^2\) also in the form of a complex number \(z = x + iy \in \mathbb{C}\) with some symbol \(i\). This is not only notational convenience. Complex numbers can be added and multiplied like other numbers and while \(\mathbb{R}^2 = \mathbb{C}\), the later has a multiplicative structure. In order to fix that structure, one only needs to specify that \(i^2 = -1\). This gives \((a + ib)(c + id) = ac - bd + i(ad + bc)\). An important observation of Euler is a link between the exponential and trigonometric functions:

Theorem: \(e^{i\theta} = \cos(\theta) + i \sin(\theta)\).

10.3. The proof is to write the series definition on both sides. First recall the definitions of \(e^x = 1 + x + x^2/2! + x^3/3! + \ldots\). If we plug in \(x = i\theta\) we get \(e^{i\theta} = 1 + i\theta - \theta^2/2! - i\theta^3/3! + \theta^4/4!\ldots\). But this is \((1 - \theta^2/2 + \theta^4/4!\ldots) + i(\theta - \theta^3/3! + \theta^5/5! - \ldots)\) which is \(\cos(\theta) + i \sin(\theta)\). QED. If you prefer not to see the functions \(\exp, \sin, \cos\) being defined as series, you can see them as **Taylor series** \(f(x) = f(0) + f'(0)x + f''(0)/2!x^2 + \ldots = \sum_{k=0}^{\infty} (f^{(k)}(0)/k!)x^k\). By differentiating the functions at 0, we see then the connection.

\(^1\text{Descartes: La Géometrie, 1637 (1 year after the foundation of Harvard college)}\)
10.4. This implies for $\theta = \pi$ the magical formula

Theorem: $e^{i\pi} + 1 = 0$

This formula is often voted the “nicest formula in math”. It combines “analysis” in the form of e, “geometry” in the form of π, “algebra” in the form of i, the additive unit 0 and the multiplicative unit 1. The Euler formula also allows to define the logarithm of any complex number as $\log(z) = \log(|z|) + i\arg(z) = \log(r) + i\theta$. We see now that going from (x, y) to $(\log(r), \theta)$ is a very natural transformation from $\mathbb{C} \setminus 0$ to \mathbb{C}. The exponential function $\exp : z \to e^z$ is a map from $\mathbb{C} \to \mathbb{C} \setminus 0$. It transforms the additive structure on \mathbb{C} to the multiplicative structure because $\exp(z + w) = \exp(z) \exp(w)$.

10.5. In three dimensions, we can look at cylindrical coordinates (r, θ, z). It is just the polar coordinates in the first two coordinates. A cylinder of radius 2 for example is given as $r = 2$. The torus $(3 + x^2 + y^2 + z^2)^2 - 16(x^2 + y^2) = 0$ can be written as $3 + r^2 + z^2 = 4r$ or more intuitively as $(r - 2)^2 + z^2 = 1$, a circle in the $r - z$ plane.

10.6. The spherical coordinates (ρ, θ, ϕ), where $\rho = \sqrt{x^2 + y^2 + z^2}$. The angle θ is the polar angle as in cylindrical coordinates and ϕ is the angle between the point (x, y, z) and the z-axis. We have $\cos(\phi) = [x, y, z] \cdot [0, 0, 1]/|[x, y, z]| = z/\rho$ and $\sin(\phi) = |[x, y, z] \times [0, 0, 1]/|[x, y, z]|| = r/\rho$ so that $z = \rho \cos(\phi)$ and $r = \rho \sin(\phi)$ and therefore

$$
\begin{align*}
x &= \rho \sin(\phi) \cos(\theta) \\
y &= \rho \sin(\phi) \sin(\theta) \\
z &= \rho \cos(\phi)
\end{align*}
$$

where $0 \leq \theta < 2\pi, 0 \leq \phi \leq \pi$ and $\rho \geq 0$.

10.7. A coordinate change $x \to f(x)$ in the plane can be seen as a map $f : \mathbb{R}^2 \to \mathbb{R}^2$. A point (x_1, x_2) is mapped into (f_1, f_2). We write ∂x_i for the partial derivative with respect to the variable x_k. For example $\partial x_1(x_1^2 x_2 + 3x_1 x_2^3) = 2x_1 x_2 + 3x_2^3$.

\[
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} \to
\begin{bmatrix}
f_1(x_1, x_2) \\
f_2(x_1, x_2)
\end{bmatrix},
\begin{bmatrix}
\partial x_1 f_1(x_1, x_2) \\
\partial x_1 f_2(x_1, x_2)
\end{bmatrix}
\]

where df is a matrix called the Jacobian matrix. The determinant is called the distortion factor at $x = (x_1, x_2)$.

10.8. For polar coordinates, we get

\[
\begin{bmatrix}
r \\
\theta
\end{bmatrix} \to
\begin{bmatrix}
r \cos(\theta) \\
r \sin(\theta)
\end{bmatrix},
\begin{bmatrix}
\cos(\theta) & -r \sin(\theta) \\
r \sin(\theta) & r \cos(\theta)
\end{bmatrix}
\]

Its distortion factor is r. We will use this when integrating in polar coordinates.

10.9. If $f(z) = z^2 + c$ with $c = a + ib, z = x + iy$ is written as $f(x, y) = (x^2 - y^2 + a, 2xy + b)$, then df is a 2×2 rotation dilation matrix which corresponds to the complex number $f'(z) = 2z$. The algebra \mathbb{C} is the same as the algebra of rotation-dilation matrices.

2D. Wells, Which is the most beautiful?, Mathematical Intelligencer, 1988
10.10. A coordinate change $x \rightarrow f(x)$ in space is a map $f : \mathbb{R}^3 \rightarrow \mathbb{R}^3$. We compute

$$f \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} f_1(x) \\ f_2(x) \\ f_3(x) \end{bmatrix} , df \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \partial_{x_1} f_1(x) & \partial_{x_2} f_1(x) & \partial_{x_3} f_1(x) \\ \partial_{x_1} f_2(x) & \partial_{x_2} f_2(x) & \partial_{x_3} f_2(x) \\ \partial_{x_1} f_3(x) & \partial_{x_2} f_3(x) & \partial_{x_3} f_3(x) \end{bmatrix} .$$

We wrote $x = (x_1, x_2, x_3)$. Its determinant $\det(dT(x))$ is a volume distortion factor.

10.11. For spherical coordinates, we have

$$f \begin{bmatrix} \rho \\ \phi \\ \theta \end{bmatrix} = \begin{bmatrix} \rho \sin(\phi) \cos(\theta) \\ \rho \sin(\phi) \sin(\theta) \\ \rho \cos(\phi) \end{bmatrix} , df \begin{bmatrix} \rho \\ \phi \\ \theta \end{bmatrix} = \begin{bmatrix} \sin(\phi) \cos(\theta) & \rho \cos(\phi) \cos(\theta) & -\rho \cos(\phi) \sin(\theta) \\ \sin(\phi) \sin(\theta) & \rho \cos(\phi) \sin(\theta) & \rho \cos(\phi) \cos(\theta) \\ \cos(\phi) & -\rho \sin(\phi) & 0 \end{bmatrix} .$$

The distortion factor is $\det(df(\rho, \phi, \theta)) = \rho^2 \sin(\phi)$.

Examples

10.12. The point $(x, y) = (-1, 1)$ corresponds to the complex number $z = -1 + i$. It has the polar coordinates $(r, \theta) = (\sqrt{2}, 3\pi/4)$. As we have $z = re^{i\theta}$, we check $z^2 = (-1 + i)(-1 + i) = -2i$ which agrees with $(re^{i\theta})^2 = r^2e^{2i\theta} = 2e^{i\pi/2}$.

10.13. a) $(x, y, z) = (1, 1, -\sqrt{2})$ corresponds to spherical coordinates $(\rho, \phi, \theta) = (2, 3\pi/4, \pi/4)$.
b) The point given in spherical coordinates as $(\rho, \phi, \theta) = (3, 0, \pi/2)$ is the point $(0, 3, 0)$.

c) The set of points with spherical coordinates $\phi = 0$ are points on the positive z-axis.
d) The set of points with spherical coordinates $\theta = 0$ form a half plane in the yz-plane.
e) The set of points with $\rho = \cos(\phi)$ form a sphere. Indeed, by multiplying both sides with ρ, we get $\rho^2 = \rho \cos(\phi)$ which means $x^2 + y^2 + z^2 = z$, which is after a completion of the square equal to $x^2 + y^2 + (z - 1/2)^2 = 1/4$.

10.15. For $A \in M(n, n)$, $f(x) = Ax + b$ has $df = A$ and distortion factor $\det(A)$.

10.16. Find the Jacobian matrix and distortion factor of the map $f(x_1, x_2) = (x_1^3 + x_2, x_2^2 - \sin(x_1))$. Answer: Write both the transformation and the Jacobian:

$$f \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1^3 + x_2 \\ x_2^2 - \sin(x_1) \end{bmatrix} , df \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3x_1^2 & 1 \\ -\cos(x_1) & 2x_2 \end{bmatrix} .$$

The Jacobian matrix is $\det(df(x)) = 6x_1^2x_2 + \cos(x_1)$.

Illustrations

10.17. Let $T : \mathbb{C} \rightarrow \mathbb{C}$ be defined as $z \rightarrow z^2 + c$ where $z = x + iy$. The set of all $c = a + ib$ for which the iterates $T^n(0)$ stay bounded is the Mandelbrot set M. For $c = -1$ we get $T(0) = -1, T^2(0) = T(-1) = 0$ so that $T^n(z)$ is either 0 or -1. The point $c = -1$ is in M. The point $c = 1$ gives $T(0) = 1, T^2(0) = 1^2 = 1 = 2, T^3(0) = 2^2 + 1 = 5$. Induction shows that $T^n(0)$ does not converge. The point $c = 1$ is not in M.

10.18. If T is the transformation in \mathbb{R}^3 which is in spherical coordinates given by $T(x) = x^2 + c$, where x^2 has spherical coordinates $(\rho^2, 2\phi, 2\theta)$ if x has (ρ, ϕ, θ). It turns out that $T(x) = x^8 + c$ gives a nice analogue of the Mandelbrot set, the Mandelbulb.
The **Mandelbrot set** $M = \{ c \in \mathbb{C} | T(z) = z^2 + c \text{ has bounded } T^n(0) \}$. There is a similar construction in space \mathbb{R}^3 which uses spherical coordinates. This leads to the **Mandelbulb set** $B = \{ c \in \mathbb{R}^3 | T(x) = x^8 + c \text{ has bounded } T^n(0) \}$, where x^8 has spherical coordinates $(\rho^8, 8\phi, 8\theta)$ if x has spherical coordinates (ρ, ϕ, θ).

Homework

Problem 10.1:

a) Find the polar coordinates of $(x, y) = (1, \sqrt{3})$.

b) Which point has the polar coordinates $(r, \theta) = (3, 4)$?

c) Find the spherical coordinates of the point $(x, y, z) = (1, 1, 1)$.

d) Which point has the spherical coordinates $(\rho, \theta, \phi) = (3, \pi/2, \pi/3)$?

Problem 10.2:

a) Compute $T^n_c(0)$ for $c = (1 + i)$ for $n = 1, 2, 3, 4$. Is $1 + i$ in the Mandelbrot set?

b) What is the “eye for an eye” number i^i? (You can use $z^w = e^{w \log(z)}$).

Problem 10.3:

a) Which surface is described as $r = z$?

b) Describe the hyperbola $x^2 - y^2 = 1$ in polar coordinates.

c) Which surface is described as $\rho \sin(\phi) = \rho$?

d) Describe the hyperboloid $x^2 + y^2 - z^2 = 1$ in spherical coordinates.

Problem 10.4:

a) Compute the Jacobian matrix and distortion factor of the coordinate change $T(x, y) = (2x + \sin(x) - y, x)$ (Chirikov map).

b) Compute for fixed a the Jacobian matrix and distortion factor of the toral coordinates $f(q, \theta, \phi) = ((a + q \cos(\phi)) \cos(\theta), (a + q \cos(\phi)) \sin(\theta), q \sin(\phi))$. The θ and ϕ coordinates are angles, the q coordinate is the distance to the center circle of the torus.

Problem 10.5:

a) Prove by induction that the Mandelbrot set M is contained in the set $|c| \leq 2$.

b) Prove by induction that the Mandelbulb set B is contained in the set $|c| \leq 2$.

Oliver Knill, knill@math.harvard.edu, Math 22a, Harvard College, Fall 2018
Unit 11: Parametrization

LECTURE

11.1. A map \(r : \mathbb{R}^m \to \mathbb{R}^n \) is called a parametrization. We have seen maps \(r \) from \(\mathbb{R} \) to \(\mathbb{R}^n \), which were curves. Then we have seen maps \(f : \mathbb{R}^n \to \mathbb{R}^n \) which were coordinate changes. In each case we defined the Jacobian matrix \(df(x) \). In the case of the curve \(r : \mathbb{R} \to \mathbb{R}^n \), it was the velocity \(dr(t) = r'(t) \). In the case of coordinate changes, the Jacobian matrix \(df(x) \) was used to get the volume distortion factor \(\det(df(x)) = \sqrt{\det(df^T df)} \). Today, we look at the case \(m < n \). In particular at \(m = 2, n = 3 \). As in the case of curves, we use the letter \(r \) to describe the map. The image of a map \(r : R \subset \mathbb{R}^m \to \mathbb{R}^n \) is then a \textit{m-dimensional surface} in \(\mathbb{R}^n \). The distortion factor \(||dr|| \) defined as \(||dr||^2 = \det(dr^T dr) \) will be used later to compute surface area. \(^1\)

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{images}
\caption{An ellipsoid, half an ellipsoid, a bulb, a heart and a cat.}
\end{figure}

11.2. We mostly discuss here the case \(m = 2 \) and \(n = 3 \), as we ourselves are made of two-dimensional surfaces, like cells, membranes, skin or tissue. A map \(r : R \subset \mathbb{R}^2 \to \mathbb{R}^3 \), written as \(r\left(\begin{bmatrix} u \\
v \end{bmatrix}\right) = \begin{bmatrix} x(u,v) \\
y(u,v) \\
z(u,v) \end{bmatrix} \) defines a two-dimensional surface. In order to save space, we also just write \(r(u,v) = [x(u,v), y(u,v), z(u,v)] \). In computer graphics, the \(r \) is called \textit{uv-map}. The \(uv \)-plane is where you draw a texture. The map \(r \) places it onto the surface. In geography, the map \(r \) is called (surprise!) a \textit{map}. Several maps define an \textit{atlas}. The curves \(u \to r(u, v) \) and \(v \to r(u, v) \) are called \textit{grid curves}.

\(^1\)Distinguish \(||A||^2 = \det(A^T A) \) and \(|A|^2 = \text{tr}(A^T A) \) in \(M(n,m) \). They only agree for \(m = 1 \).
11.3. The parametrization \(r(\phi, \theta) = [\sin(\phi) \cos(\theta), \sin(\phi) \sin(\theta), \cos(\phi)] \) produces the sphere \(x^2 + y^2 + z^2 = 1 \). The full sphere has \(0 \leq \phi \leq \pi, 0 \leq \theta < 2\pi \). By modifying the coordinates, we get an ellipsoid \(r(\phi, \theta) = [a \sin(\phi) \cos(\theta), b \sin(\phi) \sin(\theta), c \cos(\phi)] \) satisfying \(x^2/a^2 + y^2/b^2 + z^2/c^2 = 1 \). By allowing \(a, b, c \) to be functions of \(\phi, \theta \) we get “bumpy spheres” like \(r(\phi, \theta) = (3 + \cos(3\phi) \sin(4\theta))[\sin(\phi) \cos(\theta), \sin(\phi) \sin(\theta), \cos(\phi)] \).

11.4. Planes are described by linear maps \(r(x) = Ax + b \) with \(A \in M(3, 2) \) and \(b \in M(3, 1) \). The Jacobian map is \(dr = A \). Let \(r_u, r_v \) be the two column vectors of \(A \). Actually, \(r_u \) is a short cut for \(\partial_u r(u, v) \), which is the velocity vector of the grid curve \(u \to r(u, v) \).

11.5. An example is the parametrization \(r(u, v) = [u + v - 1, u - v + 3, 3u - 5v + 7] \). In this case \(b = \begin{bmatrix} -1 \\ 3 \\ 7 \end{bmatrix} \), \(r_u = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} \), \(r_v = \begin{bmatrix} 1 \\ -1 \\ -5 \end{bmatrix} \) and \(A = dr = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 3 & -5 \end{bmatrix} \). We see \(A^T A = \begin{bmatrix} 11 & -15 \\ -15 & 27 \end{bmatrix} \) which has determinant 72. We also have

\[
|r_u \times r_v|^2 = \left| \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} \times \begin{bmatrix} 1 \\ -1 \\ -5 \end{bmatrix} \right|^2 = \left| \begin{bmatrix} -2 \\ 8 \\ -2 \end{bmatrix} \right|^2 = 72
\]

11.6. The previous computation suggests a relation between the normal vector and the fundamental form \(g = dr^T dr \). In three dimensions, the distortion factor of a parametrization \(r: \mathbb{R}^2 \to \mathbb{R}^3 \) can indeed always be rewritten using the cross product:

\[
\text{Theorem: } \det(dr^T dr) = |r_u \times r_v|^2.
\]

Proof. As \(dr^T dr = \begin{bmatrix} r_u \cdot r_u & r_u \cdot r_v \\ r_v \cdot r_u & r_v \cdot r_v \end{bmatrix} \), the identity is the Cauchy-Binet identity

\[
|r_u \times r_v|^2 = |r_u|^2 |r_v|^2 - |r_u \cdot r_v|^2
\]

which boils down to \(\sin^2(\theta) = 1 - \cos^2(\theta) \), where \(\theta \) is the angle between \(r_u \) and \(r_v \). This is the angle between the grid curves you see on the pictures.

![Figure 2. A plane, graph, surface of revolution and helicoid.](image)

Examples

11.7. For the unit sphere \(r(\phi, \theta) = [\sin(\phi) \cos(\theta), \sin(\phi) \sin(\theta), \cos(\phi)] \) and \(A = dr \):

\[
g = A^T A = \begin{bmatrix} \cos(\phi) \cos(\theta) & \cos(\phi) \sin(\theta) & -\sin(\phi) \\ -\sin(\phi) \sin(\theta) & \sin(\phi) \cos(\theta) & 0 \end{bmatrix} \begin{bmatrix} \cos(\phi) \cos(\theta) & -\sin(\phi) \sin(\theta) \\ \cos(\phi) \sin(\theta) & \sin(\phi) \cos(\theta) \\ -\sin(\phi) & 0 \end{bmatrix}
\]
This is \(g = \begin{bmatrix} 1 & 0 \\ 0 & \sin^2(\phi) \end{bmatrix} \) and \(\sqrt{\det(g)} = \sin(\phi) \) is the distortion factor.

11.8. An important class of surfaces are graphs \(z = f(x, y) \). Its most natural parametrization is \(r(x, y) = [x, y, f(x, y)] \), where the map \(r \) just lifts up the bottom part to the elevated version. An example is the elliptic paraboloid \(r(x, y) = [x, y, x^2 + y^2] \) and the hyperbolic paraboloid \(r(x, y) = [x, y, x^2 - y^2] \). We could of course have written also \(r(u, v) = [u, v, u^2 - v^2] \).

11.9. A surface of revolution is parametrized like \(r(\theta, z) = [g(z) \cos(\theta), g(z) \sin(\theta), z] \). Note that we can use any variables. In this case, \(u = \theta, v = z \) are used. An example is the cone \(r(\theta, z) = [z \cos(\theta), z \sin(\theta), z] \) or the one-sheeted hyperboloid \(r(\theta, z) = [\sqrt{z^2 + 1} \cos(\theta), \sqrt{z^2 + 1} \sin(\theta), z] \).

11.10. The torus is in cylindrical coordinates given as \((r - 3)^2 + z^2 = 1\). We can parametrize this using the polar angle \(\theta \) and the polar angle centered at center of the circle as \(r(\theta, \phi) = [(3 + \cos(\phi)) \cos(\theta), (3 + \cos(\phi)) \sin(\theta), \sin(\phi)] \). Both angles \(\theta \) and \(\phi \) go from 0 to \(2\pi \). We see now also the relation with the toral coordinates.

11.11. The helicoid is the surface you see as a staircase or screw. The parametrization is \(r(\theta, p) = [p \cos(\theta), p \sin(\theta), \theta] \). How can we understand this? The key is to look at grid curves. If \(p = 1 \), we get a curve \(r(\theta) = [\cos(\theta), \sin(\theta), \theta] \) which we had identified as a helix. On the other hand, if you fix \(\theta \), then you get lines.

11.12. Side remark. The first fundamental form \(g = dr^T dr \) is also called a metric tensor. In Riemannian geometry one looks at a manifold \(M \) equipped with a metric \(g \). The simplest case is when \(g \) comes from a parametrization, as we did here. In physics, we know that it is mass which deforms space-time. The quantity \(|g|^2 = \det(g)\) is a multiplicative analogue of \(|g|^2 = \text{tr}(g)\). For an invertible positive definite square matrix \(A \), we will later see the identity \(\log \det(A) = \text{tr} \log(A) \) which illustrates how both determinant and trace are pivotal numerical quantities derived from a matrix. Trace is additive because of \(\text{tr}(A + B) = \text{tr}(A) + \text{tr}(B) \) and determinant is multiplicative \(\det(AB) = \det(A) \det(B) \) as we will see later.

11.13. To summarize, we have seen so far that there are two fundamentally different ways to describe a manifold. The first is to write it as a level surface \(f = c \) which is a kernel of a map \(g(x) = f - c \). A second is to write it as the image of some map \(r \).

Illustration

![Figure 3. “Veritas on Earth and the Moon” theme (rendered in Povray).](image-url)
Problem 11.1: Parametrize the upper part of the two sheeted hyperboloid $x^2 + y^2 - z^2 = -1, z > 0$ in two different ways: a) as a surface of revolution b) as a graph $z = f(x, y)$.

Problem 11.2: a) Parametrize the plane $x + 2y + 3z - 6 = 0$ using a map $r : \mathbb{R}^2 \to \mathbb{R}^3$. b) Now find the matrix $A = dr$ and compute $g = A^T A$ as well as the distortion factor $\sqrt{\det(A^T A)}$. c) Also compute r_u, r_v and $r_u \times r_v$ and then compute $|r_u \times r_v|$. You should get the same number.

Problem 11.3: Given a parametrization $r(\theta, \phi) = [(7 + 2 \cos(\phi)) \cos(\theta), (7 + 2 \cos(\phi)) \sin(\theta), 2 \sin(\phi)]$ of the 2-torus, find the implicit equation $g(x, y, z) = 0$ which describes this torus.

Problem 11.4: Parametrize the hyperbolic paraboloid $z = x^2 - y^2$. What is the first fundamental form $g = dr^T dr$ which is $g = \begin{bmatrix} r_x \cdot r_x & r_x \cdot r_y \\ r_y \cdot r_x & r_y \cdot r_y \end{bmatrix}$? What is the distortion factor $\sqrt{\det(g)}$?

Problem 11.5: The matrix $g = dr^T dr$ is also called the first fundamental form. If $r : \mathbb{R}^4 \to \mathbb{R}^4$ is a parametrization of space time then g is the space time metric tensor. The matrix entries of g appear in general relativity. Now for some reasons, physics folks use Greek symbols to access matrix entries. They write $g_{\mu \nu}$ for the entry at row μ and column ν. This appears for example in the Einstein field equations

$$R_{\mu \nu} - \frac{1}{2} R g_{\mu \nu} = \frac{8 \pi G}{c^4} T_{\mu \nu}.$$

Find the general solution of this equation. Just kidding. We just want you to look up the equations and tell from each of the variables, what it is called and whether it is a matrix, a scalar function or a constant.
UNIT 12: Creativity

Seminar

12.1. As we are heading for our first midterm, let us organize the knowledge accumulated so far. We can do that in various ways. One technique is a mind map. It allows on one picture to organize a vast amount of content and see connections which might otherwise be missed. In Figure (1) we started to build such a mind map. There are lots of branches still missing, even main ones. One could start also with one entry like “matrix”, put it in the center then build connections to other objects definitions or results.

Figure 1.

12.2. What does this have to do with creativity? It turns out that in order to be creative, one has to have a fertile base of knowledge. You can not assemble new building blocks before possessing and understanding some already. In order to prove the point that knowledge is important, one can also look at computer science and
especially the field artificial intelligence (AI). One of the great pioneers in AI, Marvin Minsky once wrote: "the best way to solve a problem is to know how to solve it". The modern paradigms in machine learning confirm that in order to train an AI entity, one has to feed in a lot of knowledge to work with. New models come then through data fitting, gradient decent methods or more sophisticated algorithms.

Problem A: Make a mind map of the most important facts which have appeared in the course so far. Do it on paper, a blackboard, whiteboard or using software. Figure (1) makes a start. Refine it as much as possible.

12.3. To illustrate how difficult it can be to get a new solution, try the following problem. Of course, if you know the answer or have seen it already, it can be easy. If you have never seen it, it can be very hard. It is important that you try to find the solution for at least a half an hour even if you should not be successful.

Problem B: Given 6 sticks of the same length 1, arrange them so that you get 4 equilateral triangles of side length 1.

12.4. Finding proofs of theorems needs creativity. Creativity is neither “God-given” nor inherited; it can be be trained like everything else. To back this claim up, we refer to a scientist who has demonstrated creativity by discovering new things which nobody else has thought about before. It is the Swiss scientist Fritz Zwicky who taught at Caltech and wrote a book “Everybody a genius”. Why does Zwicky have “street cred”? Well, he was not only extraordinarily creative, he also developed and communicated creativity techniques that work and have been used since both in industry and academia.

1See the Ahlfors lecture talk of 9/11/2018 by Sanjeev Arora, now on Youtube
12.5. First to the credentials: Fritz Zwicky proposed the existence of dark matter, supernovas (together with Walter Baade), neutron stars, galactic cosmic rays, gravitational lensing by galaxies, and galaxy clusters. He was also a pioneer in rocket technology. He proposed and realized the first shot of a human produced object to go into outer space. Each of these achievements alone would merit to be in the list of greatest astronomers of all time. Still, Zwicky is not that well known. Why? Maybe it has to do with the fact that Zwicky used to call his colleagues “spherical bastards”. Why spherical? “Because they are bastards from whatever side you looked at them!” No wonder he was not that much admired ...

12.6. One of the techniques is the morphological box. It is very simple. Produce a matrix in which one has one type of objects, ideas or activities on one side and another type of objects, ideas or activities. Now, just go through the matrix and look for connections. Here is such a matrix:

<table>
<thead>
<tr>
<th></th>
<th>Earth</th>
<th>Moon</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>shoot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>travel</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12.7. Now look what Zwicky proposed: shoot onto the moon (he actually did that with used V2 rockets which had an actual gun on top. At the end of the burn the gun was fired, the bullet would travel to space), he proposed travel by large scale digging through the earth (this is now realized by a company formed by Elon Musk) travel with the sun (the proposal was to travel to a nearby star by moving the entire solar system).

12.8. The matrix entry “dig sun” might come in when realizing Zwicky’s space travel idea. We might have to target part of the sun differently to trigger asymmetric burn and so a travel. By the way there is an entire field of engineering, “macro-engineering”. In 1997, I suggested in an essay (to the occasion of the 100th birthday of Zwicky) to implement Zwicky’s idea by deliberate triggering of asymmetric fusion and fission in the Sun. This is mentioned in a macro-engineering book. 2

12.9. Here is a beautiful problem assigned in the course Math 101 this semester, taught by Sebastien Vasey. Borrowing a problem from another course does not make much of the point for creativity: but the problem is too beautiful to be missed. It is an example of an induction proof which needs some creativity. Try to solve it.

Problem C: You have bathroom tiles which have three squares arranged in an L shape. Prove that you can cover a square shaped bath room floor of length and width 2^n with such tiles such that one square is left empty.

Problem D: Martin Gardner wrote many books with puzzles. One of them is “The mathematical magic show” (1977). On the book cover of the German edition (1988), there is a famous puzzle: you have a cherry in a glass built by 4 matches. Move two of the four matches to get the cherry out of the glass. The glass should have the same shape as before. You are not allowed to move the cherry. Solve the cherry puzzle.

![Martin Gardner book cover](image)

Figure 3. The German edition of “mathematical magic show”.

Homework

Exercises A-D are done in the seminar. This homework is due on Thursday. In all the following question, **creativity is key**. Your object has to be original. It is ok to modify a known object. And of course, use technology so that one can admire your creation.

- **Problem 12.1** Be creative and generate your own parametrized curve.
- **Problem 12.2** Be creative and generate a parametric surface.
- **Problem 12.3** Be creative and generate a level surface $f(x, y, z) = c$.
- **Problem 12.4** Be creative and generate your own coordinate system \mathbb{R}^2.

Problem 12.5

a) Write a first hourly! b) take it! c) grade it!

Remark: According to the Apocrypha of Krantz (page 79), part a) and b) were once given as an algebraic geometry exam given here at Harvard. It is rumored that this was then used also at the Harvard philosophy department, where (and this is creative too), part c) was added. As far as we know, giving the homework assignment of writing an exam assignment is a first! Heureka! We were creative.

Oliver Knill, knill@math.harvard.edu, Math 22a, Harvard College, Fall 2018
Unit 13: Keywords for First Hourly

Theorems
- Cauchy-Schwarz
- Pythagoras
- Al Khashi
- Uniqueness of Row reduction
- The cross product formula
- Image of transpose is perpendicular to kernel of matrix.
- Cauchy Binet formula
- For differentiable curves, arc length exists.
- The equivalence of curvature formulas
- Euler formula and special case
- Distortion formula in space

Algorithms
- Find angle between vectors
- Find area of parallelogram
- Find volume of parallelepiped
- Row reduce a matrix
- Get position from acceleration
- Find vector perpendicular to a plane
- Find length of a curve or matrix
- Find curvature at some point
- Compute with complex numbers
- Switch between coordinate systems
- Compute the distortion factor
- Get distances between objects

Objects
- Matrices
- Vectors
- Curves
- Linear manifolds
- Quadratic manifolds
- Kernel of map
Parametrized surfaces

Differentiation
- Velocity
- Acceleration
- The Frenet TNB frame
- Jacobian matrix
- Curvature

Integration
- Integrate to get arc length.
- Integrate to get position from velocity etc.
- Integration technique: substitution
- Integration technique: partial fractions
- Integration technique: simplification

Coordinate systems
- Cartesian coordinates
- Polar coordinates
- Cylindrical coordinates
- Spherical coordinates
- General coordinate change

Parametrized Surfaces
- Spheres
- Surfaces of revolution
- Graphs
- Planes

People
- Mandelbrot
- Hamilton
- Descartes
- Cauchy
- Binet
- Schwarz
- Euler
- Heine
- Cantor
- Bolzano
- Archimedes
- Newton

Oliver Knill, knill@math.harvard.edu, Math 22A, Harvard College, Fall 2018
Unit 13: First Hourly Practice

PROBLEMS

Problem 13P.1 (10 points):
The Fibonacci numbers are defined recursively as follows: start with $F_0 = 0, F_1 = 1$ then define $F_{n+1} = F_n + F_{n-1}$, so that $F_2 = 1, F_3 = 2, F_4 = 3, F_5 = 5$ etc. Prove that

$$F_0 + F_1 + \cdots + F_n = F_{n+2} - 1$$

for every positive integer n.

Problem 13P.2 (10 points):
Let

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}. $$

a) (4 points) Compute AB and $\text{rref}(AB)$.
b) (4 points) Now row reduce both A and B and form $\text{rref}(A)\text{rref}(B)$.
c) (2 points) Is the statement $\text{rref}(AB) = \text{rref}(A)\text{rref}(B)$ true for all A, B?

Problem 13P.3 (10 points):
a) (2 points) Parametrize the line through $(1, 1, 1)$ and $(4, 3, 1)$ in \mathbb{R}^3.
b) (2 points) Parametrize the ellipse $x^2/16 + y^2/25 = 1$ in \mathbb{R}^2.
c) (2 points) Parametrize the graph $y = x^5 + x$ in \mathbb{R}^2.
d) (2 points) Parametrize the circle $x^2 + (y - 2)^2 = 1, z = 4$ in \mathbb{R}^3.
e) (2 points) Parametrize the line $x = y = z$ in \mathbb{R}^3.

Problem 13P.4 (10 points):
Find the arc length of the curve

$$r(t) = [t \cos(t^2), t \sin(t^2), t^2]$$

for $0 \leq t \leq 2$.

Problem 13P.5 (10 points):

a) (2 points) What is the Heine-Cantor theorem?
b) (2 points) Formulate the triangle inequality.
c) (2 points) What is the Al Kashi identity?
d) (2 points) Give the name of a nowhere differentiable function.
e) (2 points) Is it true that a continuous curve $r(t)$ has a finite arc length?

Problem 13P.6 (10 points):

a) (2 points) Find $(3 + i)(4 + 2i)$
b) (2 points) What is $e^{3\pi/4}$?
c) (2 points) Convert from cylindrical $(r, \theta, z) = (2, \pi/2, 1)$ to Cartesian.
d) (2 points) What are the spherical coordinates of $(1, \sqrt{3}, 2)$?
e) (2 points) What surface is in spherical coordinates given as $\rho \sin(\phi) = 1$?

Problem 13P.7 (10 points):

a) (5 points) You are given $r'''(t) = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$ and $r(0) = (7, 8, 9)$ and $r'(0) = (1, 0, 0)$ and $r''(0) = (0, 1, 0)$. Find $r(1)$.
b) (5 points) What is the curvature of $r(t) = [t, t + t^2, t^2 + t^3]$ at $t = 0$?

Problem 13P.8 (10 points):

a) (5 points) Find a parametrization $r(u, v)$ of the cylinder $x^2 + z^2 = 9$.
b) (5 points) Find $r(u, v)$ for the paraboloid $y^2 + 3z^2 = x$.

Problem 13P.9 (10 points):

Let $A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$. a) (2 points) The image of A is a plane. By using the cross product, write it as $ax + by + cz = d$.
b) (2 points) What is the first fundamental form $g = A^T A$?
c) (2 points) From a) you have $[a, b, c]^T = v \times w$. Find $\sqrt{a^2 + b^2 + c^2}$.
d) (2 points) Find the distortion factor $||A|| = \sqrt{\det(A^T A)}$ of A.
e) (2 points) What theorem was involved to see $||A|| = |v \times w|$?

Problem 13P.10 (10 points):

a) (5 points) What is the Jacobian matrix df of the map $f(x, y, z) = [x^2 + y^2 + z^2, x + y, -x^2]^T$?
b) (5 points) Find the distortion factor $\det(df)$.
Unit 13: Hourly 1 (II actual hourly)

PROBLEMS

Problem 13.1 (10 points):
Prove that

\[1 + 2 + 4 + 8 + \cdots + 2^n = 2^{n+1} - 1 \]

for every positive integer \(n \).

Problem 13.2 (10 points):

a) (5 points) Row reduce the matrix

\[
A = \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5
\end{bmatrix}.
\]

b) (5 points) Compute the matrix product

\[
\begin{bmatrix} 3 & 4 & 5 \end{bmatrix} A \begin{bmatrix} 1 \\
1 \\
1 \\
1
\end{bmatrix}.
\]
Problem 13.3 (10 points):
a) (2 points) Parametrize the curve \(x = \sin(y) \) in \(\mathbb{R}^2 \).
b) (2 points) Parametrize the curve \(r = \sin^2(5\theta) \) in \(\mathbb{R}^2 \).
c) (2 points) Parametrize the curve \(y = x^5 + x, z = 4 \) in \(\mathbb{R}^3 \).
d) (2 points) Parametrize the line \(2x + y = 4 \) in \(\mathbb{R}^2 \).
e) (2 points) Parametrize the ellipse \((x - 1)^2 + \frac{y^2}{4} = 1 \) in \(\mathbb{R}^2 \).

Problem 13.4 (10 points):
Find the arc length of the curve

\[
\mathbf{r}(t) = \begin{bmatrix} e^t \\ e^{-t} \\ \sqrt{2t} \end{bmatrix}
\]

for \(0 \leq t \leq 1 \).
Problem 13.5 (10 points):

a) (2 points) Formulate the Cauchy-Schwarz inequality.
b) (2 points) What formula gives the area of the parallelogram spanned by two vectors v and w?
c) (2 points) What formula gives the volume of a parallelepiped spanned by three vectors u, v, w?
d) (2 points) Who invented the quaternions?
e) (2 points) Assume $\text{rref}(A) = \text{rref}(B)$. Does this mean $A = B$?

Problem 13.6 (10 points):

a) (2 points) Write the complex number $z = e^{-i\pi/2}$ in the form $z = a + ib$.
b) (2 points) Which point (x, y, z) has the cylindrical coordinates $(r, \theta, z) = (1, \pi/2, 0)$?
c) (2 points) What are the spherical coordinates (ρ, ϕ, θ) of the point $(x, y, z) = (\sqrt{2}, \sqrt{2}, -2)$?
d) (2 points) What surface is $\rho \sin^2(\phi) = \cos(\phi)$? Give the name and write it in Cartesian coordinates.
e) (2 points) What surface is given in cylindrical coordinates by the equation $r \sin(\theta) = 2$?
Problem 13.7 (10 points):

a) (5 points) You are given \(r''(t) = \begin{bmatrix} 0 \\ 3 \\ t \end{bmatrix} \) and \(r(0) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \) and \(r'(0) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \). Find \(r(1) \).

b) (5 points) What is the curvature of \(r(t) = \begin{bmatrix} \cos(t) \\ \sin(t) \\ t \end{bmatrix} \) at \(t = 0 \)?

Problem 13.8 (10 points):

a) (2 points) Find a parametrization of the cone \(x^2 + y^2 = z^2 \).

b) (2 points) Find a parametrization of \(x^2/4 + y^2/9 + z^2/16 = 1 \).

c) (2 points) Find a parametrization of the surface \(x^2 - y^2 = z \).

d) (2 points) Find a parametrization of the plane \(z = 2 \).

e) (2 points) Find a parametrization of the cylinder \(x^2 + z^2 = 1 \).
Problem 13.9 (10 points):

a) (5 points) Find the dot product $A \cdot B = \text{tr}(A^T B)$ between the two matrices

\[
A = \begin{bmatrix}
1 & 1 \\
1 & 1 \\
1 & 1
\end{bmatrix},
\]

\[
B = \begin{bmatrix}
0 & 1 \\
1 & 0 \\
1 & 0
\end{bmatrix}.
\]

b) (5 points) Find the cosine of the angle between these two matrices.

Problem 13.10 (10 points):

a) (5 points) What is the Jacobian matrix df of the coordinate change

\[
f \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} 2x - y + \sin(x) \\ x \end{bmatrix}.
\]

b) (5 points) What is the distortion factor $\det(df)$ of the map f which by the way is called the Chirikov map.
Unit 13: Hourly 1 (III practice)

Problems

Problem 13R.1 (10 points):
Prove that \(1^2 + 2^2 + 3^2 + \cdots + n^2 = n(n+1)(2n+1)/6\) for every positive integer \(n\).

Problem 13R.2 (10 points):

a) (6 points) Row reduce \[
\begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
2 & 0 & 2 & 0 \\
1 & 1 & 1 & 1 \\
\end{bmatrix}
\].

b) (4 points) Find \(A^2\).
Problem 13R.3 (10 points):
\(a\) (2 points) Parametrize the curve \(y(x^2 + 1) = 1\).
\(b\) (2 points) Parametrize the spiral \(r = \theta^2\).
\(c\) (2 points) Parametrize the graph \(x = e^y = \exp(y)\).
\(d\) (2 points) Parametrize the \(y\)-axis \(x = 0\).
\(e\) (2 points) Parametrize the ellipse \((x - 1)^2/9 + (y - 4)^2/4 = 1\).

Problem 13R.4 (10 points):
Find the arc length of the curve
\[r(t) = [\sqrt{2}\log(t), \log(t)^2/2, \log(\log(t))]^T\]
for \(e \leq t \leq e^2\).
Problem 13R.5 (10 points):

a) (2 points) If \(v\) and \(w\) are two non-zero vectors, what is \(|v \times w|/|v \cdot w|\)?

b) (2 points) Finish this: if \(f\) is uniformly continuous on \([a, b]\), if

\[|x - y| \leq \ldots, \text{then } |f(x) - f(y)| \leq M_n.\]

c) (2 points) If \(x \cdot Bx + Ax - b = 0\) is a quadratic manifold. What object is \(B\), What object is \(A\)? Be specific. In case of vectors, distinguish between row and column vectors for example.

d) (2 points) Who found the formula \(e^{i\theta} = \cos(\theta) + i\sin(\theta)\)?

e) (2 points) Is it true that if \(f\) is a function on \([a, b]\) with \(f(a) < 0\) and \(f(b) > 0\), then \(f'(x) = 0\) at some point?

Problem 13R.6 (10 points):

a) (2 points) What is \((3 + i)^3\)?

b) (2 points) What is \((-1)^i\)?

c) (2 points) What is \(i^4\)?

d) (2 points) What surface is in cylindrical coordinates given as \(z - r^2 = 1\)?

e) (2 points) What set of points satisfies \(\phi = \pi\)?
Problem 13R.7 (10 points):

a) (5 points) You are given \(r''(t) = \begin{bmatrix} \sin(t) \\ \cos(t) \\ t \end{bmatrix} \) and \(r(0) = (0, 0, 0) \) and \(r'(0) = (0, 0, 0) \). Find \(r(2\pi) \).

b) (5 points) What is the curvature of \(r(t) = [2 \sin(t), 3 \cos(t), 0] \) at \(t = 0 \)?

Problem 13R.8 (10 points):

a) (5 points) Find the parametrization of the surface \(x^2 - y^2 + z^2 = 1 \).

b) (5 points) Find the parametrization of the surface \(x^2/4 + y^2/9 = 1 \).
Problem 13R.9 (10 points):
a) (5 points) Find the dot product between the two matrices

\[A = \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix} \]

and

\[B = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \].

b) (5 points) Find the angle between these two matrices.

Problem 13R.10 (10 points):
a) (5 points) What is the Jacobian matrix of the coordinate change

\[f(x, y, z) = \begin{bmatrix} x^2 \\ y^2 x + yx^2 \\ z^3 \end{bmatrix} \].

b) (5 points) What is the distortion factor of \(f \)?
Unit 14: Partial differential equations

Lecture

14.1. A partial differential equation is a rule which combines the rates of changes of different variables. Our lives are affected by partial differential equations: the Maxwell equations describe electric and magnetic fields \(E \) and \(B \). Their motion leads to the propagation of light. The Einstein field equations relate the metric tensor \(g \) with the mass tensor \(T \). The Schrödinger equation tells how quantum particles move. Laws like the Navier-Stokes equations govern the motion of fluids and gases and especially the currents in the ocean or the winds in the atmosphere. Partial differential equations appear also in unexpected places like in finance, where for example, the Black-Scholes equation relates the prices of options in dependence of time and stock prices.

14.2. If \(f(x,y) \) is a function of two variables, we can differentiate \(f \) with respect to both \(x \) or \(y \). We just write \(f_x(x,y) \) for \(\partial_x f(x,y) \). For example, for \(f(x,y) = x^3 y + y^2 \), we have \(f_x(x,y) = 3x^2 y \) and \(f_y(x,y) = x^3 + 2y \). If we first differentiate with respect to \(x \) and then with respect to \(y \), we write \(f_{xy}(x,y) \). If we differentiate twice with respect to \(y \), we write \(f_{yy}(x,y) \). An equation for an unknown function \(f \) for which partial derivatives with respect to at least two different variables appear is called a partial differential equation PDE. If only the derivative with respect to one variable appears, one speaks of an ordinary differential equation ODE. An example of a PDE is \(f_x^2 + f_y^2 = f_{xx} + f_{yy} \), an example of an ODE is \(f'' = f^2 - f' \). It is important to realize that it is a function we are looking for, not a number. The ordinary differential equation \(f' = 3f \) for example is solved by the functions \(f(t) = Ce^{3t} \). If we prescribe an initial value like \(f(0) = 7 \), then there is a unique solution \(f(t) = 7e^{3t} \). The KdV partial differential equation \(f_t + 6ff_x + f_{xxx} = 0 \) is solved by (you guessed it) \(2 \text{sech}^2(x-4t) \). This is one of many solutions. In that case they are called solitons, nonlinear waves. Korteweg-de Vries (KdV) is an icon in a mathematical field called integrable systems which leads to insight in ongoing research like about rogue waves in the ocean.

14.3. We say \(f \in C^1(\mathbb{R}^2) \) if both \(f_x \) and \(f_y \) are continuous functions of two variables and \(f \in C^2(\mathbb{R}^2) \) if all \(f_{xx}, f_{yy}, f_{xy} \) and \(f_{yx} \) are continuous functions. The next theorem is called the Clairaut theorem. It deals with the partial differential equation \(f_{xy} = f_{yx} \). The proof demonstrates the proof by contradiction. We will look at this technique a bit more in the proof seminar.

Theorem: Every \(f \in C^2 \) solves the Clairaut equation \(f_{xy} = f_{yx} \).
14.4. Proof. We use Fubini’s theorem which will appear later in the double integral lecture: integrate \(\int_{x_0}^{x_0+h} (\int_{y_0}^{y_0+h} f_{xy}(x, y) \, dy) \, dx \) by applying the fundamental theorem of calculus twice \(\int_{x_0}^{x_0+h} f_x(x, y_0 + h) - f_x(x, y_0) \, dx = f(x_0 + h, y_0 + h) - f(x_0, y_0 + h) - f(x_0 + h, y_0) + f(x_0, y_0) \). An analogous computation gives \(\int_{y_0}^{y_0+h} (\int_{x_0}^{x_0+h} f_{yx}(x, y) \, dx) \, dy = f(x_0 + h, y_0 + h) - f(x_0, y_0 + h) - f(x_0 + h, y_0) + f(x_0, y_0) \). Fubini applied to \(g(x, y) = f_{xy}(x, y) \) assures \(\int_{y_0}^{y_0+h} \left(\int_{x_0}^{x_0+h} f_{yx}(x, y) \, dx \right) \, dy = \int_{x_0}^{x_0+h} \left(\int_{y_0}^{y_0+h} f_{yx}(x, y) \, dy \right) \, dx \) so that \(\int \int_A f_{xy} \, dy \, dx = 0 \). [Assume] there is some \((x_0, y_0) \), where \(F(x_0, y_0) = f_{xy}(x_0, y_0) - f_{yx}(x_0, y_0) = c > 0 \), then also for small \(h \), the function \(F \) is bigger than \(c/2 \) everywhere on \(A = [x_0, x_0 + h] \times [y_0, y_0 + h] \) so \(\int \int_A F(x, y) \, dx \, dy \geq \text{area}(A) c/2 = h^2 c/2 > 0 \) contradicting that the integral is zero.

14.5. The statement is false for functions which are only \(C^1 \). The standard counter example is \(f(x, y) = 4xy(y^2 - x^2)/(x^2 + y^2) \) which has for \(y \neq 0 \) the property that \(f_x(0, y) = 4y \) and for \(x \neq 0 \) has the property that \(f_y(x, 0) = -4x \). You can see the comparison of \(f(x, y) = 2xy = r^2 \sin(2\theta) \) and \(f(x, y) = 4xy(y^2 - x^2)/(x^2 + y^2) = r^2 \sin(4\theta) \). The later function is not in \(C^2 \). The values \(f_{xy} \) and \(f_{yx} \), changes of slopes of tangent lines, turn differently.

Figure 1. Clairaut holds for \(f(x, y) = 2xy \) which is in polar coordinates \(r^2 \sin(2\theta) \). It does not for the function \(f(x, y) = 4xy(y^2 - x^2)/(x^2 + y^2) \) which is in polar coordinates \(2r^2 \sin(2\theta) \cos(2\theta) = r^2 \sin(4\theta) \).

Illustration

14.6. In many cases, one of the variables is time for which we use the letter \(t \) and keep \(x \) as the space variable. The differential equation \(f_t(t, x) = f_x(t, x) \) is called the transport equation. What are the solutions if \(f(0, x) = g(x) \)? Here is a cool derivation: if \(Df = f' \) is the derivative, \(^1\) we can build operators like \((D + D^2 + 4D^4) f = f' + f'' + 4f''' \). The transport equation is now \(f_t = Df. \) Now as you know from calculus, the only solution of \(f' = af, f(0) = b \) is \(be^{at} \). If we boldly replace the number \(a \) with the operator \(D \) we get \(f' = Df \) and get its solution

\[
e^{Dt} g(x) = (1 + Dt + D^2 t^2/2! + \cdots) g(x) = g(x) + g'(x)t + g''(x)t^2/2! + \cdots
\]

By the Taylor formula, this is equal to \(g(x + t) \). You should actually remember Taylor as \(g(x + t) = e^{Dt} g(x) \). We have derived for \(g(x) = f(0, x) \) in \(C^1(\mathbb{R}^2) \):

\(^1\)We usually write \(df \) for derivative but \(D \) tells it is an operator. \(D \) also stands for Dirac.
Theorem: \(f_t = f_x \) is solved by \(f(t, x) = g(x + t) \).

Proof. We can ignore the derivation and verify this very quickly: the function satisfies \(f(0, x) = g(x) \) and \(f_t(0, x) = f_x(t, x) \). QED.

14.7. Another example of a partial differential equation is the wave equation \(f_{tt} = f_{xx} \). We can write this \((\partial_t + D)(\partial_t - D)f = 0\). One way to solve this is by looking at \((\partial_t - D)f = 0\). This means transport \(f_t = f_x \) and \(f(t, x) = f(x + t) \). We can also have \((\partial_t + D)f = 0\) which means \(f_t = -f_x \) leading to \(f(x - t) \). We see that every combination \(af(x + t) + bf(x - t) \) with constants \(a, b \) is a solution. Fixing the constants \(a, b \) so that \(f(x, 0) = g(x) \) and \(f_t(x, 0) = h(x) \) gives the following d’Alembert solution. It requires \(g, h \in C^2(\mathbb{R}) \).

Theorem: \(f_{tt} = f_{xx} \) is solved by \(f(t, x) = \frac{g(x+t)+g(x-t)}{2} + \frac{h(x+t)-h(x-t)}{2} \).

14.8. Proof. Just verify directly that this indeed is a solution and that \(f(0, x) = g(x) \) and \(f_t(0, x) = h(x) \). Intuitively, if we throw a stone into a narrow water way, then the waves move to both sides.

14.9. The partial differential equation \(f_t = f_{xx} \) is called the heat equation. Its solution involves the normal distribution

\[
N(m, s)(x) = e^{-(x-m)^2/(2s^2)}/\sqrt{2\pi s^2}
\]

in probability theory. The number \(m \) is the average and \(s \) is the standard deviation.

14.10. If the initial heat \(g(x) = f(0, x) \) at time \(t = 0 \) is continuous and zero outside a bounded interval \([a, b]\), then

Theorem: \(f_t = f_{xx} \) is solved by \(f(t, x) = \int_a^b g(m)N(m, \sqrt{2t})(x) \, dm \).

Proof. For every fixed \(m \), the function \(N(m, \sqrt{2t})(x) \) solves the heat equation.

\[
\text{Simplify}\, \{ f = \text{PDF}[\text{NormalDistribution}[m, \text{Sqrt}[2 \, t]], x] \}; \quad \text{Simplify}\, \{ \text{D}[f, t] == \text{D}[f, \{x, 2\}] \}
\]

Every Riemann sum approximation \(g(x) = (1/n) \sum_{k=1}^{n} g(m_k) \) of \(g \) defines a function \(f_n(t, x) = (1/n) \sum_{k=1}^{n} g(m_k)N(m_k, \sqrt{2t})(x) \) which solves the heat equation. So does \(f(t, x) = \lim_{n \to \infty} f_n(t, x) \). To check \(f(0, x) = g(x) \) which need \(\int_{-\infty}^{\infty} N(m, s)(x) \, dx = 1 \) and \(\int_{-\infty}^{\infty} h(x)N(m, s)(x) \, dx \to h(m) \) for any continuous \(h \) and \(s \to 0 \), proven later.

14.11. For functions of three variables \(f(x, y, z) \) one can look at the partial differential equation \(\Delta f(x, y, z) = f_{xx} + f_{yy} + f_{zz} = 0 \). It is called the Laplace equation and \(\Delta \) is called the Laplace operator. The operator appears also in one of the most important partial differential equations, the Schrödinger equation

\[
i hf_t = Hf = -\frac{\hbar^2}{2m} \Delta f + V(x)f,
\]

where \(\hbar = h/(2\pi) \) is a scaled Planck constant and \(V(x) \) is the potential depending on the position \(x \) and \(m \) is the mass. For \(i hf_t = Pf \) with \(P = -i\hbar D \), then the solution \(f(x - t) \) is forward translation. The operator \(P \) is the momentum operator in quantum mechanics. The Taylor formula tells that \(P \) generates translation.
Problem 14.1: Verify that for any constant b, the function

$$f(x, t) = e^{-bt} \cos(x + t)$$

satisfies the driven transport equation

$$f_t(x, t) = f_x(x, t) - bf(x, t).$$

This PDE is sometimes called the **advection equation** with damping b.

Problem 14.2: We have seen that $f(t, x) = N(m, \sqrt{2t}) = e^{-(x-m)^2/(4t)}/\sqrt{4\pi t}$ solves the heat equation $f_t = f_{xx}$. Verify more generally that

$$e^{-(x-m)^2/(4at)}/\sqrt{a\pi t}$$

solves the **heat equation**

$$f_t = (a/4)f_{xx}.$$

Problem 14.3: The Eiconal equation $f_x^2 + f_y^2 = 1$ can be rewritten as $||df|| = 1$, where $df = \nabla f = [f_x, f_y]^T$ is the gradient of f. (The gradient is the transpose of the Jacobian matrix for the map $f : \mathbb{R}^2 \to \mathbb{R}$.) It is an important equation in optics. Let $f(x, y)$ be the distance to the circle $x^2 + y^2 = 1$. Show that it satisfies the eiconal equation.

Problem 14.4: The differential equation

$$f_t = f - xf_x - x^2 f_{xx}$$

is a version of the **Black-Scholes equation**. Here $f(x, t)$ is the price of a call option and x is the stock price and t is time. Find a function $f(x, t)$ solving it which depends both on x and t. Hint: look first for solutions $f(x, t) = g(t)$ or $f(x, t) = h(x)$ and then for functions of the form $f(x, t) = g(t)h(x)$.

Problem 14.5: The partial differential equation

$$f_t + f f_x = f_{xx}$$

is called **Burgers equation** and describes waves at the beach. In higher dimensions, it leads to the **Navier-Stokes equation** which is used to describe the weather. Verify that the function

$$f(t, x) = \left(\frac{1}{t} \right)^{3/2} \frac{x e^{-x^2/\pi}}{\sqrt{\frac{1}{t} e^{-x^2/\pi} + 1}}$$

is a solution of the Burgers equation. You better use technology.
Unit 15: Contradiction and Deformation

Seminar

15.1. We have already seen one proof technique, the “method of induction.” Other proofs were done either by direct computations or by combining already known theorems or inequalities. Today, we look at two new and fundamentally different proof techniques. The first is the method “by contradiction.” The second method is the “method of deformation.” Both methods are illustrated by a theorem.

15.2. The first theorem is one of the earliest results in mathematics. It is the Hypassus theorem from 500 BC. It was a result which shocked the Pythagoreans so much that Hypassus got killed for its discovery. That is at least what the rumors tell.

Theorem: The diagonal of a unit square has irrational length.

Proof. Assume the statement is false and the diagonal has rational length p/q. Then by Pythagoras theorem $2 = p^2/q^2$ or $2q^2 = p^2$. By the fundamental theorem of arithmetic, the left hand side has an odd number of factors 2, the right hand side an even number. This is a contradiction. The assumption must have been wrong.

15.3. **Problem A:** Prove that the cube root of 2 is irrational.

Figure 1. $\sqrt{2}$ is irrational. Start by assuming the side length and diagonal of the large yellow square are integers. Conclude that for the strictly smaller orange square, the side length and diagonal are integers.
15.4. Note that the proof relied on the fundamental theorem of arithmetic which assured that every integer has a unique prime factorization.

Problem B: Figure (1) is a geometric proof by contradiction which does not need the fundamental theorem of arithmetic. Complete the proof.

1

15.5. Proofs by contradiction can be dangerous. A flawed proof can "assume the contrary, mess around with arguments, make a mistake somewhere and get a contradiction. QED". Better than a proof by contradiction is a constructive proof.

15.6. Here is a non-constructive proof which is amazing:

Theorem: There exist two irrational x, y such that x^y is rational.

Proof: there are two possibilities. Either $z = \sqrt{2}^\sqrt{2}$ is irrational or not. In the first case, we have found an example where $x = y = \sqrt{2}$. In the second case, take $x = z$ and take $y = \sqrt{2}$. Now $x^y = \sqrt{2}^2 = 2$ is rational and we have an example.

15.7. The second proof technique we see today is a deformation argument. To illustrate it, take a closed C^2 curve in \mathbb{R}^2 without self intersections. We have defined its curvature $\kappa(t)$ already. For curves in \mathbb{R}^2, define the signed curvature $K(t)$. If the curve parametrized so that $|r'(t)| = 1$ and $T(t) = [\cos(\alpha(t)), \sin(\alpha(t))]$, then $K(t) = \alpha'(t)$. Note that $\kappa(t) = |T'(t)| = |[-\sin(\alpha(t)), \cos(\alpha(t))]\alpha'(t)| = |K(t)|$. Now if we have a curve $r : [a, b] \to \mathbb{R}^2$, we can define the total curvature as $\int_a^b K(t) \, dt$. By the fundamental theorem of calculus, this total curvature is the change of the angle $\alpha(b) - \alpha(a)$. Now, if the curve is closed, the initial and final angles have to differ by a multiple of 2π. The Hopf Umlaufsatz tells that

Theorem: The total curvature of a simple closed curve is 2π or -2π.

![Figure 2. Four simple closed curves for which it is not obvious that the total curvature is 2\pi.](https://via.placeholder.com/150)

15.8.

Problem C: a) Why is the total curvature not always 2π?
b) Formulate out what happens in in Figure (3).

1for more explanation, see https://www.youtube.com/watch?v=Ilh16B1oR9eM
Figure 3. Hopf’s deformation proof: each picture shows the line through $r(s), r(t)$ and to the right the parameter (s,t). In the left column, where $s = t$, we deal with the tangent turning. We have to show it turns by 2π. The next columns deform the situation where the path through the parameter square is changed. In the very right column, we twice turn the segment by π, in total 2π.
Exercises A-C are done in the seminar. This homework is due on Tuesday

Problem 15.1 Prove by contradiction that $\sqrt{12}$ is irrational.

Problem 15.2 Prove by contradiction that $\log_{10}(2)$ is irrational. \log_{10} is the logarithm with respect to the base 10.

Problem 15.3 Verify the Hopf Umlaufsatz for a circle of radius 5, where

\[r(t) = \begin{bmatrix} 5 \cos(t) \\ 5 \sin(t) \end{bmatrix} . \]

Problem 15.4 The Umlaufsatz generalizes to polygons. We can not assign a tangent to the vertices of the polygon but we can look at the deformation proof in the case when the parameters r, s are not equal. Look at the Hopf Umlaufsatz say in the case of a triangle with angles α, β, γ. What does the deformation argument tell then?

![Figure 4. Can you adapt the Hopf Umlaufsatz for triangles?](image)

Problem 15.5 There is a variant of proof by contradiction which is **proof by infinite descent**. It was used in proving a special case of **Fermat’s Last theorem**. This special result tells that the equation $r^2 + s^4 = t^4$ has no solution with positive r, s, t. Look up and write down the proof of this theorem.

![Figure 5. Perre de Fermat](image)

Oliver Knill, knill@math.harvard.edu, Math 22a, Harvard College, Fall 2018
Unit 16: Chain rule

Lecture

16.1. Given a differentiable function $r : \mathbb{R}^m \to \mathbb{R}^p$, its derivative at x is the Jacobian matrix $dr(x) \in M(p, m)$. If $f : \mathbb{R}^p \to \mathbb{R}^n$ is another function with $df(y) \in M(n, p)$, we can combine them and form $f \circ r(x) = f(r(x)) : \mathbb{R}^m \to \mathbb{R}^n$. The matrices $df(y) \in M(n, p)$ and $dr(x) \in M(p, m)$ combine to the matrix product $df \, dr$ at a point. This matrix is in $M(n, m)$. The multi-variable chain rule is:

Theorem: $d(f \circ r)(x) = df(r(x)) \, dr(x)$

16.2. For $m = n = p = 1$, the single variable calculus case, we have $df(x) = f'(x)$ and $(f \circ r)'(x) = f'(r(x))r'(x)$. In general, df is now a matrix rather than a number. By checking a single matrix entry, we reduce to the case $n = m = 1$. In that case, $f : \mathbb{R}^p \to \mathbb{R}$ is a scalar function. While df is a row vector, we define the column vector $\nabla f = df^T = [f_{x_1}, f_{x_2}, \ldots, f_{x_p}]^T$. If $r : \mathbb{R} \to \mathbb{R}^p$ is a curve, we write $r'(t) = [x'_1(t), \ldots, x'_p(t)]^T$ instead of $dr(t)$. The symbol ∇ is addressed also as “nabla”. The special case $n = m = 1$ is:

Theorem: $\frac{d}{dt}f(r(t)) = \nabla f(r(t)) \cdot r'(t)$.

16.3. Proof. $\frac{d}{dt}f(x_1(t), x_2(t), \ldots, x_p(t))$ is the limit $h \to 0$ of

$$
\frac{[f(x_1(t + h), x_2(t + h), \ldots, x_p(t + h)) - f(x_1(t), x_2(t), \ldots, x_p(t))]/h =
= \frac{[f(x_1(t + h), x_2(t + h), \ldots, x_p(t + h)) - f(x_1(t), x_2(t + h), \ldots, x_p(t + h)]}{h}
+ \frac{[f(x_1(t), x_2(t + h), \ldots, x_p(t + h)) - f(x_1(t), x_2(t), \ldots, x_p(t + h)]}{h}
+ \frac{[f(x_1(t), x_2(t), \ldots, x_p(t + h)) - f(x_1(t), x_2(t), \ldots, x_p(t))]}{h}
\ldots
$$

which is (1D chain rule) in the limit $h \to 0$ the sum $f_{x_1}(x)x'_1(t) + \cdots + f_{x_p}(x)x'_p(t)$.

16.4. Proof of the general case: Let $h = f \circ r$. The entry ij of the Jacobian matrix $dh(x)$ is $dh_{ij}(x) = \partial_{x_j}h_i(x) = \partial_{x_j}f_i(r(x))$. The case of the entry ij reduces with $t = x_j$ and $h_i = f$ to the case when $r(t)$ is a curve and $f(x)$ is a scalar function. This is the case we have proven already.

\[\text{Etymology tells that the symbol is inspired by a Egyptian or Phoenician harp.}\]
16.5. Assume a ladybug walks on a circle \(r(t) = \begin{bmatrix} \cos(t) \\ \sin(t) \end{bmatrix} \) and \(f(x, y) = x^2 - y^2 \) is the temperature at the position \((x, y)\), then \(f(r(t)) \) is the rate of change of the temperature. We can write \(f(r(t)) = \cos^2(t) - \sin^2(t) = \cos(2t) \). Now, \(\frac{d}{dt}f(r(t)) = -2\sin(2t) \). The gradient of \(f \) and the velocity are \(\nabla f(x, y) = \begin{bmatrix} 2x \\ -2y \end{bmatrix} \), \(r'(t) = \begin{bmatrix} -\sin(t) \\ \cos(t) \end{bmatrix} \). Now
\[
\nabla f(r(t)) \cdot r'(t) = \begin{bmatrix} 2\cos(t) \\ -2\sin(t) \end{bmatrix} \cdot \begin{bmatrix} -\sin(t) \\ \cos(t) \end{bmatrix} = -4\cos(t)\sin(t) = -2\sin(2t).
\]

If \(f(x, y) \) is a height, the rate of change \(\frac{d}{dt}f(r(t)) \) is the gain of height the bug climbs in unit time. It depends on how fast the bug walks and in which direction relative to the gradient \(\nabla f \) it walks.

Illustrations

16.6. The case \(n = m = 1 \) is extremely important. The chain rule \(\frac{d}{dt}f(r(t)) = \nabla f(r(t)) \cdot r'(t) \) tells that the rate of change of the potential energy \(f(r(t)) \) at the position \(r(t) \) is the dot product of the force \(F = \nabla f(r(t)) \) at the point and the velocity with which we move. The right hand side is power = force times velocity. We will use this later in the fundamental theorem of line integrals.

16.7. If \(f, g : \mathbb{R}^m \rightarrow \mathbb{R}^m \), then \(f \circ g \) is again a map from \(\mathbb{R}^m \) to \(\mathbb{R}^n \). We can also iterate a map like \(x \rightarrow f(x) \rightarrow f(f(x)) \rightarrow f(f(f(x))) \ldots \). The derivative \(df^n(x) \) is by the chain rule the product \(df(f^{n-1}(x)) \cdots df(f(x))df(x) \) of Jacobian matrices. The number \(\lambda(x) = \limsup_{n \to \infty} (1/n) \log(\|df^n(x)\|) \) is called the Lyapunov exponent of the map \(f \) at the point \(x \). It measures the amount of chaos, the “sensitive dependence on initial conditions” of \(f \). These numbers are hard to estimate mathematically. Already for simple examples like the Chirikov map \(f([x, y]) = [2x - y + c\sin(x), x] \), one can measure positive entropy \(S(c) \). A conjecture of Sinai tells that that the entropy of the map is positive for large \(c \). Measurements show that this entropy \(S(c) = \int_0^{2\pi} \int_0^{2\pi} \lambda(x, y) \, dxdy/(4\pi^2) \) satisfies \(S(x) \geq \log(c/2) \). The conjecture is still open.\(^2\)

16.8. If \(H(x, y) \) is a function called the Hamiltonian and \(x'(t) = \dot{H}_x(x, y), y'(t) = -\dot{H}_y(x, y) \), then \(\frac{d}{dt}H(x(t), y(t)) = 0 \). This can be interpreted as energy conservation. We see that a Hamiltonian differential equation always preserves the energy. For the pendulum, \(H(x, y) = y'^2/2 - \cos(x) \), we have \(x' = y, y' = -\sin(x) \) or \(x'' = -\sin(x) \).

\(^2\)To generate orbits, see http://www.math.harvard.edu/~knill/technology/chirikov/.
Figure 2. The map $f([x, y]) = [x^2 - x/2 - y, x]$ is a Henon map. We see some orbits. The map $f([x, y]) = [2x - y + 4 \sin(x), x]$ on the right appeared in the first hourly. The torus $T^2 = \mathbb{R}^2/(2\pi \mathbb{Z})^2$ is filled with a blue “stochastic sea” containing red “stable islands”.

16.9. The chain rule is useful to get derivatives of inverse functions. Like

$$1 = \frac{d}{dx} x = \frac{d}{dx} \sin(\arcsin(x)) = \cos(\arcsin(x)) \arcsin'(x)$$

which then gives $\arcsin'(x) = 1/\sqrt{1 - \sin^2(\arcsin(x))} = 1/\sqrt{1 - x^2}$.

16.10. Assume $f(x, y) = x^3 y + x^5 y^4 - 2 - \sin(x - y) = 0$ is a curve. We can not solve for y. Still, we can assume $f(x, y(x)) = 0$. Differentiation using the chain rule gives

$$f_x(x, y(x)) + f_y(x, y(x)) y'(x) = 0.$$

Therefore $y'(x) = -\frac{f_x(x, y(x))}{f_y(x, y(x))}$.

In the above example, the point $(x, y) = (1, 1)$ is on the curve. Now $g_x(x, y) = 3 + 5 - 1 = 7$ and $g_y(x, y) = 1 + 4 + 1 = 6$. So, $g'(1) = -7/6$. This is called implicit differentiation. We could compute with it the derivative of a function which was not known.

16.11. The implicit function theorem assures that a differentiable implicit function $g(x)$ exists near a root (a, b) of a differentiable function $f(x, y)$.

Theorem: If $f(a, b) = 0$, $f_y(a, b) \neq 0$ there exists $c > 0$ and a function $g \in C^1([b - c, b + c])$ with $f(x, g(x)) = 0$.

Proof. Let c be so small that for fixed $x \in [a - c, a + c]$, the function $y \in [b - c, b + c] \to h(y) = f(x, y)$ has the property $h(b-c) < 0$ and $h(b+c) > 0$ and $h'(y) \neq 0$ in $[b-c, b+c]$. The **intermediate value theorem** for h now assures a unique root $z = g(x)$ of h near b. The chain rule formula above then assures that for $a - c < x < a + c$, the differential quotient $[g(x+h) - g(x)]/h$ written down for g has a limit $-f_x(x, g(x))/f_y(x, g(x))$.

P.S. We can get the root of h by applying **Newton steps** $T(y) = y - h(y)/h'(y)$. Taylor (seen in the next class) shows the error is squared in every step. The Newton step $T(y) = y - dh(y)^{-1}h(y)$ works also in arbitrary dimensions. One can prove the implicit function theorem by just establishing that $Id - T = dh^{-1}h$ is a contraction and then use the **Banach fixed point theorem** to get a fixed point of $Id - T$ which is a root of h.
Figure 3. The Newton step.

Homework

Problem 16.1: Let \(r(t) = [3t + \cos(t), t + 4\sin(t)]^T \) be a curve and \(f([x, y]^T) = [x^3 + y, x + 2y + y^3]^T \) be a coordinate change. a) Compute \(v = r'(0) \) at \(t = 0 \), then \(df(x, y) \) and \(A = df(r(0)) \) and \(df(r(0))r'(0) = Av \). b) Compute \(R(t) = f(r(t)) \) first, then find \(w = R'(0) \). It should agree with a).

Problem 16.2: a) Define the function \(f(x, y) = x \cdot y \) from \(\mathbb{R}^2 \) to \(\mathbb{R} \). If both \(x \) and \(y \) are functions of \(t \) we get the curve \(r(t) = [x(t), y(t)]^T \). What does the chain rule tell for \(t \to f(r(t)) \) from \(\mathbb{R} \) to \(\mathbb{R} \)? b) Do the same for the function \(f(x, y) = x/y \). What rule do you get now?

Problem 16.3: The surface \(f(x, y, z) = x^2 + y^2/4 + z^2/9 = 4 + 1/4 + 1/9 \) is an ellipsoid. Compute \(z_x(x, y) \) at the point \((x, y, z) = (2, 1, 1)\).

Problem 16.4: Consider the Hénon map \(f([x, y]^T) = [x^2 - x^4 - y, x]^T \). Compute either \(d(f \circ f)(([1, 1]^T)) \) or \(df(f([1, 1]^T))df([1, 1]^T) \). The chain rule tells it is the same matrix.

Problem 16.5: Apply the Newton step 3 times starting with \(x = 2 \) to solve the equation \(x^2 - 2 = 0 \).

Figure 4. Some orbits of the Henon map \(f([x, y]) = [x^2 - x^4 - y, x] \).
Unit 17: Taylor approximation

Lecture

17.1. Given a function \(f : \mathbb{R}^m \to \mathbb{R}^n \), its derivative \(df(x) \) is the Jacobian matrix. For every \(x \in \mathbb{R}^m \), we can use the matrix \(df(x) \) and a vector \(v \in \mathbb{R}^m \) to get \(D_v f(x) = df(x) v \in \mathbb{R}^n \). For fixed \(v \), this defines a map \(x \in \mathbb{R}^m \to df(x) v \in \mathbb{R}^n \), like the original \(f \). Because \(D_v \) is a map on \(X = \{ \text{all functions from } \mathbb{R}^m \to \mathbb{R}^n \} \), one calls it an operator. The Taylor formula \(f(x + t) = e^{Dt} f(x) \) holds in arbitrary dimensions:

Theorem: \(f(x + t v) = e^{D_v t} f = f(x) + D_v f(x) \frac{t}{1!} + \frac{D_v^2 f(x) t^2}{2!} + \cdots \)

17.2. Proof. It is the single variable Taylor on the line \(x + tv \). The directional derivative \(D_v f \) is there the usual derivative as \(\lim_{t \to 0} [f(x + tv) - f(x)]/t = D_v f(x) \). Technically, we need the sum to converge as well: like functions built from polynomials, \(\sin, \cos, \exp \).

17.3. The Taylor formula can be written down using successive derivatives \(df, d^2 f, d^3 f \) also, which are then called tensors. In the scalar case \(n = 1 \), the first derivative \(df(x) \) leads to the gradient \(\nabla f(x) \), the second derivative \(d^2 f(x) \) to the Hessian matrix \(H(x) \) which is a bilinear form acting on pairs of vectors. The third derivative \(d^3 f(x) \) then acts on triples of vectors etc. One can still write as in one dimension

Theorem: \(f(x) = f(x_0) + f'(x_0) (x - x_0) + f''(x_0) \frac{(x - x_0)^2}{2!} + \cdots \)

if we write \(f^{(k)} = d^k f \). For a polynomial, this just means that we first write down the constant, then all linear terms then all quadratic terms, then all cubic terms etc.

17.4. Assume \(f : \mathbb{R}^m \to \mathbb{R} \) and stop the Taylor series after the first step. We get

\[L(x_0 + v) = f(x_0) + \nabla f(x_0) \cdot v . \]

It is custom to write this with \(x = x_0 + v, v = x - x_0 \) as

\[L(x) = f(x_0) + \nabla f(x_0) \cdot (x - x_0) \]

This function is called the linearization of \(f \). The kernel of \(L - f(x_0) \) is a linear manifold approximating the surface \(\{ x \mid f(x) - f(x_0) = 0 \} \). If \(f : \mathbb{R}^m \to \mathbb{R}^n \), then the just said can be applied to every component \(f_i \) of \(f \), with \(1 \leq i \leq n \). One can not stress enough the importance of this linearization. \(^1\)

\(^1\)Again: the linearization idea is utmost important because it brings in linear algebra.
17.5. If we stop the Taylor series after two steps, we get the function \(Q(x + v) = f(x) + df(x) \cdot v + v \cdot d^2 f(x) \cdot v/2 \). The matrix \(H(x) = d^2 f(x) \) is called the Hessian matrix at the point \(x \). It is also here custom to eliminate \(v \) by writing \(x = x_0 + v \).

\[
Q(x) = f(x_0) + \nabla f(x_0) \cdot (x - x_0) + (x - x_0) \cdot H(x_0)(x - x_0)/2
\]

is called the quadratic approximation of \(f \). The kernel of \(Q - f(x_0) \) is the quadratic manifold \(Q(x) - f(x_0) = x \cdot Bx + Ax = 0 \), where \(A = df \) and \(B = d^2 f/2 \). It approximates the surface \(\{ x \mid f(x) - f(x_0) = 0 \} \) even better than the linear one. If \(|x - x_0| \) is of the order \(\epsilon \), then \(|f(x) - L(x)| \) is of the order \(\epsilon^2 \) and \(|f(x) - Q(x)| \) is of the order \(\epsilon^3 \). This follows from the exact Taylor with remainder formula. ²

![Figure 1. The manifolds \(f(x, y) = C, L(x, y) = C \) and \(Q(x, y) = C \) for \(C = f(x_0, y_0) \) pass through the point \((x_0, y_0) \). To the right, we see the situation for \(f(x, y, z) = C \). We see the best linear approximation and quadratic approximation. The gradient is perpendicular.](image)

17.6. To get the tangent plane to a surface \(f(x) = C \) one can just look at the linear manifold \(L(x) = C \). However, there is a better method:

The tangent plane to a surface \(f(x, y, z) = C \) at \((x_0, y_0, z_0)\) is \(ax + by + cz = d \), where \([a, b, c]^T = \nabla f(x_0, y_0, z_0) \) and \(d = ax_0 + by_0 + cz_0 \).

17.7. This follows from the fundamental theorem of gradients:

Theorem: The gradient \(\nabla f(x_0) \) of \(f : \mathbb{R}^m \to \mathbb{R} \) is perpendicular to the surface \(S = \{ f(x) = f(x_0) = C \} \) at \(x_0 \).

Proof. Let \(r(t) \) be a curve on \(S \) with \(r(0) = x_0 \). The chain rule assures \(d/dt f(r(t)) = \nabla f(r(t)) \cdot r'(t) \). But because \(f(r(t)) = c \) is constant, this is zero assuring \(r'(t) \) being perpendicular to the gradient. As this works for any curve, we are done.

Examples

17.8. Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be given as \(f(x, y) = x^3 y^2 + x + y^3 \). What is the quadratic approximation at \((x_0, y_0) = (1, 1)\)? We have \(df(1, 1) = [4, 5] \) and

\[
\nabla f(1, 1) = \begin{bmatrix} f_x \\ f_y \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}, \quad H(1, 1) = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix} = \begin{bmatrix} 6 & 6 \\ 6 & 8 \end{bmatrix}.
\]

²If \(f \in C^{n+1}, f(x + t) = \sum_{k=0}^n f^{(k)}(x) t^k / k! + \int_0^1 (t-s)^n f^{(n+1)}(x+s) ds / n! \) (prove this by induction!)
The linearization is \(L(x, y) = 4(x - 1) + 5(y - 1) + 3 \). The quadratic approximation is \(Q(x, y) = 3 + 4(x - 1) + 5(y - 1) + 6(x - 1)^2/2 + 12(x - 1)(y - 1)/2 + 8(y - 1)^2/2 \). This is the situation displayed to the left in Figure (1). For \(v = [7, 2]^T \), the directional derivative \(D_v f(1, 1) = \nabla f(1, 1) \cdot v = [4, 5]^T \cdot [7, 2] = 38 \). The Taylor expansion given at the beginning is a finite series because \(f \) was a polynomial: \(f([1, 1] + t[7, 2]) = f(1 + 7t, 1 + 2t) = 3 + 38t + 247t^2 + 1023t^3 + 1960t^4 + 1372t^5 \).

17.9. For \(f(x, y, z) = -x^4 + x^2 + y^2 + z^2 \), the gradient and Hessian are

\[
\nabla f(1, 1, 1) = \begin{bmatrix} f_x \\ f_y \\ f_z \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}, \quad H(1, 1, 1) = \begin{bmatrix} f_{xx} & f_{xy} & f_{xz} \\ f_{yx} & f_{yy} & f_{yz} \\ f_{zx} & f_{zy} & f_{zz} \end{bmatrix} = \begin{bmatrix} -10 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}.
\]

The linearization is \(L(x, y, z) = 2 - 2(x - 1) + 2(y - 1) + 2(z - 1) \). The quadratic approximation

\[Q(x, y, z) = 2 - 2(x - 1) + 2(y - 1) + 2(z - 1) + (-10(x - 1)^2 + 2(y - 1)^2 + 2(z - 1)^2)/2 \]

is the situation displayed to the right in Figure (1).

17.10. What is the tangent plane to the surface \(f(x, y, z) = 1/10 \) for \(f(x, y, z) = 10z^2 - x^2 - y^2 + 100x^4 - 200x^6 + 100x^8 - 200x^2y^2 + 200x^4y^2 + 100y^4 = 1/10 \) at the point \((x, y, z) = (0, 0, 1/10)\)? The gradient is \(\nabla f(0, 0, 1/10) = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \). The tangent plane equation is \(2z = d \), where the constant \(d \) is obtained by plugging in the point. We end up with \(2z = 2/10 \). The linearization is \(L(x, y, z) = 1/20 + 2(z - 1/10) \).

17.11. P.S. The following remark should maybe be skipped as many objects have not been properly introduced. The exterior derivative \(d \) for example will appear in the form of grad, curl, div later on and \(d^2 = 0 \) in the form curl(grad(f)) = 0.

The quite deep remark illustrates how important the topic of Taylor series is if it is taken seriously.

The derivative \(d \) acts on anti-symmetric tensors (= forms), where \(d^2 = 0 \). A vector field \(X \) then defines a Lie derivative \(L_X = d_X + i_X d = (d + i_X)^2 d \) with interior product \(i_X \). For scalar functions and the constant field \(X(x) = v \), one gets the directional derivative \(D_v = i_X d \). The projection \(i_X \) in a specific direction can be replaced with the transpose \(d^* \) of \(d \). Rather than transport along \(X \), the signal now radiates everywhere. The operator \(d + i_X \) becomes then the Dirac operator \(D = d + d^* \) and its square is the Laplacian \(L = (d + d^*)^2 = dd^* + d^*d \). The wave equation \(f_{tt} = -Lf \) can be written as \((d^2 + D^2)f = (\partial_t - iD)(\partial_t + iD)f = 0 \) which has the solution \(ae^{itD} + be^{-itD} \). Using the Euler formula \(e^{itD} = \cos(Dt) + i \sin(Dt) \) one gets the explicit solutions \(f(t) = f(0) \cos(Dt) + iD^{-1}f_i(0) \sin(Dt) \) of the wave equation. It gets more exciting: by packing the initial position and velocity into a complex wave \(\psi(0, x) = f(0, x) + iD^{-1}f_i(0, x) \), we have \(\psi(t, x) = e^{itD} \psi(0, x) \). The wave equation is solved by a Taylor formula, which solves a Schrödinger equation for \(D \) and the classical Taylor formula is the Schrödinger equation for \(D_X \). This works in any framework featuring a derivative \(d \), like finite graphs, where Taylor resembles a Feynman path integral, a sort of Taylor expansion used by physicists to compute complicated particle processes.

The Taylor formula shows that the directional derivative \(D_v \) generates translation by \(-v\). In physics, the operator \(P = -ihD_v \) is called the momentum operator associated to the vector \(v \). The Schrödinger equation \(ihf_t = Pf \) has then the solution \(f(x - vt) \) which means that the solution at time \(t \) is the initial condition translated by \(tv \). This generalizes to the Lie derivative \(L_X \) given by Cartan’s magic formula as \(L_X = D_X \) acting on forms defined by a vector field \(X \). For the analog \(L = D^2 \), the motion is not channeled in a determined direction \(X \) (this is a photon) but spreads (this is a wave) in all direction leading to the wave equation. We have just seen both the “photon picture” \(L_X \) as well as the “wave picture” \(L \) of light. And whether it is particle or wave, it is all just Taylor.
Problem 17.1: Evaluate without technology the cube root of 1002 using quadratic approximation. Especially look how close you are to the real value.

Problem 17.2: Compute without a computer the square root of 102 using quadratic approximation. Also here, look how close you get to the actual value.

Problem 17.3: Given \(g(x, y) = (6y^2 - 5)^2(x^2 + y^2 - 1)^2 \), define the surface \(S \) by \(f(x, y, z) = g(x, y) + g(y, z) + g(z, x) = 3 \). The following equation could be derived with the chain rule. You can take this for granted:

\[
\nabla f(1, -1, 1) = \begin{bmatrix}
g_x(1, -1) + g_y(1, 1) \\
g_x(-1, 1) + g_y(1, -1) \\
g_x(1, 1) + g_y(-1, 1)
\end{bmatrix}.
\]

Using this, find the tangent plane to \(S \) at \((1, -1, 1)\).

Problem 17.4: a) Find the tangent plane to the surface \(f(x, y, z) = \sqrt{xyz} = 60 \) at \((x, y, z) = (100, 36, 1)\). b) Estimate \(\sqrt{100 \cdot 36.1 \cdot 0.999} \) using linear approximation (compute \(L(x, y, z) \) rather than \(f(x, y, z) \)).

Problem 17.5: a) At which of the points \(P, Q, R, S, T, \ldots, Y \) does \(\nabla f(x) \) have maximal length? b) At which of the points is \(f_x > 0 \) and \(f_y = 0 \)?

Figure 2.
Unit 18: Number Magic

Seminar

18.1. In this seminar, we see how calculus can help to compute things effectively and also hope to get insight into topics which are of more number theoretical nature. To find the cube root of 10 for example, we have

\[
10^{1/3} \approx 8^{1/3} + \frac{2}{3} \cdot 8^{2/3} = 2 + \frac{2}{12} = 2.1666\ldots
\]

The actual value is 2.15443.

18.2.
Problem A: Find the cube root of 999999 using linear approximation.

![Figure 1](image.png)

Figure 1. The error of the linear approximation when computing square roots and cube roots is in the 5 percent range.

18.3. In the exam problem 1, you have proven \(1 + 2 + 2^2 + \cdots + 2^n = 2^{n+1} - 1\). This is a special case of the **geometric series formula**

\[
1 + a + a^2 + \cdots + a^n = \frac{1 - a^{n+1}}{1 - a}.
\]

Of course, we could also prove this formula by induction. Better do it directly:

Problem B: Verify the geometric series formula by multiplying with \(1-a\).
18.4. These were all finite sums but seeing the pattern allows us to take a limit and compute the infinite series:

Problem C: For which a is $1 + a + a^2 + a^3 + ... = \frac{1}{1-a}$ valid?

18.5. Recall the definition of Taylor series and answer the following trick question:

Problem D: What is the Taylor series of $f(x) = \frac{1}{1-x}$ at $x_0 = 0$?

18.6. How can you get from the last exercise the following identity?

Problem E: $-\log(1 - x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \ldots$.

18.7. We can also differentiate to verify the formula $\sum_{n=1}^{\infty} nx^{n-1} = 1/(1-x)^2$ and so

$$\sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x)^2}.$$

This function is called $\text{Li}_1(x)$.

Problem F: What is the numerical value of

$$\frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \frac{5}{32} + \ldots$$

18.8. How come that great number theorists like Leonard Euler or Godfrey Hardy were also masters in calculus? The reason is that many results of number theoretic nature have intimate relations with calculus. Lets look at the following problem:

Problem G: What is the value of the Leibniz series

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \ldots$$
18.9. Hint: compute first the Taylor series of \(f(x) = \arctan(x) \) using the Taylor series of \(1/(1 + x^2) \) (the later is a geometric series), then evaluate \(f \) at \(x = 1 \).

18.10.
\[
\text{Li}_s(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^s} = x + \frac{x^2}{2^s} + \frac{x^3}{3^s} + \cdots
\]
is called the poly logarithm function. For \(s = 0 \) it is Problem D, for \(s = 1 \) it is problem E, for \(s = -1, x = 1/2 \) it is problem F. While in calculus, we might be more interested in the function as a function of \(x \), number theorists are more interested in the function as a function of \(s \) and \(s \) is complex. In the case \(x = 1 \), one gets the Riemann zeta function \(\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s} \).

Problem H: What does the Riemann hypothesis say?

18.11. The Euler golden key relates \(\zeta \) with primes:

Theorem: \(\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} (1 - \frac{1}{p^s})^{-1} \).

18.12. **Problem I:** Verify the Euler golden key identity.

18.13. First verify (maybe look at Problem C) that for a single prime \(p \)
\[
\frac{1}{1 - \frac{1}{p^s}} = 1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \frac{1}{p^{3s}} + \cdots
\]
which is the sum over all \(\frac{1}{n^s} \), where \(n \) has only prime factors \(p \). Then look at the product of these for two primes \(p, q \) and see that this is the sum over all \(\frac{1}{n^s} \) where \(n \) has only prime factors \(p \) and \(q \).

18.14. The Goldbach conjecture tells that every even number larger than 2 is the sum of two primes. What is the relation with calculus? Define \(g(x) = (f(x))^2 \) with \(f(x) = \sum_{p} \frac{x^p}{p!} = \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots \)

Problem J: Goldbach is equivalent to \(g^{(n)}(x) > 0 \) for all even \(n > 2 \).
Problem 18.1 The function f defined by $f(x) = e^{-1/x}$ for $x > 0$ and 0 for $x \leq 0$ is smooth and that all derivatives at 0 are zero. Check $f'(0), f''(0), f'''(0) = 0$.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{smooth_bump_function}
\caption{The function $f(x) = e^{-1/x}$ allows to define a smooth bump function $b(x)$ which is zero outside a ball of radius r.}
\end{figure}

Problem 18.2 Why is $b(x) = f(r^2 - |x|^2)$ a bump function?

Problem 18.3 The series
\[\zeta(2) = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \cdots \]
a long history. Research it a bit. Especially: What is the value? Who found this problem first? What is the name of the problem?

Problem 18.4 By looking it up, give an explanation why
\[\zeta(-1) = 1 + 2 + 3 + 4 + \cdots \]
can be assigned a finite value. You can also look up its value $-1/12$ with Mathematica $\text{Zeta}[-1]$. How is such a finite value possible?

Problem 18.5 You can practice computing square roots of numbers between 1 and 100 by linear approximation in your head. For example, if somebody asks you to compute $\sqrt{20}$ you would immediately tell $4 + 4/(2 \cdot 4) = 4.5$. The actual result is 4.472... You you could also get $5 - 5/(2 \cdot 5) = 4.5$. Find another non-square integer in 1 to 100 for which these two estimates agree. (There are a couple of them).
Unit 19: Extrema

Lecture

19.1. All functions are assumed here to be in C^2. It all starts with an observation going back to Pierre de Fermat:

Theorem: If x_0 is a maximum of $f : \mathbb{R}^m \to \mathbb{R}$, then $\nabla f(x_0) = 0$.

Proof. We prove by contradiction. Assume $\nabla f(x_0) \neq 0$, define the vector $v = \nabla f(x_0)$ and look at $g(t) = f(x_0 + tv)$, which is a function of one variable. By the chain rule, it satisfies $g'(0) = \nabla f(x_0 + 0v) \cdot v = |\nabla f|^2 > 0$. This means that $f(x_0 + tv) > 0$ for small $t > 0$. The point x_0 can not have been maximal. This is a contradiction. QED.

19.2. A point x with $\nabla f(x) = 0$ is called a critical point of f. By the Taylor formula, we have at a critical point x_0 the quadratic approximation $Q(x) = f(x_0) + (x - x_0)^T H(x_0)(x - x_0)/2$, where $H(x_0)$ is the Hessian matrix

$$H(x_0) = \begin{bmatrix}
 f_{x_1x_1} & f_{x_1x_2} & \cdots & f_{x_1x_m} \\
 f_{x_2x_1} & f_{x_2x_2} & \cdots & f_{x_2x_m} \\
 \vdots & \vdots & \ddots & \vdots \\
 f_{x_mx_1} & f_{x_mx_2} & \cdots & f_{x_mx_m}
\end{bmatrix}.$$

19.3. As in one dimension, having a critical point does not assure that a point is a local maximum or minimum. The second derivative test in single variable calculus assures that if $f'(x_0) = 0, f''(x_0) > 0$, we have a local minimum and if $f'(x_0) = 0, f''(x_0) < 0$, we have a local maximum. If $f''(x_0) = 0$, we can not say anything without looking at higher derivatives.

19.4. A matrix A is called positive definite if $v \cdot Av > 0$ for all vectors $v \neq 0$. It is called negative definite if $v \cdot Av < 0$ for all vectors $v \neq 0$. A diagonal matrix with positive diagonal entries is positive definite. In the following statements, we assume x_0 is a critical point.

19.5. We say x_0 is a local maximum of f if there exists $r > 0$ such that $f(x) \leq f(x_0)$ for all $|x - x_0| < r$. We say, it is a local minimum of f if $f(x) \geq f(x_0)$ for all $|x - x_0| < r$. How can we check whether a point is a local maximum or minimum?

Theorem: Assume $\nabla f(x_0) = 0$. If $H(x_0)$ is positive definite, then x_0 is a local minimum. If $H(x_0)$ is negative definite, then x_0 is a local maximum.
19.6. Proof: as $\nabla f(x_0) = 0$, the quadratic approximation at x_0 is $Q(x) = f(x_0) + H(x_0)v \cdot v/2 > f(x_0)$ for small non-zero $v = x - x_0$ and Hessian H. The analogue statement for the minimum can be deduced by replacing f with $-f$.

19.7. Let us look at the case, where $f(x,y)$ is a function of two variables such that $f_x(x_0,y_0) = 0$ and $g_z(x_0,y_0) = 0$. The Hessian matrix is

$$H(x_0,y_0) = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix}.$$

In this two dimensional case, we can classify the critical points if the determinant $D = \det(H) = f_{xx}f_{yy} - f_{xy}^2$ of H is non-zero. The number D is also called the discriminant at a critical point.

Figure 1. $f = x^2 + y^2$ gives a minimum, $f = -x^2 - y^2$ a maximum and $f = x^2 - y^2$ a saddle. The case $f = x^2y - yx^2$ is not Morse.

19.8. We say (x_0, y_0) is a Morse point, if (x_0, y_0) is a critical point and the determinant is non-zero. A C^2 function is a Morse function if every critical point is Morse. Examples of Morse functions are $f(x,y) = x^2 + y^2$, $f(x,y) = -x^2 - y^2$ and $f(x,y) = x^2 - y^2$. The last case is called a hyperbolic saddle. In general, a critical point is a hyperbolic saddle if $D \neq 0$ and if it is neither a maximum nor a minimum. Here is the second derivative test in dimension 2:

Theorem: Assume $f \in C^2$ has a critical point (x_0, y_0) with $D \neq 0$.

- If $D > 0$ and $f_{xx} > 0$ then (x_0, y_0) is a local minimum.
- If $D > 0$ and $f_{xx} < 0$ then (x_0, y_0) is a local maximum.
- If $D < 0$ then (x_0, y_0) is a hyperbolic saddle.

19.9. Proof. After translation $(x, y) \rightarrow (x - x_0, y - y_0)$ and replacing f with $f - f(x_0, y_0)$, we have $(x_0, y_0) = (0, 0)$ and $f(0, 0) = 0$. At the critical point, the quadratic approximation is now

$$Q(x,y) = ax^2 + 2bxy + cy^2.$$

This can be rewritten as $a(x + \frac{b}{a}y)^2 + (c - \frac{b^2}{a})y^2 = a(A^2 + DB^2)$ with $A = (x + \frac{b}{a}y), B = b^2/a^2$ and discriminant D. If $a = f_{xx} > 0$ and $D > 0$ then $c - b^2/a > 0$ and the function has positive values for all $(x, y) \neq (0, 0)$. The point $(0, 0)$ is then a minimum.

- If $a = f_{xx} < 0$ and $D > 0$, then $c - b^2/a < 0$ and the function has negative values for all $(x, y) \neq (0, 0)$ and the point (x, y) is a local maximum. If $D < 0$, then f takes both negative and positive values near $(0, 0)$. QED
19.10. One can ask, why f_{xx} and not f_{yy} is chosen. It does not matter, because if $D > 0$, then both f_{xx} and f_{yy} need to be non-zero and have the same sign. Instead of f_{xx}, one could also have pick the more natural trace $\text{tr}(H)$. It is invariant under coordinate changes similarly as the determinant D. The discriminant D happens also to be the Gauss curvature of the surface at the point.

19.11. In higher dimensions, the situation is described by the Morse lemma. It tells that near a critical point there is a coordinate change ϕ such that $g(x) = f(\phi(x))$ is a quadratic function $f(x) = B(x - x_0) \cdot (x - x_0)$ where B is diagonal with entries $+1$ or -1. Critical point can then be given a Morse index, the number of entries -1 in B. The Morse lemma is actually a theorem (theorems are more important than lemmata=helper theorems).

Theorem: Near a Morse critical point x_0 of a C^2 function f, there is a coordinate change $\phi: \mathbb{R}^m \to \mathbb{R}^m$ such that $g(x) = f(\phi(x)) - f(x_0)$ is
\[g(x) = -x_1^2 - \cdots - x_k^2 + x_{k+1}^2 + \cdots + x_m^2. \]

19.12. Proof. We use induction with respect to m. (i) Induction foundation. For $m = 1$, the result tells that for a Morse critical point, the function looks like $y = x^2$ or $y = -x^2$. First show that if $f(0) = f'(0) = 0, f''(0) \neq 0$, then $f(x) = x^2h(x)$ or $f(x) = -x^2h(x)$ for some positive C^2 function h. Proof. By a linear coordinate change we assume $x_0 = 0$ and $f(0) = 0$. There exists then $g(x)$ such that $f(x) = xg(x)$: it is $g(x) = f(x)/x$ for $x \neq 0$ and is in the limit $x \to 0$ the value of $\lim_{x \to 0} (f(x) - f(0))/x = f'(0)$. By the product rule, $f'(x) = g(x) + xg'(x)$ with $g(0) = 0$. Because $f'(0) = g(0) = 0$ can define $f(x)/x^2$ for $x \neq 0$ and take the limit $x \to 0$, because by applying Hôpital twice, the limit is $f''(0)$. The coordinate change is now given by a function $y = \phi(x)$ satisfying $g(x, y) = y \sqrt{h(y)} = x$. Implicit differentiation gives $g_y(0, 0) = \sqrt{h(0)} \neq 0$ so that by the implicit function theorem $y(x)$ exists.
(ii) Induction step $m \to m + 1$: we first note that Taylor for C^2 with remainder term implies that $f(x_1, \ldots, x_n) = \sum_{i,j} x_i x_j h_{ij}(x_1, \ldots, x_n)$ with some continuous functions h_{ij}. Furthermore, the function value $h_{ij}(0) = f_{x_i x_j}(0) = H_{ij}(0)$ are the coordinates of the Hessian. Apply first a rotation so that $h_{11} \neq 0$. Now look at x_1 and keep the other coordinates constant. As in (i), find a coordinate change ϕ such that $f(\phi(x)) = \pm x_1^2 + g(x_2, \ldots, x_m)$, where g inherits the properties of f \footnote{This will be more clear after having seen more linear algebra}, but is of one dimension less.

Examples

19.13. Q: Classify the critical points of $f(x, y) = x^3 - 3x - y^3 - 3y$. A: As $\nabla f(x, y) = [3x^2 - 3, -3y^2 + 3]$, the critical points are $(1, 1), (-1, 1), (1, -1)$ and $(-1, -1)$. We compute $H(x, y) = \begin{bmatrix} 2x & 0 \\ 0 & -2y \end{bmatrix}$. For $(1, 1)$ and $(-1, -1)$ we have $D = -4$ and so saddle points. For $(-1, 1)$ we have $D = 4, f_{xx} = 2$, a local max. For $(1, -1)$ where $D = 4, f_{xx} = 2$ we have a local min.
Problem 19.1: Classify the critical points of the area 51 function
\[f(x, y) = x^{51} - 51x - y^{51} + 51y \]
using the second derivative test. This function is classified.

Problem 19.2: The function \(f(x, y) = 2x^3 + 2y^3 - 3x^2y^2 \) is called the “happy function”. Find and classify its extrema. This function is not Morse as for one of the critical points, the discriminant \(D \) is zero. We want you nevertheless to decide whether this point is a “local maximum” a “local minimum” or “neither of them”.

Problem 19.3: Where on the parametrized surface \(r(u, v) = [u^2, v^3, uv] \) is the temperature \(T(x, y, z) = 12x + y - 12z \) minimal. Classify all the critical points of the function \(f(u, v) = T(r(u, v)) \). [If you have found the function \(f(u, v) \), you can replace \(u, v \) again with \(x, y \) if you like to work with a function \(f(x, y) \).]

Problem 19.4: Find all the critical points of the function \(f(x, y, z) = (x - 1)^2 - y^2 + xz^2 \). In each of the cases, find the Hessian matrix. We have not talked about eigenvalues yet, but they are numbers \(\lambda \) such that \(Hv = \lambda v \) for some non-zero vector. One can find them by looking for the roots of the characteristic polynomial \(\chi_H(\lambda) = \det(L - \lambda) \). You can calculate them on a computer. Find in each case the eigenvalues.

Problem 19.5: a) Find a function \(f(x, y) \) with 3 maxima and 3 saddle points and one minimum.
b) You see below a contour map of a function of two variables. How many critical points are there? Is the function a Morse function?
LINEAR ALGEBRA AND VECTOR ANALYSIS

MATH 22A

Unit 20: Constraints

Lecture

20.1. If we want to maximize a function \(f : \mathbb{R}^m \to \mathbb{R} \) on the constraint \(S = \{ x \in \mathbb{R}^m \mid g(x) = c \} \), then both the gradients of \(f \) and \(g \) matter. We call two vectors \(v, w \) parallel if \(v = \lambda w \) or \(w = \lambda v \) for some real \(\lambda \). The zero vector is parallel to everything. Here is a variant of Fermat:

Theorem: If \(x_0 \) is a maximum of \(f \) under the constraint \(g = c \), then \(\nabla f(x_0) \) and \(\nabla g(x_0) \) are parallel.

20.2. Proof: use contradiction: assume \(\nabla f(x_0) \) and \(\nabla g(x_0) \) are not parallel and \(x_0 \) is a local maximum. Let \(T \) be the tangent plane to \(S = \{ g = c \} \) at \(x_0 \). Because \(\nabla f(x_0) \) is not perpendicular to \(T \) we can project it onto \(T \) to get a non-zero vector \(v \) in \(T \) which is not perpendicular to \(\nabla f(x_0) \). Actually the angle between \(\nabla f(x_0) \) and \(v \) is acute so that \(\cos(\alpha) > 0 \). Take a curve \(r(t) \) in \(S \) with \(r(0) = x_0 \) and \(r'(0) = v \). We have \(\frac{d}{dt}f(r(t)) = \nabla f(r(0)) \cdot r'(0) = |\nabla f(x_0)|v| \cos(\alpha) > 0 \). By linear approximation, we know that \(f(r(t)) > f(r(0)) \) for small enough \(t > 0 \). This is a contradiction to the fact that \(f \) was maximal at \(x_0 = r(0) \) on \(S \).

20.3. This immediately implies: (distinguish \(\nabla g \neq 0 \) and \(\nabla g = 0 \))

Theorem: For a maximum of \(f \) on \(S = \{ g = c \} \) either the Lagrange equations \(\nabla f(x_0) = \lambda \nabla g(x_0), g = c \) hold, or then \(\nabla g(x_0) = 0, g = c \).

20.4. For functions \(f(x, y), g(x, y) \) of two variables, this means we have to solve a system with three equations and three unknowns:

\[
\begin{align*}
 f_x(x_0, y_0) &= \lambda g_x(x_0, y_0) \\
 f_y(x_0, y_0) &= \lambda g_y(x_0, y_0) \\
 g(x, y) &= c
\end{align*}
\]

20.5. To find a maximum, solve the Lagrange equations and add a list of critical points of \(g \) on the constraint. Then pick a point where \(f \) is maximal among all points. We don’t bother with a second derivative test. But here is a possible statement:

\[
\frac{d^2}{dt^2} D_{tv} D_{tv} f(x_0)|_{t=0} < 0
\]

for all \(v \) perpendicular to \(\nabla g(x_0) \), then \(x_0 \) is a local maximum.
20.6. Of course, the case of maxima and minima are analog. If \(f \) has a maximum on \(g = c \), then \(-f\) has a minimum at \(g = c \). We can have a maximum of \(f \) under a smooth constraint \(S = \{ g = c \} \) without that the Lagrange equations are satisfied. An example is \(f(x, y) = x \) and \(g(x, y) = x^3 - y^2 \) shown in Figure (1).

![Figure 1](image1.png)

Figure 1. An example of a function, where the Lagrange equations do not give the minimum, here \((0,0)\). It is a case, where \(\nabla g = 0 \).

20.7. The method of Lagrange can maximize functions \(f \) under several constraints. Let’s show this in the case of a function \(f(x, y, z) \) of three variables and two constraints \(g(x, y, z) = c \) and \(h(x, y, z) = d \). The analogue of the Fermat principle is that at a maximum of \(f \), the gradient of \(f \) is in the plane spanned by \(\nabla g \) and \(\nabla h \). This leads to the **Lagrange equations** for 5 unknowns \(x, y, z, \lambda, \mu \).

\[
\begin{align*}
 f_x(x_0, y_0, z_0) &= \lambda g_x(x_0, y_0, z_0) + \mu h_x(x_0, y_0, z_0) \\
 f_y(x_0, y_0, z_0) &= \lambda g_y(x_0, y_0, z_0) + \mu h_y(x_0, y_0, z_0) \\
 f_z(x_0, y_0, z_0) &= \lambda g_z(x_0, y_0, z_0) + \mu h_z(x_0, y_0, z_0) \\
 g(x, y, z) &= c \\
 h(x, y, z) &= d
\end{align*}
\]

20.8. For example, if \(f(x, y, z) = x^2 + y^2 + z^2 \) and \(g(x, y, z) = x^2 + y^2 = 1, h(x, y, z) = x + y + z = 4 \), then we find points on the ellipse \(g = 1, h = 4 \) with minimal or maximal distance to 0.

![Figure 2](image2.png)

Figure 2. Extremizing a function \(f \) under two constraints. In this case the intersection \(g = c, h = d \) is an ellipse.
20.9. Problem: Minimize \(f(x, y) = x^2 + 2y^2 \) under the constraint \(g(x, y) = x + y^2 = 1 \).
Solution: The Lagrange equations are \(2x = \lambda, 4y = 2\lambda \). If \(y = 0 \) then \(x = 1 \). If \(y \neq 0 \) we can divide the second equation by \(y \) and get \(2x = \lambda, 4 = \lambda 2 \) again showing \(x = 1 \). The point \(x = 1, y = 0 \) is the only solution.

20.10. Problem: Which cylindrical soda can of height \(h \) and radius \(r \) has minimal surface \(A \) for fixed volume \(V \)? Solution: We have \(V(r, h) = \pi r^2 h = 1 \) and \(A(r, h) = 2\pi r h + 2\pi r^2 \). With \(x = h\pi, y = r \), you need to optimize \(f(x, y) = 2xy + 2\pi y^2 \) under the constrained \(g(x, y) = xy^2 = 1 \). We will do that in class.

20.11. Problem: If \(0 \leq p_k \leq 1 \) is the probability that a dice shows \(k \), then we have \(g(p) = p_1 + p_2 + \cdots + p_6 = 1 \). This vector \(p \) is called a probability distribution. The Shannon entropy of \(p \) is defined as

\[
S(p) = -\sum_{i=1}^{6} p_i \log(p_i) = -p_1 \log(p_1) - p_2 \log(p_2) - \cdots - p_6 \log(p_6) .
\]

Find the distribution \(p \) which maximizes entropy \(S \). Solution: \(\nabla f = (-1 - \log(p_1), \ldots, -1 - \log(p_6)), \nabla g = (1, \ldots, 1) \). The Lagrange equations are \(-1 - \log(p_i) = \lambda, p_1 + \cdots + p_6 = 1 \), from which we get \(p_i = e^{-(\lambda + 1)} \). The last equation \(1 = \sum_i \exp\left(-\lambda + 1\right) = 6 \exp\left(\lambda + 1\right) \) fixes \(\lambda = -\log(1/6) - 1 \) so that \(p_1 = p_2 = \cdots = p_6 = 1/6 \). It is the fair dice that has maximal entropy. Maximal entropy means least information content.

20.12. Assume that the probability that a physical or chemical system is in a state \(k \) is \(p_k \) and that the energy of the state \(k \) is \(E_k \). Nature minimizes the free energy

\[
F(p_1, \ldots, p_n) = -\sum_i [p_i \log(p_i) - E_i p_i]
\]

if the energies \(E_i \) are fixed. The probability distribution \(p_i \) satisfying \(\sum_i p_i = 1 \) minimizing the free energy is called a Gibbs distribution. Find this distribution in general if \(E_i \) are given. Solution: \(\nabla f = (-1 - \log(p_1) - E_1, \ldots, -1 - \log(p_n) - E_n), \nabla g = (1, \ldots, 1) \). The Lagrange equation is \(\log(p_i) = -1 - \lambda - E_i \), or \(p_i = \exp(-E_i) C \), where \(C = \exp(\lambda) \). The constraint \(p_1 + \cdots + p_n = 1 \) gives \(C(\sum_i \exp(-E_i)) = 1 \) so that \(C = 1/(\sum_i e^{-E_i}) \). The Gibbs solution is \(p_k = \exp(-E_k)/(\sum_i \exp(-E_i)) \). \(^1\)

20.13. If \(f \) is a quadratic function on \(\mathbb{R}^m \) and \(g \) is linear that is \(f(x) = Bx \cdot x/2 \) with \(B \in M(m, m) \) and if the constraint \(g(x) = Ax = c \) is linear \(A \in M(1, m) \), then \(\nabla f(x) = Bx \) and \(\nabla g(x) = A^T \). Let's call \(b = A^T \in M(m, 1) \sim \mathbb{R}^m \). The Lagrange equations are then \(Bx = \lambda b, Ax = c \). We see in general that for quadratic \(f \) and linear \(g \), we end up with a linear system of equations.

20.14. Related to the previous remark is the following observation. It is often possible to reduce the Lagrange problem to a problem without constraint. This is a point of view often taken by economists. Let us look at it in dimension 2, where we extremize \(f(x, y) \) under the constraint \(g(x, y) = 0 \). Define \(F(x, y, \lambda) = f(x, y) - \lambda g(x, y) \). The Lagrange equations for \(f, g \) are now equivalent to \(\nabla F(x, y, \lambda) = 0 \) in three dimensions.

\(^1\)This example is from Rufus Bowen, Lecture Notes in Math, 470, 1978
Problem 20.1: Find the cylindrical basket which is open on the top has has the largest volume for fixed area π. If x is the radius and y is the height, we have to maximize $f(x, y) = \pi x^2 y$ under the constraint $g(x, y) = 2\pi xy + \pi x^2 = \pi$. Use the method of Lagrange multipliers.

Problem 20.2: Given a $n \times n$ symmetric matrix B, we look at the function $f(x) = x \cdot B x$. and look at extrema of f under the constraint that $g(x) = x \cdot x = 1$. This leads to an equation $Bx = \lambda x$.

A solution x is called an **eigenvector**. The Lagrange constant λ is an **eigenvalue**. Find the solutions to $Bx = \lambda x$, $|x| = 1$ if B is a 2×2 matrix, where $f(x, y) = ax^2 + (b + c)xy + dy^2$ and $g(x, y) = x^2 + y^2$. Then solve the problem where $a = 3, b = 2, c = 4, d = 1$. (Never mind here that B is not symmetric).

Problem 20.3: Which pyramid of height h over a square $[-a, a] \times [-a, a]$ with surface area is $4a\sqrt{h^2 + a^2} + 4a^2 = 4$ has maximal volume $V(h, a) = 4ha^2/3$? By using new variables (x, y) and multiplying V with a constant, we get to the equivalent problem to maximize $f(x, y) = yx^2$ over the constraint $g(x, y) = x\sqrt{y^2 + x^2 + x^2} = 1$. Use the later variables.

Problem 20.4: Motivated by the Disney movie “Tangled”, we want to build a hot air balloon with a cuboid mesh of dimension x, y, z which together with the top and bottom fortifications uses wires of total length $g(x, y, z) = 6x + 6y + 4z = 32$. Find the balloon with maximal volume $f(x, y, z) = xyz$.

Problem 20.5: A solid bullet made of a half sphere and a cylinder has the volume $V = 2\pi r^3/3 +\pi r^2 h$ and surface area $A = 2\pi r^2 + 2\pi rh + \pi r^2$. Doctor Manhattan designs a bullet with fixed volume and minimal area. With $g = 3V/\pi = 1$ and $f = A/\pi$ he therefore minimizes $f(h, r) = 3r^2 + 2rh$ under the constraint $g(h, r) = 2r^3 + 3r^2h = 1$. Use the Lagrange method to find a local minimum of f under the constraint $g = 1$.

Oliver Knill, knill@math.harvard.edu, Math 22a, Harvard College, Fall 2018
Unit 21: Island mathematics

Seminar

21.1. With an “island” we mean a region in the plane \mathbb{R}^2 which is bound by a simple closed curve C which is continuous everywhere and differentiable everywhere except at a finite set of points. So, simple polygons are allowed. What island does have the maximal area if the length of the boundary is fixed? This is called the isoperimetric problem. If we look at the problem restricted to polygons with a fixed number n of vertices, then we have a nice finite dimensional Lagrange problem.

21.2. Let us look at a triangular island $T(x, y)$ with vertices $(-1, 0), (1, 0), (x, y)$.

Problem A: Assume the circumference $g(x, y)$ of the triangle is 3. What is the maximal area $f(x, y) = y/2$ we can get? Set up the Lagrange equations and solve them.

21.3. Here is a side problem from good old Euclidean geometry. If you should not know, look up “string method pins”.

Problem B: What points (x, y) in the plane satisfy $g(x, y) = 3$.

21.4. Solving the problem to find the n-gon with maximal area is a messy Lagrange problem. It can be done by a computer but there is a more elegant way:

Problem C: Use the computation in problem A to show that for a maximal polygon containing vertices ..., $P, Q, R, ...$ in a row, the distance between P and Q is the same as the distance between Q and R.

Problem D: Conclude that a polygon with n vertices and maximal area must be a regular polygon.
21.5. You are on your treasure island G and have two locations A, B in G. The problem to find the shortest connection between A and B can be quite complex in general. An example is when G is bound by a Gosper curve. For the following let us assume that the boundary of G is a convex curve: this means that for any two points A, B in G, the line segment through A, B is contained in G. A triangle A, B, C for which all three points A, B, C are on the boundary is called a “shore triangle”.

Problem E: Verify that for a shore triangle, the billiard law of reflection at the boundary holds.

21.6. Hint: to see that the incoming angle is the same as the outgoing angle, take a minimal triangle A, B, C, where B is on the island shore, then replace the curve with the tangent curve L at B. Now reflect C at L to get a point C'. Verify that the shortest billiard path ABC has the same length than the straight line connecting A with C'.

Figure 1. What polygon with fixed circumference has maximal area?

21.7. The next time you are cast away on an island, count the number m of mountain peaks, the number s of sinks and the number p of mountain passes. Make some experiments. You notice the following rule which is known as a special case of the Poincaré-Hopf theorem:

Theorem: $\text{maxima} + \text{minima} - \text{saddles} = 1$.

Problem F: Find an example where this equality holds, in which we have maxima = 3, minima = 1 and saddles = 3.

21.8. If you want to challenge yourself, see whether you can prove the island theorem by deformation. (This is probably too hard. Just enjoy the struggle!)

21.9. Assume now that our island is an atoll, a ring shaped reef.

Problem G: By looking at examples, what is the island number $\text{maxima} + \text{minima} - \text{saddles}$ on an atoll?
Figure 2. First an island with 2 mountain peaks and with 1 mountain pass. Then an island with 3 mountain peaks and 2 mountain passes. We see maxima + minima − saddles = 1.

Figure 3. The Atafu atoll. Picture by NASA Johnson Space Center, 2009.

Figure 4. If we place a surface $S : g = c$ in space and look at the restriction of a function $f(x, y, z)$ on S, we solve a Lagrange problem. In a Morse situation, the numbers maxima + minima − saddles add up to a number which only depends on the number of holes.

21.10. Let us look at the one-dimensional case, where we prove things easier. Assume the island is the interval $[a,b]$. Let f be a smooth function on $[a,b]$ which has the property that f is zero for $x \geq b$ and for $x \leq a$. We look at critical points of f in the interior (a,b) which are Morse, (meaning $f''(x) \neq 0$ at critical points), so that we only have only local maxima and minima as critical points. Let m be the number of maxima and s the number of minima (sinks). In order to prevent the island to be flooded, we also assume that the function f is positive for $x > a$, close to a and $x < b$ close to b.

Theorem: maxima − minima = 1.

Problem H: Verify that there is an odd number of critical points for a Morse function f which has a support a finite interval $[a,b]$.
Problem I: Use a deformation argument to show that if there are $2k+1$ critical points, we can reduce them to $2k-1$ by merging a pair of neighboring maxima and minima.

Homework

21.1 A spherical triangle A, B, C on the unit sphere has angles α, β, γ in $[0, \pi]$. What is the largest area that such a triangle can have? You can use the fact that $\alpha + \beta + \gamma - \pi$ is the area. The result might look a bit strange for a triangle.

21.2 Find an example of a non-Morse function $f(x, y, z)$ with a maximum. Similarly find an example with a minimum and an example of a non-Morse function where the critical point is neither a maximum, nor a minimum.

21.3 If we look at maxima, minima and saddle points for a function $f(x, y)$ defined on a doughnut. By looking at examples, find the island number $\text{maxima + minima} - \text{saddles}$ there.

21.4 If we look at maxima, minima and saddle points for a function $f(x, y)$ defined on a sphere. By looking at examples, what is the island number $\text{maxima + minima} - \text{saddles}$ there.

21.5 Assume $f : \mathbb{R} \rightarrow \mathbb{R}$ is a single variable Morse function which is 2π periodic. What is the relation between the number m of maxima on $[0, 2\pi)$ and the number of minima on $[0, 2\pi)$? Prove this.
Unit 22: Double integrals

Lecture

22.1. Given a bounded region R in \mathbb{R}^2 and a continuous function $f(x, y) : R \to \mathbb{R}$, define the Riemann integral $I = \iint_R f(x, y) \, dA$ as the $n \to \infty$ limit of

$$I_n = \frac{1}{n^2} \sum_{(i/n, j/n) \in R} f\left(\frac{i}{n}, \frac{j}{n}\right).$$

The bounded region R is defined as a closed subset of \mathbb{R}^2 bounded by finitely many differentiable curves $R = \{g_1 \leq c_1, \ldots, g_k \leq c_k\}$. As already in one dimension, the definition is designed to be independent of an orientation chosen on R. We are integrating like summing up a spreadsheet. Just add up all entries. To justify that the limit exists, we again can use the Heine-Cantor theorem which tells that f is continuous on R if and only if it is uniformly continuous. This means there are numbers $M_n \to 0$ such that if $|(x_1, y_1) - (x_2, y_2)| \leq 1/n$, then $|f(x_1, y_1) - f(x_2, y_2)| \leq M_n$.

Theorem: For continuous f on a bounded region R, $\iint_R f \, dx \, dy$ exists.

22.2. Proof. In each cube $Q_{ij} = \{i/n \leq x \leq (i+1)/n, j/n \leq y \leq (j+1)/n\} \cap R$ define $a_{ij} = \min_{(x,y) \in Q_{ij}} f(x,y)$ and $b_{ij} = \max_{(x,y) \in Q_{ij}} f(x,y)$. Because the boundary was assumed to be given by a collection of curves which have finite total arc length L, the number of cubes Q_{ij} which intersect the boundary C is bounded by $4Ln$ (a curve of length 1 can maximally touch 4 squares). Define also $F = \max_{(x,y) \in R} |f(x,y)|$. We have with $K_n = 4LF/n$:

$$A_n - K_n \leq I_n \leq B_n + K_n,$$

where $A_n = \sum_{i,j} a_{ij}/n^2$ and $B_n = \sum_{i,j} b_{ij}/n^2$ and K_n takes care of cubes Q_{ij} which intersect the boundary of R and so only contribute partially. Let I be the limsup of I_n. We have $B_n - A_n \leq M_n n^2/n^2 = M_n \to 0$ and $K_n \to 0$ as well so that $|I_n - I| \leq M_n + K_n \to 0$.

22.3. We rarely evaluate integrals using Riemann sums. Fortunately it is possible to reduce a double integral to single integrals. One can do that for basic regions which consist of two type of regions “bottom to top” regions $R = \{(x, y), a \leq x \leq b, c(x) \leq y \leq d(x)\}$ or “left to right” regions $R = \{(x, y), a(y) \leq x \leq b(y), c \leq y \leq d\}$. By cutting a general region into smaller pieces like intersecting with sufficiently small cubes $Q_{i,j}$ defined above, we can write any region as a union of such basic regions:
for large enough \(n \), any \(Q_{ij} \cap R \) us a basic region. Now we can define the integral in the first case as \(\int_a^b \int_{c(x)} f(x, y) \, dy \, dx \) and in the second case as \(\int_c^d \int_{a(y)} f(x, y) \, dx \, dy \). Is this the same? This is answered with Fubini, which we have already used. Let \(R \) be a rectangle \(R = \{ (x, y) \mid a \leq x \leq b, c \leq y \leq d \} \). Here is the **Fubini theorem**:

\[
\int_R f(x, y) \, dA = \int_a^b \left[\int_{c(x)} f(x, y) \, dy \right] dx = \int_c^d \left[\int_{a(y)} f(x, y) \, dx \right] dy.
\]

Figure 1. “Bottom to top” and “left to right” regions.

22.4. **Proof:** first make a coordinate change to get \(R = [0, 1] \times [0, 1] \), then cover \(R \) with \(n^2 \) cubes \(Q_{ij} \) of side length \(1/n \). We have for every \(y \) a uniformly continuous function \(x \to f(x, y) \) and for every \(x \) a uniformly continuous function \(y \to f(x, y) \) and the constants \(M_n \) work for all: there is \(M_n \to 0 \) so that if \(|x_1 - x_2| < 1/n \) and \(|y_1 - y_2| < 1/n \), then \(|f(x_1, y_1) - f(x_2, y_2)| \leq M_n \). Now use the notation \(A \sim B \) if \(|A - B| \leq c \) and get \(\int_R f(x, y) \, dA \sim_M n \sum \frac{1}{n} \sum_{i=0}^{n-1} f(i/n, y) \sim_M n \sum |f(i/n, y)| \). Similarly, we can show \(\int_R f(x, y) \, dA \sim_M n \sum |f(x, y) \, dx| \). **22.5.** Without continuity, Fubini is false: the standard example is illustrated in Figure (2):

\[
\frac{-\pi}{4} = \int_0^1 \int_0^1 \frac{(x^2 - y^2)}{(x^2 + y^2)^2} \, dy \, dx \neq \int_0^1 \int_0^1 \frac{(x^2 - y^2)}{(x^2 + y^2)^2} \, dx \, dy = \frac{\pi}{4}.
\]

Proof. \(\int (x^2 - y^2)/(x^2 + y^2)^2 \, dx = -x/(x^2 + y^2) \), \(\int (x^2 - y^2)/(x^2 + y^2)^2 \, dy = y/(x^2 + y^2) \). so that \(\int_0^1 (x^2 - y^2)/(x^2 + y^2)^2 \, dx = -1/(1+y^2) \) and \(\int_0^1 (x^2 - y^2)/(x^2 + y^2)^2 \, dy = 1/(1+x^2) \).

22.6. Integrals in higher dimensions are defined in the same way. We will cover the three dimensional case in particular later. Let us just add the definition for now. Given a \(m \) dimensional region \(R \) in \(\mathbb{R}^m \) and a continuous \(f : \mathbb{R}^m \to \mathbb{R} \), using the multi-index notation \(x = (x_1, \ldots, x_m) \), \(dx = dx_1 dx_2 \cdots dx_m \) and \(i/n = (i_1/n, i_2/n, \ldots, i_m/n) \) define

\[
\int_R f(x) \, dx = \lim_{n \to \infty} \frac{1}{n^m} \sum_{\lambda \in R} f(\vec{i}/n) .
\]

A region is now a set \(R = \{ x \in \mathbb{R}^m \mid g_1(x) \leq c_1, \ldots, g_k(x) \leq c_k \} \) where \(g_k \) are smooth functions. It is called **bounded** if there exists \(\rho > 0 \) such that \(R \subseteq \{ |x| \leq \rho \} \).
Figure 2. Integrating over a region via a Riemann integral. A double integral is a signed volume. Parts where \(f < 0 \) is negative volume. Fubini can fail, even if the two conditional integrals exist.

Examples

22.7. If \(f(x, y) = 1 \), then \(\iint_R f(x, y) \, dxdy \) is the area of \(R \). For example, if \(\iint_{x^2+y^2\leq 9} dxdy = 8 \), \(8 \iint_{x^2+y^2\leq 9} 1 \, dxdy = 8 \text{Area}(R) = 72\pi \).

22.8. We know from single variable calculus that \(\int_a^b f(x) \, dx \) is the signed area under the curve of \(f \). For \(f(x) \geq 0 \), where it is the area, we can write this as \(\int_a^b \int_0^{f(x)} 1 \, dydx \). Note that as we have defined the integrals, the equivalence would be wrong if \(f(x) \) is negative somewhere. It is the double integral which is the correct notion of area. **Example**: The area of the region bounded by the curve \(y = \frac{1}{1+x^2} \), the curve \(y = 0 \) and the curve \(x = -1 \) and \(x = 1 \) is \(\int_{-1}^1 \int_0^{1/(1+x^2)} dydx = \arctan(x) \big| _{-1}^1 = \pi/2 \).

Figure 3.

22.9. The integral \(\iint_R f(x, y) \, dxdy \) can be interpreted as the signed volume under the graph of \(f \) above the region \(R \). Find the volume of the region bound by \(z = 4 - 2x^4 - 2y^4 \) and \(z = 4 - 2x^2 - 2y^2 \) and \(-1 \leq x \leq 1 \) and \(-1 \leq y \leq 1 \). Solution: \(\int_0^1 \int_0^{1/(1+x^2)} (4 - 2x^4 - 2y^4) - (4 - 2x^2 - 2y^2) \, dxdy = (4/15)^2 \).

22.10. Problem. Find the area of a disc of radius \(a \). Solution: \(\int_{-a}^a \int_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}} 1 \, dydx = \int_{-a}^a 2\sqrt{a^2-x^2} \, dx \).
Use **trig substitution** \(x = a \sin(u) \), \(dx = a \cos(u) \), to get
\[
\int_{-\pi/2}^{\pi/2} 2\sqrt{a^2 - a^2 \sin^2(u)} a \cos(u) \, du = \int_{-\pi/2}^{\pi/2} 2a^2 \cos^2(u) \, du .
\]

Using a double angle formula, this gives \(a^2 \int_{-\pi/2}^{\pi/2} 2\left(1+\cos(2u)\right) \, du = a^2 \pi \). We will next time compute this much more effectively.

22.11. Problem. Let \(R \) be the triangle \(\{1 \geq x \geq 0, 0 \leq y \leq x\} \). Evaluate \(\int \int_R e^{-x^2} \, dxdy \). **Solution.** We can not evaluate the integral directly because \(e^{-x^2} \) has no anti-derivative given in terms of elementary functions. But we can write the integral as \(\int_0^1 \left[\int_0^x e^{-x^2} \, dy \right] \, dx = \int_0^1 xe^{-x^2} \, dx = \left. -\frac{e^{-x^2}}{2} \right|_0^1 = \left(\frac{1 - e^{-1}}{2} \right) \).

Homework

Problem 22.1: Calculate the iterated integral \(\int_0^1 \int_x^{2-x} (x^2 - y) \, dydx \) in two ways, once as a “left to right” and once as a “bottom to top” integral.

Problem 22.2: Find the integral
\[
\int_0^1 \int_{\sqrt[3]{x}}^{\sqrt[3]{y}} \frac{3x^7}{\sqrt{x} - x^2} \, dx \, dy .
\]

Problem 22.3: Compute the area of the region bound by the ellipse \(x^2/4 + y^2/9 = 1 \) using trig substitution. (It is the “hardest problem in geometry”, according to the comedy-drama “Rushmore”, a movie from 1998).

Problem 22.4: Find the integral
\[
\int_0^{\pi^2} \int_{\sqrt{x}}^{\pi} \sin(x) \, x^2 \, dxdy .
\]

Problem 22.5: Find the volume of the hoof solid \(x^2 + y^2 \leq 1, 0 \leq z \leq x \). The hoof solid was considered by Archimedes already.
Unit 23: Substitution

Lecture

23.1. If $\Phi : R \rightarrow S$, $\begin{bmatrix} u \\ v \end{bmatrix} \rightarrow \begin{bmatrix} x(u,v) \\ y(u,v) \end{bmatrix}$ is a coordinate change, then the distortion factor was defined as $|d\Phi| = |\det(d\Phi)|$, where

$$d\Phi(u,v) = \begin{bmatrix} \partial_u x(u,v) & \partial_u y(u,v) \\ \partial_v x(u,v) & \partial_v y(u,v) \end{bmatrix}.$$

The change of variable theorem is the same in all dimensions. In the following proof, we assume that Φ is C^2. Because of Heine-Cantor, we know there exists $M_n \rightarrow 0$ with $|\frac{d^2}{dt^2} \Phi(u_0 + tv, v_0 + tw)| \leq M_n$ for $\sqrt{v^2 + w^2} \leq 1/n$ and all $(u_0, v_0) \in R$.

Theorem: $\int_R f(\Phi(u,v)) |d\Phi(u,v)| dudv = \int_S f(x,y) dxdy$.

23.2. Proof. Cover S with cubes Q_{ij} as in the last lecture. Then

$$\int_S f(x,y) dxdy = \sum_{Q_{ij}} \int_{Q_{ij} \cap S} f(x,y) dxdy \sim \sum_{i,j} f\left(\frac{i}{n}, \frac{j}{n}\right) \frac{1}{n^2}.$$

The transformed squares $\Phi(Q_{ij})$ are close to the parallelograms $d\Phi(Q_{ij})$ which have area $|d\Phi(i/n, j/n)|/n^2$. Now make a quadratic Taylor expansion $\Phi(x,y) = \Phi(x_0, y_0) + d\Phi(x_0, y_0)(x-x_0, y-y_0) + d^2\Phi(x_0, y_0)(x-x_0, y-y_0)^2/2$ at $(x_0, y_0) = (i/n, j/n)$, where $|d^2\Phi(x_0, y_0)(x-x_0, y-y_0)^2| \leq M_n$. Let $F = \max_{(x,y) \in R}(|f(x,y)|)$. Applying in every direction, Taylor with remainder, we see

$$|\int_{\Phi(Q_{ij}) \cap S} f(x,y) dxdy - f\left(\frac{i}{n}, \frac{j}{n}\right) |d\Phi\left(\frac{i}{n}, \frac{j}{n}\right)| \frac{1}{n^2}| \leq \frac{M_n F}{n^2}.$$

As the number of squares hitting R is bound by $An^2 + 4Ln$ where A is the area of R and L is the length of the boundary of R, the sum of the non-linear errors is therefore bound by $(An^2 + 4Ln)M_n F/n^2$ which goes to zero for $n \rightarrow \infty$. QED.

23.3. Here is an example: If $\Phi : R = [0,1] \times [0,2\pi] \rightarrow S = \{x^2 + y^2 \leq 1\}$ is given by $\Phi(r, \theta) = [r \cos(\theta), r \sin(\theta)]^T$. Then $d\Phi(r, \theta) = r$. If $f(x,y) = x^2 + y^2 = r^2$, then $\int_R r^2 rdr \ d\theta = \int_S x^2 + y^2 \ dxdy$. The first integral is $2\pi/4$.

23.4. Let \(\Phi : [0, 1] \times [0, 1] \to [0, 1] \times [0, 1] \) be given as \(\Phi(x, y) = (y, x) \). Now \(\det(d\Phi) = -1 \) and \(|d\Phi| = 1 \). While we usually could ignore talking about orientation, it is evident here that the integrals considered so far, we do not care about the orientation of the space. If the change of coordinates switches the orientation, the resulting integral does not change.

23.5. The chain rule assures that combining two coordinate changes \(\Phi, \Psi \), gives a new coordinate change with \(d(\Psi \circ \Phi)(x) = d\Psi(\Phi(x))d\Phi(x) \). For example if \(\Psi(x, y) = [ax, by]^T \) and \(\Phi(r, \theta) = [r\cos(\theta), r\sin(\theta)]^T \) changes into polar coordinates, then \(\Psi(\Phi(r, \theta)) = [ar\cos(\theta), br\sin(\theta)]^T \). Now the image of \(\mathbb{R}^2 = [0, 1] \times [0, 2\pi] \) is the ellipse \(S = \{ x^2/a^2 + y^2/b^2 \leq 1 \} \) and the area of the ellipse is \(A = \iint_{R} abr \, drd\theta \) because \(\det(d\Phi) = r \) and \(\det(d\Psi) = ab \). The result is \(\int_{0}^{1} \int_{0}^{2\pi} abr \, d\theta dr = \pi ab \).

![Figure 1. Coordinate change.](image)

23.6. Preview: We will next week look at more general cases like \(r : R \subset \mathbb{R}^2 \to \mathbb{R}^3 \) of a parametrized surface, where the distortion factor is \(|dr| = \sqrt{\det(dr^Tdr)} = |r_u \times r_v| \) and the surface area is \(\iint_{R} |r_u \times r_v| dudv = \iint_{S} 1 \, dA \).

23.7. The theorem generalizes substitution \(\int_{c}^{d} f(\Phi(x))|\Phi'(x)| \, dx = \int_{a}^{b} f(x) \, dx \) if \(\Phi(c) = a \) and \(\Phi(d) = b \). We usually insist that \(\Phi \) is monotonically increasing and write \(u = \Phi(x), du = \Phi'(x)dx \) to get computations like in \(\int_{0}^{\pi/2} \sin(x^2)2xdx = \int_{0}^{\pi/2} \sin(u) \, du \), where \(\Phi(x) = x^2 \). As a hack, one can extend the formula to the case when \(\Phi \) can decrease in which case the \([a, b] \) interval becomes the negative \([b, a] \) interval with \(a < b \). Example: Let \(\Phi(x) = 2 - 2x \) which has \(\Phi' = -2 \), then \(\int_{1/2}^{1} (2-2x)^2(-2)dx = \int_{0}^{1} x^2dx \). In single variable calculus, one can also work with the negative sign case and compute \(\int_{1/2}^{1} (2-2x)^2dx \) which works if \(\int_{1/2}^{1} = -\int_{1/2}^{1} \) but this is not compatible with the defined Riemann integral: we use “spread-sheet” summation and do not distinguish whether we add up the function values from left to right or from right to left.\(^2\)

\(^2\)In single variable one can easily go from orientation independent ‘Bosonic’ integrals to ‘Fermionic’ integrals. In higher dimensions, one can then apply the derivative to anti-symmetric tensors. The switch “Bosonic” \(\to \) “Fermionic” requires however to orient objects like curves or surfaces.
23.8. We can again look at the Fubini counter example \(\iint_{x^2+y^2 \leq 1} (x^2 - y^2)/(x^2 + y^2)^2 \, dx \, dy = \int_0^1 \int_0^{2\pi} \cos(2\theta)/r \, d\theta \, dr = 0 \). We can not change the order of integration as we can not integrate \(\int_0^1 1/r \, dr \). The trouble also continues in the new coordinate system and it is even more dramatic.

23.9. If \(\Phi : x \rightarrow Ax \) and \(\Psi : x \rightarrow Bx \) are two linear coordinate changes then \(\Psi \circ \Phi = BA \) is the matrix product and the chain rule tells \(|d(\Psi \circ \Phi)| = |\det(AB)| \) which agrees with the product \(|\det(\Psi)| \det(\Phi) = |\det(A)| \det(B) | \). We can do the verification of the Cauchy-Binet formula \(\det(AB) = \det(A) \det(B) \) directly. If \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) and \(B = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \), then \(AB = \begin{bmatrix} ap + br & aq + bs \\ cp + dr & cq + ds \end{bmatrix} \) and you can check the determinant formula.

23.10. Here is a famous open problem about coordinate changes. It is called the Jacobian conjecture. It deals with polynomial coordinate changes, where \(x(u,v) \) and \(y(u,v) \) are polynomials in \(u, v \).

Conjecture: If \(\Phi \) is polynomial and \(|d\Phi| \) is constant different from zero, then \(\Phi \) has a polynomial inverse.

One knows that if the conjecture is false, then there exists a counter example with integer polynomials and Jacobian determinant 1. The conjecture is open since at least 1939. An example of a coordinate transformation with determinant 1 and integer polynomials are Hénon maps from lecture 16. If \(\Phi([u, v]^T) = [x, y]^T = [u^2 - u^4 - v, u]^T \), then \(\Phi^{-1}([x, y]^T) = [y, y^2 - y^4 - x]^T \).

Examples

23.11. **Problem:** What is the area of the image \(S = \Phi(R) \) if \(\Phi([u, v]) = [u^2 - v^2 + 1, 2uv + 2]^T \) and \(R = \{ 1 \leq u \leq 3, 0 \leq v \leq 1 \} \). (This is \(\Phi(z) = z^2 + c \) with \(c = 1 + 2i \) in the complex). We have \(d\Phi(u,v) = \begin{bmatrix} 2u & -2v \\ 2v & 2u \end{bmatrix} \) and \(|d\Phi(u,v)| = 4u^2 + 4v^2 \). We see from the change of variables formula that the area is \(\int_0^1 \int_1^3 4u^2 + 4v^2 \, du \, dv = 112/3 \).

23.12. **Problem:** What is the moment of inertia \(\iint_R x^2 + y^2 \, dx \, dy \), where \(R \) is the polar region given in polar coordinates as \(r \leq 2 + \sin(3\theta) \). Solution: using the polar coordinate change of variables \(\Phi \) with \(|d\Phi| = r \), we get \(\int_0^{2\pi} \int_0^{2+\sin(3\theta)} r^2 \, r \, dr \, d\theta = \int_0^{2\pi} (2 + \sin(3\theta))^4/4 \, d\theta \). We explain in class how to get the answer \(227\pi/4 \) quickly.

23.13. **Problem:** Here is a famous problem. It is so popular, that it even made it to Hollywood: compute \(\int_{\mathbb{R}^2} e^{-x^2-y^2} \, dx \, dy \). Solution: this problem looks difficult at first as we can not integrate with respect to \(x \) or \(y \). The function \(e^{-x^2} \) has no elementary anti-derivative. This improper integral is doable in polar coordinates as it is \(\int_0^{2\pi} \int_0^\infty e^{-r^2} \, dr \, d\theta = \pi \). It is the inner part \(\int_0^\infty e^{-r^2} \, dr \) which is an improper integral. One deals with this by approximation. For every finite \(L \) we have \(\int_0^L e^{-r^2} \, dr = -e^{-r^2}/2|_0^L = 1/2 - e^{-L^2}/2 \). This converges nicely to \(1/2 \) for \(L \to \infty \). It follows (and that is the punch line) that \(\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi} \).
Homework

Problem 23.1: Given a disk \(R = \{x^2 + y^2 \leq 1\} \), we can make this into a probability space and define the **expectation** of a function \(f \) as \(E[f] = \iint_R f \, dx \, dy/\pi \). The expectation of the random variables \(f(x, y) = x^n \) are examples of **moments**. Find \(E[x] \), \(E[x^2] \), \(E[x^3] \) and \(E[x^4] \).

Problem 23.2: What is the volume of the solid bound by \(z = f(x, y) = x^2 + y^2 \) and \(z = g(x, y) = 8 - x^2 - y^2 \)? You can write this as a double integral \(\iint_R g(x, y) - f(x, y) \, dx \, dy \) over a suitable region.

Problem 23.3: The fidget spinner is so “2017” now. What is hot now is the **math 22 spinner** with 23 bearings! What is the moment of inertia \(\iint_G x^2 + y^2 \, dx \, dy \) of the **math 22 fidget spinner region** \(G \) given in polar coordinates as \(1/2 \leq r \leq 2 + \cos(22\theta) \). To keep our bearings, we do not count the bearings.

Problem 23.4: Biologist Piet Gielis once patented polar regions in order to use them to describe biological shapes like cells, leaves, starfish or butterflies. Don’t worry about violating patent laws when finding the area of the following butterfly \(r(t) \leq |8 - \sin(t) + 2 \sin(3t) + 2 \sin(5t) - \sin(7t) + 3 \cos(2t) - 2 \cos(4t)| \). (It can produce butterflies in your stomach but there are some tricks to do that fast. Relax with the Math 22 fidget spinner for example!)

![Figure 2. The math 22 spinner and the butterfly.](image)

Problem 23.5: a) Prove the Jacobian conjecture for linear maps \(\Phi(x) = Ax \), where \(A \) is a \(2 \times 2 \) matrix.

b) Find a linear coordinate change \(\Phi(x, y) \) for which the Jacobian determinant is 1. It should be non-trivial in the sense, that we don’t just want a diagonal matrix \(d\Phi \).

c) Find a counter example of the Jacobian conjecture for cubic polynomials (just kidding). Find an example for the Jacobian conjecture where both polynomials are not linear!
Unit 24: How to solve: Literature Samples

Seminar

24.1. In this seminar we look a bit around in the literature and collect problem solving strategies. We have seen already a few methods:

- Induction (Theorem on unique row reduced echelon form)
- Contradiction (Clairaut theorem)
- Deformation (Hopf Umlaufsatz)
- Invariant (Sum of Morse indices on island)

24.2. We will introduce a few more principles and tips and take the opportunity to introduce a bit the literature. We only look at 4 books.

Figure 1. 4 Superstar books: Polya: How to Solve it. Tao: Solving Mathematical Problems, Perkins: The Eureka effect, Posamentier-Krulik: Problem solving strategies.

24.3. The mother of all problem solving books is Polya’s ”How to solve it” which was published in 1945. If you read and absorb this book, you immediately get measurably stronger in math. Still after more than 70 years, it is the best. Here are the now famous Polya principles:
Polya principles
1. **Understand** the problem: unknowns, data, draw figure.
2. Devise a **plan**: similar or related problem?
3. **Carry out** the plan: check each step.
4. **Examine** the solution: can other problems be solved as such?

24.4. This sounds a bit like ”open the door, step through the door, close the door” advise to ”how to exit the house”. But it is amazing to see the power in a method. Why is it powerful? Because if one sees a harder problem the first time, one is totally lost. (Proof: if not, then the problem was easy) Where do we start? This is where it is good already to have a guide telling you: well, just first start to understand the problem.

24.5. Here is an example of a problem in geometry which is mentioned in Polya’s book. The problem is featured even on the cover of some later editions of the book.

Problem A: Inscribe a square Q in a triangle T so that two vertices of Q on the base of T and the other sides of T each contains a vertex of Q.

24.6. An here is another problem from Polya, slightly reformulated. Work out also this problem using the Polya principles:

Problem B: Water is flowing with a constant rate of one cubic meter per second into a conical vessel $x^2 + y^2 = z^2$, $z \geq 0$. At which rate is the water level rising if the water depth is z meters?

24.7. The second best book in our collection is ”Solving mathematical problems” by Terrence Tao. Why? Like Polya, also Tao has proven new important theorems (many as a single author) and so got some street cred. Here are some problems from his book:

Problem C: An integer n has the same last digit than n^5.

Problem D: If k is a positive odd number, then $1^k + 2^k + \ldots + n^k$ is divisible by $n + 1$.

24.8. Tao calls the following identity ”his favourite algebraic identity”. We have done the case of the sum of the first n squares in a practice exam.

Problem E: $1^3 + 2^3 + \ldots + n^3 = (1 + 2 + 3 + \ldots + n)^2$.

24.9. Tao does not give a formal list of strategies, but explains in an example on page 4 the following principles. We paraphrase here these ”deformation principles”:
Tao’s deformation principles
a. Consider special, extreme or degenerate cases.
b. Solve a simplified version of the problem
c. Formulate a conjecture
d. Derive intermediate steps which would get it.
e. Reformulate, especially try contraposition.
f. Examine solutions of similar problems
g. Generalize the problem

24.10. The book of Perkins analyses skillfully the mechanisms of break through ideas. It destills the following mechanism for break through ideas. It captures it pretty well, since problems which are solved quickly rarely cover new ground.

Perkins
1. Long search. 99 percent perspiration. Work for years or decades.
2. Little apparent progress. Many failures.

24.11. The following exercise is from Perkin’s book. Try to solve it yourself and also keep track on how you pursue the task to solve the problem.

Problem F: Someone brings an old coin to a museum director and offers it for sale. The coin is stamped 540 B.C.E. Instead of considering the purchase, the museum director calls the police. Why?

24.12. If this was too easy (experiments show that some people can answer it very quickly. For others it takes longer), try this one, also from Perkins:

Problem G: You are driving a jeep through the Sahara desert. You encounter someone lying face down in the sand, dead. There are no tracks anywhere around. There has been no wind for days to destroy tracks. You look into the pack on the person’s back. What do you find?

24.13. The book of Posamentier and Krulik is more intended for the teacher and less for the research mathematician. It goes through the following principles

Posamentier-Krulik
1. Reason logically 2. Recognize patterns
3. Work backwards 4. Adopt different view
5. Consider extreme cases 6. Solve simpler problems
7. Organize data 8. Make a picture
9. Account all possibilities 10. Experiment, guess and test
24.14. Here is a strategy which often occurs: "make it more general". In the book "Posamentier-Krulik: Problem-Solving-Strategies in mathematics" for example is the problem:

Problem H: We have a 5×5 seating arrangement of students. The teacher wants every student to change place and move to a seat to the left, right, front or left. Is it possible? Solve this problem by looking first at smaller classrooms like 2×2 or 3×3 or 2×3. In which cases is it possible?

24.15. Once you have an idea, prove the statement.

Homework

24.1 A nursery rhyme is the riddle "As I was going to St. Ives, I met a man with seven wives, Each wife had seven sacks, Each sack had seven cats, Each cat had seven kits: Kits, cats, sacks, and wives, How many were there going to St. Ives?" Pretend not to know the answer, solve the riddle and follow the Polya principle. The rhyme was inspired by one of the oldest problems texts in math, the Rhind Papyrus. But it was a more serious question which translates: "how many kits came from St Ives"?

24.2 (Tao) The perpendicular bisectors in a triangle meet in a point.

24.3 (Tao). Find all triangles for which the length have an arithmetic progression $a, a + d, a + 2d$.

24.4 Here are a few children riddles. We hope you don’t know all of them (if you know the answer there is little benefit). Keep a log of how you search for an answer: a) I’m tall when I’m young and I’m short when I’m old. What am I? b) What gets wetter and wetter the more it dries? c) What can run but can’t walk? d) What is full of holes and still holds water?

24.5 In the **15 puzzle** (invented in 1874 by **Noyes Palmer Chapman**) each the numbers $1 - 15$ are arranged in a 4×4 grid. There is one hole left. The task is to reorder a scrambled puzzle so that all numbers are in order and 0 at the very bottom right. The player can switch 0 with a neighboring piece. **Sam Loyd** suggested to start with stone 14 and 15 switched, and offered 1000 dollars for a solution. Prove that one can not win the prize.

Oliver Knill, knill@math.harvard.edu, Math 22a, Harvard College, Fall 2018
Unit 25: Solids

Lecture

25.1. A basic solid R in \mathbb{R}^n is a bounded region enclosed by finitely many surfaces $g_i(x_1, \cdots, x_n) = c_i$. A solid is a finite union of such basic solids. We focus here mostly on $n = 3$. A 3D integral $I = \iiint_R f(x,y,z) \, dx \, dy \, dz$ is defined in the same way as a limit of a Riemann sum I_n which for a given integer n is defined as

$$I_n = \frac{1}{n^3} \sum_{(i/n, j/n, k/n) \in R} f(\frac{i}{n}, \frac{j}{n}, \frac{k}{n}).$$

The convergence is proven in the same way. The boundary contribution can be neglected in the limit $n \to \infty$. If $\Phi : R \to E$ is a parametrization of the solid, then

Theorem: $\iiint_R f(u,v,w) |d\Phi(u,v,w)| \, du \, dv \, dw = \iiint_E f(x,y,z) \, dx \, dy \, dz$

Figure 1. Solids in \mathbb{R}^3 are sets which are unions of solids bound by smooth surfaces. The second solid appears in homework 25.3, the last in 25.2

25.2. If $f(x,y,z)$ is constant 1, then $\iiint_E f(x,y,z) \, dx \, dy \, dz$ is the volume of the solid E. For a cone $x^2 + y^2 \leq z^2, 0 \leq z \leq 1$, we can write $\iiint_E 1 \, dz \, dx \, dy = \int_R 1 - \sqrt{x^2 + y^2} \, dx \, dy$, where R is the unit disc. Its volume is $\pi - 2\pi/3 = \pi/3$. For the unit sphere $x^2 + y^2 + z^2 \leq 1$ for example, we can write $\iiint_E 1 \, dz \, dx \, dy = \int_R 2\sqrt{1-x^2-y^2} \, dx \, dy$, where R is the unit disc $x^2 + y^2 \leq 1$. In polar coordinates, we get $\int_0^{2\pi} \int_0^1 2\sqrt{1-r^2} \, dr \, d\theta = 4\pi/3$. We can also use spherical coordinates $\Phi([\rho, \phi, \theta]) = [\rho \sin(\phi) \cos(\theta), \rho \sin(\phi) \sin(\theta), \rho \cos(\phi)]$, where $|d\Phi| = \rho^2 \sin(\phi)$. The volume is $\int_0^{2\pi} \int_0^1 \rho^2 \sin(\phi) \, d\rho \, d\phi \, d\theta = 4\pi/3.$
There are two basic strategies to compute the integral: the first is to slice the region up along a line like the z-axis then form \[\int_a^b \int_{R(z)} f(x,y,z) \, dx \, dy \, dz. \] To get the volume of a cone for example, integrate \[\int_0^1 \left[\int_{R(z)} f(x,y,z) \, dx \, dy \right] \, dz. \] The inner double integral is the area of the slice which is \(\pi z^2 \). The last integral gives \(\pi/3 \). A second reduction is to see the solid sandwiched between two graphs of a function on a region \(R \), then form \[\int_{R} \left[\int_{h(x,y)} g(x,y,z) f(x,y,z) \, dz \right] \, dxdy. \] In the cone case, we have for \(R \) the disc of radius 1. The lower function is \(g(x,y) = \sqrt{x^2 + y^2} \) the upper function is 1. We get \[\int_{R} \left[1 - \sqrt{x^2 + y^2} \right] \, dxdy, \] a double integral which best can be computed using polar coordinates: \[\int_0^{2\pi} \int_0^1 (1 - r) r \, dr \, d\theta = 2\pi(1/2 - 1/3) = \pi/3. \] Burgers and fries!

Figure 2. The “burger and fries methods” to compute triple integral. The first reduces to a single integral, the second to a double integral.

We have seen in the theorem the coordinate change formula if \(\Phi : R \to E \) is given. For **spherical coordinates** \(\Phi([\rho, \phi, \theta]) = [\rho \sin(\phi) \cos(\theta), \rho \sin(\phi) \sin(\theta), \rho \cos(\phi)] \), we have \(|d\phi| = \rho^2 \sin(\phi) \). For **cylindrical coordinates**, the situation is the same as for polar coordinates. The map \(\Phi([r, \theta, z]) = [r \cos(\theta), r \sin(\theta), z] \) produces \(|d\Phi| = \rho \).

Let us find the integral \(\iiint_E 1 \, dx \, dy \, dz \), where \(E = \{x^2/a^2 + y^2/b^2 + z^2/c^2 \leq 1\} \) is a **solid ellipsoid**. The most comfortable way is to introduce another coordinate change \(\Psi([x, y, z]) \to [ar, by, cz] \) which maps the solid sphere \(S \) to to the solid ellipsoid \(E \). Then take the spherical coordinate map \(\phi : R \to S \), where \(R = \{ (\rho, \phi, \theta) \mid 0 \leq \rho \leq 1, 0 \leq \phi \leq \pi, 0 \leq \theta \leq 2\pi \} \). Now \(\Psi \circ \Phi : R \to E \) is a coordinate change which maps \(R \) to the ellipsoid. By the chain rule, the distortion factor is \(|d\Psi||d\Phi| = abc\rho^2 \sin(\phi) \). The integral is \(abc(1/3)/(2\pi) \int_0^\pi \sin(\phi) \, d\phi = \frac{4\pi/3}{abc} \).

In order to compute the volume of a **solid torus**, we can introduce a special coordinate system \(\Phi([r, \psi, \theta]) = [(b + ar \cos(\psi)) \cos(\theta), (b + ar \cos(\psi)) \sin(\theta), a \sin(\psi)] \). The solid torus \(E \) is then the image of the cuboid \(\{(r, \psi, \theta) \mid 0 \leq r \leq 1, 0 \leq \psi \leq 2\pi, 0 \leq \theta \leq 2\pi\} \). The determinant is \(|d\Phi| = a^2 \cos^2(s)(b + ar \cos(s)) \). Integration over the cuboid gives the volume \((2\pi b)(\pi a^2) \).
Examples

25.7. To find \(\iiint_E f \, dV \) for \(E = \{0 \leq x \leq 1, 0 \leq y \leq 1, 0 \leq z \leq 1\} \) and \(f(x, y, z) = 24x^2y^3z \), set up the integral \[f_0^1 \int_0^1 \int_0^1 24x^2y^3z \, dy \, dx. \] Start with the core \(\int_0^1 24x^2y^3z \, dz = 12x^3y^3 \), then integrate the middle layer, \(\int_0^1 12x^3y^3 \, dy = 3x^2 \) and finally handle the outer layer: \(\int_0^1 3x^2 \, dx = 1 \).

25.8. To find the moment of inertia \(I = \iiint_E x^2 + y^2 \, dV \) of a sphere \(E = \{x^2 + y^2 + z^2 \leq L^2\} \), we use spherical coordinates. We know that \(x^2 + y^2 = \rho^2 \sin^2(\phi) \) and the distortion factor is \(\rho^2 \sin(\phi) \). We have therefore

\[I = \int_0^{2\pi} \int_0^\pi \int_0^L \rho^2 \sin^2(\phi) \rho^2 \sin(\phi) \, d\rho d\phi d\theta = 8\pi L^5/15. \]

We will see some details in class. If we rotate the sphere around the \(z \)-axis with angular velocity \(\omega \), then \(I_0 \omega^2/2 \) is the kinetic energy of that sphere. Example: the moment of inertia of the earth is \(8 \cdot 10^{37} \text{kgm}^2 \). With an angular velocity of \(\omega = 2\pi/\text{day} = 2\pi/(86400 \text{s}) \), this rotational kinetic energy is \(8 \cdot 10^{37} \text{kgm}^2/(7464960000 \text{s}^2) \sim 10^{20} J \sim 2.5 \cdot 10^{24} \text{kcal} \).

25.9. Problem: Find the volume \(E \) of the intersection of \(x^2 + y^2 \leq 1, x^2 + z^2 \leq 1 \) and \(y^2 + z^2 \leq 1 \). Solution: look at 1/16\(^{th} \) of the body given in cylindrical coordinates \(0 \leq \theta \leq \pi/4, r \leq 1, z > 0 \). The roof is \(z = \sqrt{1 - r^2} \) because above the "one eighth disc" \(R \) only the cylinder \(x^2 + z^2 = 1 \) matters. The polar integration problem

\[16 \int_0^{\pi/4} \int_0^1 \sqrt{1 - r^2 \cos^2(\theta)} r \, dr \, d\theta \]

has an inner \(r \)-integral of \((16/3)(1 - \sin^3(\theta))/\cos^2(\theta)\). Integrating this over \(\theta \) can be done by integrating \(f(x) = (1 - \sin^3(x)) \sec^2(x) \) by parts (using \(\tan'(x) = \sec^2(x) \)) leading to the anti-derivative \(-\cos(x) + \sec(x) + \tan(x)\) of \(f \). The result is \(16 - 8\sqrt{2} \).

25.10. Problem: A pencil \(E \), a hexagonal cylinder of radius 1 above the \(xy \)-plane is cut by a sharpener below the cone \(z = 10 - x^2 - y^2 \). What is its volume? Solution: we consider one sixth of the pen where the base is the polar region \(0 \leq \theta \leq 2\pi/6 \) and \(r(\theta) \leq \sqrt{3}/(\sqrt{3} \cos(\theta) + \sin(\theta)) \). The pen’s back is \(z = 0 \) and the sharpened part is \(z = 10 - r^2 \).

\[\int_0^{\pi/3} \int_0^{\sqrt{3}/(\sqrt{3} \cos(t) + \sin(t))} \int_0^{10 - r^2} 1 \, r \, dz \, dr \, d\theta. \]

The integral can be computed and is \(\frac{115}{32\sqrt{3}} \).

\(^1\)An exam problem at ETH in a single variable calculus exam when Oliver was an undergrad.

\(^2\)Archimedes Revenge, first appeared in Math S21a exam, Harvard Summer School, 2017
Figure 3. Illustrating two harder problems: the pen problem and the “Archimedes revenge problem” asking to prove that $E : x^2 + y^2 - z^2 \leq 1, y^2 + z^2 - x^2 \leq 1, z^2 + x^2 - y^2 \leq 1$ has $\text{Vol}(E) = \log(256)$.

Homework

Problem 25.1: Find the moment of inertia $\iiint_E x^2 + y^2 \, dV$, where $E = \{x^2 + y^2 \leq z^2, |z|^2 \leq 1\}$ is the double cone.

Problem 25.2:

a) In Figure 1, you see the solid $E = \{x^2 + z^2 \leq 1, y^2 + z^2 \leq 1\}$. Find its volume.

b) You see also the union of two cylinders $\{x^2 + z^2 < 1, |y|^2 < 9\}$ and $\{y^2 + z^2 < 1, |x|^2 < 9\}$. Use a) to find the volume.

Problem 25.3: In figure 1, we see the solid $E = \{x^2 \leq 1, y^2 \leq 1, z^2 \leq 1, x^2 + y^2 \geq 1, x^2 + z^2 \geq 1, y^2 + z^2 \geq 1\}$. Find its volume.

Problem 25.4: Evaluate the triple integral

$$\iiint_E xy \, dV,$$

where E is bounded by the parabolic cylinders $y = 3x^2$ and $x = 3y^2$ and the planes $z = 0$ and $z = x + y$.

Problem 25.5: We have seen the problem in the movie “Gifted” to compute the improper integral of e^{-x^2}. Here is another approach: verify

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2+z^2)} \, dx \, dy \, dz = (\sqrt{\pi})^3.$$

Use this as in the “Gifted” computation to find $\int_{-\infty}^{\infty} e^{-x^2} \, dx$. You can do that without knowing that the later is $\sqrt{\pi}$.

Oliver Knill, knill@math.harvard.edu, Math 22a, Harvard College, Fall 2018
Unit 26: Surface area

Lecture

26.1. A map \(r : R \subset \mathbb{R}^2 \to \mathbb{R}^3 \) has an image \(r(R) = S \) which is a parametrized surface. What is its surface area? We have seen that the distortion factor is now \(|dr| = \sqrt{\det(g)} = |ru \times rv| \), where \(g = dr^T dr \) was the first fundamental form of the surface. Of course, it is more convenient to use \(|ru \times rv| \), which is the same as \(|dr| \).

Theorem: The surface area \(\iint_S dS \) of \(S \) is \(\iint_R |ru \times rv| dudv \).

26.2. More generally if \(f : R \to \mathbb{R} \) is a function which describes something like a density then \(\iint_R f(r(u, v)) |ru \times rv| dudv \) is an integral which is abbreviated as \(\iint_S f dS \) and called a scalar surface integral. For example, if \(f \) is a density on the surface then this \(\iint_S f dS \) is the mass. Again, we have to stress that in this integral, the orientation of the surface is irrelevant. The distortion factor \(|dr| \) is always non-negative. It is better to think of \(\iint_S f dS \) as a weighted surface area generalizing area \(\iint_S dS \). \(^1\)

26.3. Here is the most general change of integration formula for maps \(r : \mathbb{R}^n \to \mathbb{R}^n \), with distortion factor \(|dr| = \sqrt{\det(dr^T dr)} \). The formula holds for \(m > n \) too, \(\det \) is then a pseudo determinant. If \(S = r(R) \) is the image of a solid \(R \) under a \(C^2 \) map \(r \) and \(f : \mathbb{R}^n \to \mathbb{R} \) is a function, then the mother of all substitution formulas is

Theorem: \(\iint_R f(r(u))|dr(u)| du = \iint_S f(u) du \).

26.4. The proof is the same as seen in the two-dimensional change of variable situation. Just because \(n \) is used for the target space \(\mathbb{R}^n \), we use the basic size \(1/N \). We chop up the region into parts \(R \cap Q \) with cubes \(Q \) of size \(1/N \) and estimate the difference \(Vol(dr(Q)) \) and \(Vol(r(Q)) \) by \(CM_N/N^2 \) leading to an overall difference bounded by \(FCM_N/N^2 \), where \(F \) is the maximal value of \(f \) on \(R \) and \(M_n \) is the Heine-Cantor function modulus of continuity of \(f \). Adding everything up gives an error \(FCVol(R)M_N + 2^n Vol(\delta R)F/N \to 0 \), where \(\delta R \) is the boundary of \(R \). There is one new thing: we have to see why \(\sqrt{\det(A^T A)} \) is the volume of the parallelepiped spanned by the column vectors of the Jacobian matrix \(A = dr \). We will talk about determinants in detail later but if \(A \) is in row reduced echelon form then \(A^T A \) is the

\(^1\)Unfortunately, scalar integrals are often placed close to the integration of differential forms (like volume forms). The later are of different nature and use an integration theory in which spaces come with orientation. So far, if we replace \(r(u, v) \) with \(r(v, u) \) gives the same result (like area or mass).
identity matrix and the determinant is 1, agreeing with the volume. Now notice that if a column of \(A \) is scaled by \(\lambda \) producing a new matrix \(B \), then \(\det(B^T A) = \lambda \det(A^T A) \) and \(\det(B^T B) = \lambda^2 \det(A^T A) \). If two columns of \(A \) are swapped leading to a new matrix \(B \), then \(\det(B^T A) = -\det(A^T A) \) and \(\det(B^T B) = \det(A^T A) \). If a column of \(A \) is added to another column, then this does change \(\det(B^T B) \). The only row reduction step which affects the \(|dr|\) is the scaling. But that is completely in sync what happens with the volume. QED.

26.5. The last theorem covers everything we have seen and we ever need to know when integrating scalar functions over manifolds. In the special case \(n = m \) it leads to:

Theorem: \(\int \int \int_{\mathbb{R}} |r_u \times r_v| \, dudv \) is the volume of \(S = r(R) \).

26.6. Here are the important small dimensional examples:

- If \(m = 1, n = 3 \), then \(\int_a^b |r'(t)| \, dt \) is the **arc length** of the curve \(C = r(I) \).
- If \(m = 2, n = 2 \), then \(\int \int_{\mathbb{R}} |dr| \, dudv \) is the **area** of the region \(S = r(R) \).
- If \(m = 2, n = 3 \), then \(\int \int_R |r_u \times r_v| \, dudv \) is the **surface area** of \(S = r(R) \).
- If \(m = 3, n = 3 \), then \(\int \int \int_{\mathbb{R}} |dr| \, dudvdw \) is the **volume** of the solid \(S = r(R) \).

Examples

26.7. In all the examples of surface area computations, we take a parametrization \(r(u, v) : R \to S \), then use use that the distortion factor is \(\sqrt{\det(dr^T dr)} = |r_u \times r_v| \).

![The distortion factors \(|dr| = |g| = \sqrt{\det(g)} = \sqrt{\det(dr^T dr)}\) appear in general. For \(m = 2, n = 3 \) we get surface area \(\int \int_R |r_u \times r_v| \, dudv \).](image)

26.8. **Problem:** find the surface area of a sphere \(x^2 + y^2 + z^2 = L^2 \). **Solution:** Parametrize the surface \(r([\theta, \phi]) = [L \sin(\phi) \cos(\theta), L \sin(\phi) \sin(\theta), L \cos(\phi)] \). The distortion factor is \(L^2 \sin(\phi) \). The surface area is \(4\pi L^2 \).
26.9. Problem: find the surface area of surface of revolution given in cylindrical coordinates as \(z = g(\theta), a \leq z \leq b \). Solution: Parametrize the surface \(r(\theta, z) = [g(z) \cos(\theta), g(z) \sin(\theta), z] \). The distortion factor is \(g(z) \sqrt{1 + g'(z)^2} \).

26.10. As an example, we can look at the surface of revolution \(x^2 + y^2 = 1/z^2, |z|^2 > 1 \). The volume of the solid enclosed by the surface is \(\pi \). The surface area is infinite.

26.11. Problem: find the surface area of the graph of a function \(z = f(x, y), (x, y) \in \mathbb{R} \). Solution: Parametrize the surface as \(r([x, y]) = [x, y, f(x, y)] \). The distortion factor is \(|r_x \times r_y| = \sqrt{1 + f_x^2 + f_y^2} \).

26.12. Problem: what is the surface area of the intersection of \(x^2 + z^2 \leq 1, 6x + 3y + 9z = 12 \). Solution: The surface is a plane but also a graph over \(x, z \)-plane. The simplest parametrization is \(r([x, z]) = [x, (12 - 6x - 9z)/3, z] = [x, 4 - 2x - 3z, z] \). It gives \(|r_x \times r_z| = |[-2, -1, -3]| = \sqrt{14} \). The surface area is \(\int_{\mathbb{R}} \sqrt{14} dxdy = \sqrt{14} \text{Area}(\mathbb{R}) = \sqrt{14} \pi \).

26.13. The following hyperspherical coordinates parametrize the 3-dimensional sphere \(x^2 + y^2 + z^2 + w^2 = 1 \) in \(\mathbb{R}^4 \).

\[
r([\phi, \psi, \theta]) = [\cos(\phi) \sin(\psi) \cos(\theta), \sin(\phi) \sin(\psi) \cos(\theta), \sin(\phi) \sin(\psi) \sin(\theta)],
\]

with \(\theta \in [0, 2\pi], \phi \in [0, \pi], \psi \in [0, \pi] \). The distortion factor is \(\sqrt{\det(dr^T dr)} = \sqrt{\sin^4(\phi) \sin^2(\psi)} \) so that the surface area of the hypersphere is \(2\pi \int_0^\pi \int_0^\pi \sin^2(\phi) \sin(\psi) d\phi d\psi = \frac{2\pi^2}{2} \).

26.14. In dimension \(n \) what is the volume \(|B_n| \) of the \(n \)-dimensional unit ball \(B_n \) in \(\mathbb{R}^n \) and the volume \(|S_n| \) of the \(n \)-dimensional unit sphere \(S_n \) in \(\mathbb{R}^{n+1} \)? It starts with \(|B_0| = 1\), as \(B_0 \) is a point and \(|S_0| = 2\), as \(S_0 \) consists of two points. The \(n \)-ball of radius \(\rho \) has the volume \(|B_n| \rho^n \) and the \(n \)-sphere of radius \(\rho \) has the volume \(|S_n| \rho^n \). Because \(|B_n| = \int_0^1 |S_n| \rho^n \, d\rho \), we have \(|B_{n+1}| = |S_n|/(n+1) \). Because \(S_n \) can be written as a union of products \((n-2)\)-spheres with \(S_1 \) leading to \(|S_n| = 2\pi \int_0^{\pi/2} |S_{n-2}| \cos(\phi) \, d\phi = 2\pi |B_{n-1}| \). We know now all: just start with \(|B_0| = 1, |S_0| = 2, |B_1| = 2, |S_1| = 2\pi \) and

Theorem: \(|B_n| = \frac{2\pi}{n} |B_{n-2}|, |S_n| = \frac{2\pi}{n-1} |S_{n-2}| \).

The 5-ball has maximal volume 5.26379... among all unit balls. The 6-sphere has maximal surface area 33.0734... among all unit spheres. The volume of the 30-ball is only 0.00002.... The surface area of the 30-sphere for example is only 0.0003. Compare with a \(n \)-unit cube of volume 1 and a boundary surface area \(2n \). High dimensional spheres and balls are tiny!

26.15. If \(S \) is a cylinder \(x^2 + y^2 = 1, 0 < z < 1 \), triangulated with each triangle smaller than \(1/n \to 0 \), does the area converge to the surface area \(A(S) \)? No! A counter example is the Schwartz lantern from 1880. The cylinder is cut into \(m \) slices and \(n \) points are marked on the rim of each slice to get triangles like \(A = (1, 0, 0), B = (\cos(4\pi/n), \sin(4\pi/n, 0)), C = (\cos(2\pi/n), \sin(2\pi/n), 1/m) \) of area

\[
\sin(2\pi/n)(1/m)\sqrt{2 + 3m^2 - 4m^2 \cos(2\pi/n) + m^2 \cos(4\pi/n)}/\sqrt{2}.
\]

The \(nm \) triangles have area \(\sim \sqrt{2 + 8m\pi^4/n^4}/\sqrt{2} \). For \(m = n^3 \), the triangulated area diverges.
Problem 26.1: Find the surface area of the Einstein-Rosen bridge $r(u, v) = [3v^3, v^9 \cos(u), v^9 \sin(u)]^T$, where $0 \leq u \leq 2\pi$ and $-1 \leq v \leq 1$. Tunnels connecting different parts of space-time appear frequently in science fiction.

Problem 26.2: Find the area of the surface given by the helicoid $r(u, v) = [u \cos(v), u \sin(v), v]^T$ with $0 \leq u \leq 1$, $0 \leq v \leq \pi$.

Problem 26.3: A decorative paper lantern is made of 8 surfaces. Each is parametrized by

$$r(t, z) = [10z \cos(t), 10z \sin(t), z]$$

with $0 \leq t \leq 2\pi$ and $0 \leq z \leq 1$ and then translated or rotated. Find the total surface area of the lantern.

Problem 26.4: Find the surface area of the torus $[5 \cos \theta + \cos \alpha \cos \theta, 5 \sin \theta + \cos \alpha \sin \theta, \sin \alpha]$, where θ and α are both in $[0, 2\pi]$.

Problem 26.5: The Hopf parametrization $r : \mathbb{R}^3 \to S \subset \mathbb{R}^4$ is

$$r([\phi, \theta_1, \theta_2]) = [\cos(\phi) \cos(\theta_1), \cos(\phi) \sin(\theta_1), \sin(\phi) \cos(\theta_2), \sin(\phi) \sin(\theta_2)]$$

Check that $|dr| = \sqrt{\det(dr^T dr)} = \cos(\phi) \sin(\phi) = \sin(2\phi)/2$, then verify again that the surface area of the three sphere is $2\pi^2$. If we fix ϕ, we see tori. Their union with $\phi \in [0, \pi/2]$ is the Hopf fibration.

Figure 2. A “wormhole”, the Hopf fibration of the 3-sphere $x^2 + y^2 + z^2 + w^2 = 1$ and a Schwarz lantern.

Oliver Knill, knill@math.harvard.edu, Math 22a, Harvard College, Fall 2018
Unit 27: A visit by Archimedes

Seminar

27.1. In this seminar we have the honor to have Archimedes as a special guest. We talk to him using a technology called “quantum forward tunneling” which allows to interact with part of the past without running into a causality paradox. The actual Archimedes did not know about the interview. It is his “quantum spirit” which does it for us. How does it work? Quantum space-time produces sometimes tiny wormhole constellations in which a wave function can be trapped. By harvesting many of those trapped waves, we can rebuild and interact with an object or person from a previous time. The so established “time tunnel” is sustainable only for a short time as the trapped waves will fade within a half an hour. It is enough time however for a short interview. We take the opportunity and ask him about his theorems.

27.2. Math 22a: What a pleasure to have you here. Welcome! Archimedes: I’m glad to find myself in this lovely place. It must be a dream. I don’t recognize the town but it feels like a ‘Alexandria in the future’. Math 22a: yes, it is also a hot spot for science, but there are many now. We are eager to learn a bit about your proof expertise.

27.3. Math 22a: What result of yours do you consider the most important one? Archimedes: Definitely the formula for the volume of the sphere! Math 22a: Why? Archimedes: It was much harder to get this than the circumference of the circle or the surface area of the sphere. It was also harder to test the result experimentally. Math 22a: How did you measure? Archimedes: We build wood models of cylinders, cones and spheres of the same base radius and height and measured their volume ratios.

Problem A: Explain how Archimedes can using wooden models measure their volumes. If you don’t know, take a bath. Given a cylinder C, a cone O and a sphere S of base length 1. What ratios $|C|/|S|, |O|/|S|$ do the measurements show?
27.4. **Math 22a:** Was the comparison of the sphere with the complement of a cone in the cylinder historically the first proof? **Archimedes:** The relation had been conjectured before. It had been suspected that the ratio between the volume of a sphere and the volume of a cylinder is the fraction $2/3$ but nobody had been able to prove this relation before I could see the slicing trick.

Problem B: Explain why slicing the unit sphere at height z gives the same area as a ring of radius 1 in which a hole of size z has been drilled.

27.5. **Math 22a:** Do you remember the precise moment, when the discovery stuck? **Archimedes:** I don’t recall directly but it must have been one of these “hot tub ideas”.

27.6. **Math 22a:** This discovery must have occurred after you got the circle circumference computed. How difficult was the later? **Archimedes:** also this needed some time. It emerged pretty early that the circumference is somehow proportional to the radius. The measurement of the constant was then a bit trickier even so it remained open what fraction it is. $22/7$ was close. I got first the diameter/area ratio. I did that using the following picture.

Problem B: How does the picture below prove that the area A, radius R and diameter D of a circle satisfies $2A = RD$? How can you make this precise as in reality the circular sector does not have the same area as the triangle. (Hint: you can use modern tools like L’Hôpital’s rule if you like).

![Figure 1. The circle proof.](image)

27.7. **Math 22a:** We also wonder about your computation of the volume of the “hoof” which is the solid bound by the cylinder $x^2 + y^2 = 1$ and $z = x$ and $z = 0$. **Archimedes:** I don’t recognize the symbols you just spelled out but I know what object you are talking about. It was exciting to see a solid bound partly by round
parts to have a rational volume, which is 2 third of the height. One can see that the result is 2/3 in various ways.

Problem C: a) Take a hoof of height 1 and cut in triangular pieces which are obtained if y is constant. Show that the area of the triangle is $(1 - y^2)/2$ and conclude from this the volume is 2/3. b) Cut the same hoof into rectangular pieces which are obtained if x is constant. Show that the area of the rectangle is $(1 - x^2)$ and conclude that the volume is 2/3.

27.8. Math 22a: Also very impressive is your computation of the surface area of the sphere by relating it with the surface area of a cylinder. What was the intuition there? **Archimedes:** Actually, a drawing which is accurate enough shows this pretty well. As both situations have circular symmetry, we only need to understand what happens with the lengths on a sphere when it is projected on the cylinder. There are similar triangles. Take a stick of some length and place it onto the sphere pointing to the north pole. As it gets closer to the pole and its height-length is one half of the actual length, then the radius of that position is also half etc. As the area of a small sphere strip is height times radius times about 22/7, this is also the area of a cylinder. In the sphere case, the factor one-half is applied to the radius. In the cylinder case it is applied to the height.

Problem C: Explain this in more modern terms. We have a unit sphere and a cylinder of radius 1. Look what the surface area of a strip $z, z + dz$ is in both cases. You can use the spherical angle ϕ which you know from spherical coordinates.

27.9. Math 22a. A last question: What is a function in mathematics? **Archimedes.** I don’t know this expression: for me, mathematics deals with geometric objects and numbers which characterize those objects like length, area or volume. **Math 22a:** we interpret your formula for the volume of a sphere as $V(r) = 4\pi r^3/3$ which is a rule assigning to the radius r a number. We also have rules which tell how to compute rates of change. For the function $V(r)$ for example, its rate of change is $4\pi r^2$, the surface area of the sphere. The reason is that if we decrease the radius by a small unit, then this essentially means taking away a layer of area $4\pi r^2$. **Archimedes.** This is cool. Let me see: does this also work for the area and circumference of a disc? **Math 22a.** Certainly. Go ahead. **Archimedes.** Well, with this new language, we would say that a disc of radius r is $f(r) = \pi r^2$. I assume that for any integer n the rate of change of r^n is nr^{n-1}. **Math 22a.** Yes, that is correct. **Archimedes.** In that case the rate of
change of πr^2 is $2\pi r$ and indeed this is my formula for the circumference of a circle. This is “Phaidros”.

27.10. Math 22a Thank you very much for the interview. It will inspire us for the second midterm exam. Maybe you can visit and take the exam on Tuesday or review on Sunday? Archimedes ‘It will be my pleasure.”

Homework

27.1 Find a solid which has the property that if you project it on the xy-plane it is a half circle, if you project it on the yz plane it is a triangle and if you project it onto the xz-plane, it is a rectangle.

27.2 There are regions in the plane which have the property that their thickness is constant 1 but which are not circles. Find some.

27.3 There is a beautiful theorem of Pappus which gives the formula of a solid obtained by taking all points in distance d from a given curve $r(t)$ provided the thickened curve does not intersect: the formula is $L\pi d^2 + \frac{4\pi d^3}{3}$, where L is the length of the curve. Archimedes designed a spiral pump in which a spiral $r(t) = [10 \cos(t), 10 \sin(t), t]$ plays an important role. Assume $0 \leq t \leq 100\pi$, what is the volume of the solid consisting of all points in distance 1 to the curve?

![Figure 2. The “Archimedes Screw” and another sphere proof.](image)

27.4 Let A be the solid obtained by intersecting three perpendicular solid cylinders and let B the solid obtained by intersecting two. What are the formulas for the volumes and surface areas?

27.5 Archimedes had another picture for the volume of a sphere. It is seen in the picture above to the right. Please explain.

Oliver Knill, knill@math.harvard.edu, Math 22a, Harvard College, Fall 2018
Unit 28: Keywords for Second Hourly

Partial Derivatives

- $f_x(x,y) = \frac{\partial}{\partial x} f(x,y)$ partial derivative
- $L(x,y) = f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0)$ linear approximation
- $Q(x,y) = L(x_0,y_0) + f_{xx}(x-x_0)^2/2 + f_{yy}(y-y_0)^2/2 + f_{xy}(x-x_0)(y-y_0)$ quadratic
- $L(x,y)$ estimates $f(x,y)$ near $f(x_0,y_0)$. The result is $f(x_0,y_0) + a(x-x_0) + b(y-y_0)$
- tangent line: $ax + by = d$ with $a = f_x(x_0,y_0), b = f_y(x_0,y_0), d = ax_0 + by_0$
- tangent plane: $ax + by + cz = d$ with $a = f_x, b = f_y, c = f_z, d = ax_0 + by_0 + cz_0$
- estimate $f(x,y,z)$ by $L(x,y,z)$ near (x_0,y_0,z_0)
- $f_{xy} = f_{yx}$ Clairaut’s theorem, if f_{xy} and f_{yx} are continuous.
- $r_u(u,v), r_v(u,v)$ tangent to surface parameterized by $r(u,v)$

Partial Differential Equations

- $f_t = f_{xx}$ heat equation
- $f_{tt} - f_{xx} = 0$ wave equation
- $f_x - f_t = 0$ transport equation
- $f_{xx} + f_{yy} = 0$ Laplace equation
- $f_t + ff_x = f_{xx}$ Burgers equation

Gradient

- $\nabla f(x,y) = [f_x, f_y]^T, \nabla f(x,y,z) = [f_x, f_y, f_z]^T$, gradient
- $D_v f = \nabla f \cdot v$ directional derivative
- $\frac{d}{dt} f(r(t)) = \nabla f(r(t)) \cdot r'(t)$ chain rule
- $\nabla f(x_0,y_0)$ is orthogonal to the level curve $f(x,y) = c$ containing (x_0,y_0)
- $\nabla f(x_0,y_0,z_0)$ is orthogonal to the level surface $f(x,y,z) = c$ containing (x_0,y_0,z_0)
- $\frac{d}{dt} f(x+tv) = D_v f$ by chain rule
- $(x-x_0)f_x(x_0,y_0,z_0) + (y-y_0)f_y(x_0,y_0,z_0) + (z-z_0)f_z(x_0,y_0,z_0) = 0$ tangent plane
- $f(x,y)$ increases in the $\nabla f / |\nabla f|$ direction. Functions dance upwards.
- $f(x,y,z) = c$ defines $z = g(x,y)$, and $g_x(x,y) = -f_x(x,y,z)/f_z(x,y,z)$ implicit diff

Extrema

- $\nabla f(x,y) = [0,0]^T$, critical point or stationary point
- $D = f_{xx}f_{yy} - f_{xy}^2$ discriminant, useful in second derivative test
- $f(x_0,y_0) \geq f(x,y)$ in a neighborhood of (x_0,y_0) local maximum
- $f(x_0,y_0) \leq f(x,y)$ in a neighborhood of (x_0,y_0) local minimum
\[\nabla f(x, y) = \lambda \nabla g(x, y), \quad g(x, y) = c, \text{ or } \nabla g = 0 \text{ Lagrange equations} \]

second derivative test: \[\nabla f = (0, 0), \quad D > 0, \quad f_{xx} < 0\] local max, \[\nabla f = (0, 0), \quad D > 0, \quad f_{xx} > 0 \] local min, \[\nabla f = (0, 0), \quad D < 0 \] saddle point

\[f(x_0, y_0) \geq f(x, y) \text{ everywhere, global maximum} \]

\[f(x_0, y_0) \leq f(x, y) \text{ everywhere, global minimum} \]

Double Integrals

\[\int \int_R f(x, y) \, dy \, dx \text{ double integral} \]

\[\int_a^b \int_{c(x)}^{d(x)} f(x, y) \, dx \, dy \text{ bottom-to-top region} \]

\[\int_c^d \int_{a(y)}^{b(y)} f(x, y) \, dx \, dy \text{ left-to-right region} \]

\[\int \int_R f(r, \theta) r \, dr \, d\theta \text{ polar coordinates} \]

\[\int \int_R \left| r_u \times r_v \right| \, dudv \text{ surface area} \]

\[\int_a^b \int_{c}^{d} f(x, y) \, dy \, dx = \int_c^d \int_a^b f(x, y) \, dx \, dy \text{ Fubini} \]

\[\int \int_R \frac{1}{2} \, dxdy \text{ area of region } R \]

\[\int \int_R f(x, y) \, dxdy \text{ signed volume of solid bound by graph of } f \text{ and } xy\text{-plane} \]

Triple Integrals

\[\int \int \int_R f(x, y, z) \, dz \, dy \, dx \text{ triple integral} \]

\[\int_a^b \int_{c}^{d} \int_{u}^{v} f(x, y, z) \, dz \, dy \, dx \text{ integral over rectangular box} \]

\[\int_a^b \int_{g_2(x)}^{g_1(x)} \int_{h_2(x, y)}^{h_1(x, y)} f(x, y, z) \, dz \, dy \, dx \text{ type I region} \]

\[\int \int \int_R f(r, \theta, z) \left| r_u \times r_v \right| \, d兹d\theta \text{ integral in cylindrical coordinates} \]

\[\int \int \int_R f(\rho, \theta, z) \left[\rho^2 \sin(\phi) \right] \, dz \, d\theta \text{ integral in spherical coordinates} \]

\[\int_a^b \int_{c}^{d} \int_{u}^{v} f(x, y, z) \, dz \, dy \, dx = \int_c^d \int_a^b f(x, y, z) \, dx \, dy \text{ Fubini} \]

\[V = \int \int \int_E \frac{1}{2} \, dxdydz \text{ volume of solid } E \]

\[M = \int \int \int_E f(x, y, z) \, dz \, dy \, dz \text{ mass of solid } E \text{ with density } f. \]

General advise

Draw the region when integrating in in higher dimensions.

Consider other coordinate systems if the integral does not work.

Consider changing the order of integration if the integral does not work.

For tangent planes, compute the gradient \([a, b, c]^T\) first then fix the constant.

When looking at relief problems, mind the gradient.

Theorems

\[f_{xy} = f_{yx}, \text{ Taylor, } \int f \, dx \, dy = \int f \, dy \, dx, \text{ Morse theorem, chain rule, gradient theorem, change of variables} \]

People

Clairaut, Fubini, Lagrange, Fermat, Riemann, Archimedes, Hamilton, Euler, Taylor, Morse, Hopf

Oliver Knill, knill@math.harvard.edu, Math 22a, Harvard College, Fall 2018
Unit 28: Second Hourly Practice

Problems

Problem 28P.1 (10 points):

a) (4 points) You know the positive integer \(n^5 \) is odd. Prove that \(n \) is odd.

b) (3 points) Prove or disprove: if \(a \) and \(b \) are irrational, then \(ab \) is irrational.

c) (3 points) Prove or disprove: if \(a \) and \(b \) are irrational, then \(a + b \) is irrational.

Problem 28P.2 (10 points, each sub problem is one point):

a) What is the name of the differential equation \(f_t = f_{xx} \)?

b) What assumptions need to hold so that \(f_{xy} = f_{yx} \) is true?

c) The gradient \(\nabla f(x_0) \) has a relation to \(f(x) = c \) with \(c = f(x_0) \). Which one?

d) The linear approximation of \(f \) at \(x_0 \) is \(L(x) = f(x_0) + \ldots \). Complete the formula.

e) Assume \(f \) has a maximum on \(g = c \), then either \(\nabla f = \lambda \nabla g, g = c \) holds or ...

f) Which mathematician proved the switch the order of integration formula?

g) True or false: the gradient vector \(\nabla f(x) \) is the same as \(df(x) \).

h) The equation \(u_t + uu_x = u_{xx} \) is an example of a differential equation. We have seen two major types (each a three capital letter acronym). Which type is it?

i) What is the formula for the arc length of a curve \(C \)?

j) What is the integration factor \(|d\phi| \) when going into polar coordinates?

Problem 28P.3 (10 points, 2 points for each sub-problem):

We see the level curves of a Morse function \(f \). Only pick points A-J.

a) Which point is critical with discriminant \(D = \det(d^2 f) < 0 \).

b) At which point is \(f_x > 0, f_y = 0 \)?

c) At which point is \(f_x > 0, f_y > 0 \)?

d) Which \((x_0, y_0) \) are critical points of \(f \) when imposing the constraint \(g(x, y) = y = y_0 \)?

e) Which \((x_0, y_0) \) are critical points of \(f \) when imposing the constraint \(g(x, y) = x = x_0 \)?
Problem 28P.4 (10 points):

a) (5 points) Find the tangent plane to the surface \(xyz + x^5y + z = 11\) at \((1, 2, 3)\).

b) (5 points) Near \((x, y) = (1, 2)\), we can write \(z = g(x, y)\). Find \(g_x(1, 2), g_y(1, 2)\).

Problem 28P.5 (10 points):

a) Find the quadratic approximation of \(f(x, y, z) = 1 + x + y^2 + z^3 + \sin(xyz)\) at \((0, 0, 0)\).

b) Estimate \(f(0.01, 0.03, 0.05)\) using linear approximation.

Problem 28P.6 (10 points):

a) (8 points) Classify the critical points of the function \(f(x, y) = x^{12} + 12x^2 + y^{12} + 12y^2\) using the second derivative test.

b) (2 points) Does \(f\) have a global minimum? Does \(f\) have a global maximum?
Problem 28P.7 (10 points):
On the top of a MIT building there is a radar dome in the form of a spherical cap. Insiders call it the “Death star” radar dome. We know that with the height h and base radius r, we have volume and surface area given by $V = \pi rh^2 - \frac{\pi h^3}{3}$, $A = 2\pi rh = \pi$. This leads to the problem to extremize

$$f(x, y) = xy^2 - \frac{y^3}{3}$$

under the constraint

$$g(x, y) = 2xy = 1.$$

Find the minimum of f on this constraint using the Lagrange method!

Problem 28P.8 (10 points):
Find

$$\int \int_{R} \frac{5}{x^2 + y^2} \, dxdy ,$$

where R is the region $1 \leq x^2 + y^2 \leq 25$, $y^2 > x^2$.

Problem 28P.9 (10 points):
Integrate $f(x, y, z) = z$ over the solid E bound by

$$z = 0$$

$$x = 0$$

$$y = 0$$

and

$$x + y + z = 1.$$

Problem 28P.10 (10 points):
What is the surface area of the surface

$$r(x, y) = \begin{bmatrix} 2y \\ x \\ y^3 + x \end{bmatrix}$$

with $0 \leq y \leq 2$ and $0 \leq x \leq y^3$?
Unit 28: Second Hourly

Welcome to the second hourly. Please don’t get started yet. We start all together at 9:00 AM. You can already fill out your name in the box above.

- You only need this booklet and something to write. Please stow away any other material and electronic devices. Remember the honor code.
- Please write neatly and give details. Except for problems 28.2 and 28.3, we want to see details, even if the answer should be obvious to you.
- Try to answer the question on the same page. There is also space on the back of each page.
- If you finish a problem somewhere else, please indicate on the problem page so that we find it.
- You have 75 minutes for this hourly.

Archimedes sends his good luck wishes. He unfortunately can not join us as he is “busy proving a new theorem”. He just sent us his selfie. Oh well, these celebrities!
Problem 28.1 (10 points):

a) (4 points) Prove that if x^3 is irrational, then x is irrational.

b) (3 points) Prove or disprove: the product of two odd integers is odd.

c) (3 points) Prove or disprove: the sum of two odd integers is odd.
Problem 28.2 (10 points) Each question is one point:

a) What is the name of the partial differential equation \(f_{tt} = f_{xx} \)?

b) The series \(f(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + x^2/2! + x^3/3! + \cdots \) represents a function. Which one?

c) The implicit differentiation formula for \(f(x, y(x)) = 1 \) is \(y'(x) = \ldots \ldots \).

d) What is the name of the function \(f(s) = \sum_{n=1}^{\infty} n^{-s} \)?

e) On a circular island there are exactly 3 maxima and one minimum for the height \(f \). Assuming \(f \) is a Morse function, how many saddle points are there?

f) Which mathematician first found the value for the volume of the ball \(x^2 + y^2 + z^2 \leq 1 \)?

g) True or False: the directional derivative of \(f \) in the direction \(\nabla f(x)/|\nabla f(x)| \) is negative at a point where \(\nabla f \) is not zero.

h) The equation \(f(x + t) = e^{Dt} f = f(x) + f'(x)t + f''(x)t^2/2 + \cdots \) solves a partial differential equation. Which one?

i) What is the formula for the surface area of a surface \(S \) parametrized by \(r(u, v) \) over a domain \(R \)?

j) What is the integration factor (\(= \) distortion factor) when going to spherical coordinates \((\rho, \phi, \theta) \)?
Problem 28.3 (10 points) Each question is two points:

We see the level curves of a Morse function f. The circle through ABC will sometimes serve as a constraint $g(x, y) = x^2 + y^2 = 1$. In all questions, we only pick points from A,B,C,D,E,F,G,H,I,J,K,L,M.

a) Which points are local minima of f under the constraint $g(x, y) = 1$.

b) Which points are local maxima of f under the constraint $g(x, y) = 1$.

c) At which points do we have $f_x(x, y) \cdot f_y(x, y) \neq 0$?

d) At which points are $|\nabla f(x, y)|$ maximal?

e) At which points are $|\nabla f(x, y)|$ minimal?
Problem 28.4 (10 points):

a) (5 points) Find the tangent plane to the surface
\[f(x, y, z) = x^2 y - x^3 + y^2 + z^4 xy = -13 \]
at the point (2, -1, 1).

b) (5 points) Estimate \(f(2.001, -0.99, 1.1) \) by linear approximation.

Problem 28.5 (10 points):

a) (5 points) Find the quadratic approximation \(Q(x, y) \) of
\[f(x, y) = 5 + x + y + x^2 + 3y^2 + \sin(xy) + e^x \]
at \((x, y) = (0, 0)\).

b) (5 points) Estimate the value of \(f(0.001, 0.02) \) using quadratic approximation.

Problem 28.6 (10 points):

a) (8 points) Classify the critical points of the function
\[f(x, y) = x^2 - y^3 + 2x + 3y \]
using the second derivative test.

b) (2 points) Does the function \(f(x, y) \) have a global minimum or global maximum?

Problem 28.7 (10 points):

Using the Lagrange optimization method, find the parameters \((x, y)\) for which the area of an arch
\[f(x, y) = 2x^2 + 4xy + 3y^2 \]
is minimal, while the perimeter
\[g(x, y) = 8x + 9y = 33 \]
is fixed.
Problem 28.8 (10 points):

a) (5 points) Find the moment of inertia

\[I = \int \int_G (x^2 + y^2) \, dy \, dx \]

of the quarter disc \(G = \{ x^2 + y^2 \leq 1, x \geq 0, y \leq 0 \} \).

b) (5 points) Evaluate the double integral

\[\int_1^e \int_{\log(x)}^1 \frac{y}{e^y - 1} \, dy \, dx , \]

where \(\log \) is the natural log as usual.

Problem 28.9 (10 points):

Find the integral

\[\int \int \int_E f(x, y, z) \, dz \, dy \, dx \]

of the function

\[f(x, y, z) = x + (x^2 + y^2 + z^2)^4 \]

over the solid

\[E = \{ (x, y, z) \mid 1 \leq x^2 + y^2 + z^2 \leq 4, \ z \geq 0 \} . \]

Problem 28.10 (10 points):

Find the surface area of

\[r(x, y) = \begin{bmatrix} 2x \\ y \\ \frac{x^3}{3} + y \end{bmatrix} \]

with \(0 \leq x \leq 2 \) and \(0 \leq y \leq x^3 \).
Lectured 29.1. A vector field F assigns to every point $x \in \mathbb{R}^n$ a vector $F(x) = [F_1(x), \ldots, F_n(x)]^T$ such that every $F_k(x)$ is a continuous function. We think of F as a force field. Let $t \rightarrow r(t) \in \mathbb{R}^n$ be a curve parametrized on $[a, b]$. The integral

$$\int_C F \cdot dr = \int_a^b F(r(t)) \cdot r'(t) \, dt$$

is called the line integral of F along C. We think of $F(r(t)) \cdot r'(t)$ as power and $\int_C F \cdot dr$ as the work. Even so F and r are column vectors, we write in this lecture $[F_1(x), \ldots, F_n(x)]$ and $r' = [x'_1, \ldots, x'_n]$ to avoid clutter. Mathematically, $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ can also be seen as a coordinate change, we think about it differently however and draw a vector $F(x)$ at every point x.

29.2. If $F(x,y) = [y, x^3]$, and $r(t) = [\cos(t), \sin(t)]$ a circle with $0 \leq t \leq 2\pi$, then $F(r(t)) = [\sin(t), \cos^3(t)]$ and $r'(t) = [-\sin(t), \cos(t)]$ so that $F(r(t)) \cdot r'(t) = -\sin^2(t) + \cos^4(t)$. The work is $\int_C F \cdot dr = \int_0^{2\pi} -\sin^2(t) + \cos^4(t) \, dt = -\pi/4$. Figure 1 shows the situation. We go more against the field than with the field.

29.3. A vector field F is called a gradient field if $F(x) = \nabla f(x)$ for some differentiable function f. We think of f as the potential. The first major theorem in vector calculus is the fundamental theorem of line integrals for gradient fields in \mathbb{R}^n:

Theorem: $\int_a^b \nabla f(r(t)) \cdot r'(t) \, dt = f(r(b)) - f(r(a))$.

Figure 1. A line integral in the plane and a line integral in space.
29.4. Proof: by the chain rule, $\nabla f(r(t)) \cdot r'(t) = \frac{d}{dt} f(r(t))$. The fundamental theorem of calculus now gives $\int_a^b \frac{d}{dt} f(r(t)) \, dt = f(r(b)) - f(r(a))$. QED.

29.5. As a corollary we immediately get path independence

If C_1, C_2 are two curves from A to B then $\int_{C_1} F \cdot dr = \int_{C_2} F \cdot dr$,

as well as the closed loop property:

If C is a closed curve and $F = \nabla f$, then $\int_C F \cdot dr = 0$.

29.6. Is every vector field F a gradient field? Let's look at the case $n = 2$, where $F = [P, Q]$. Now, if this is equal to $[f_x, f_y] = [P, Q]$, then $P_y = f_{xy} = f_{yx} = Q_x$. We see that $Q_x - P_y = 0$. More generally, we have the following Clairaut criterion:

Theorem: If $F = \nabla f$, then $\text{curl}(F)_{ij} = \partial_x F_i - \partial_x F_j = 0$.

Proof: this is a consequence of the Clairaut theorem.

29.7. The field $F = [0, x]$ for example satisfies $Q_x - P_y = 1$. It cannot be a gradient field. Now, if $Q_x - P_y = 0$ everywhere in the plane, how do we find the potential f?

Integrate $f_x = P$ with respect to x and add a constant $C(y)$.

Differentiate f with respect to y and compare f_y with Q. Solve for $C(y)$.

Figure 2. The vector field $F = \nabla f$ for $f(x, y) = y^2 + 4yx^2 + 4x^2$. We see the flow lines, curves with $r'(t) = F(r(t))$. Going with the flow increases f because $F(r(t)) \cdot r'(t) = |\nabla f(t)|^2$ is equal to $d/dt f(r(t))$.
29.8. Example: find the potential of $F(x, y) = [P, Q] = [2xy^2 + 3x^2, 2x^2y + 3y^2]$. We have $f(x, y) = \int_0^x 2xy^2 + 3x^2 \, dx + C(y) = x^3 + x^2y^2 + C(y)$. Now $f_y(x, y) = 2x^2y + C'(y) = 2x^2y + 3y^2$ so that $C'(y) = 3y^2$ or $C(y) = y^3$ and $f = x^3 + x^2y^2 + y^3$.

29.9. Here is a direct formula for the potential. Let C_{xy} be the straight line path which goes from $(0, 0)$ to (x, y).

Theorem: If F is a gradient field then $f(x, y) = \int_{C_{xy}} F \cdot dr$.

29.10. Proof: By the fundamental theorem of line integral, we can replace C_{xy} by a path $[t, 0]$ going from $(0, 0)$ to $(x, 0)$ and then with $[x, t]$ to (x, y). The line integral is $f(x, y) = \int_0^x [P, Q] \cdot [1, 0] \, dt + \int_0^y [P, Q] \cdot [0, 1] \, dt = \int_0^x P(t, 0) \, dt + \int_0^y Q(x, t) \, dt$. We see that $f_y = Q(x, y)$. If we use the path going $(0, 0)$ to $(0, y)$ and to (x, y) instead, the line integral is $f(x, y) = \int_0^y [P, Q] \cdot [0, 1] \, dt + \int_0^x [P, Q] \cdot [1, 0] \, dt = \int_0^y Q(0, t) \, dt + \int_0^x P(t, y) \, dt$. Now, $f_y = P(x, y)$. QED.

Examples

29.11. Find $\int_{C} [2xy^2 + 3x^2, 2x^2y + 3y^2] \cdot dr$ for a curve $r(t) = [t \cos(t), t \sin(t)]$ with $t \in [0, 2\pi]$. Answer: we found already $F = \nabla f$ with $f = x^3 + x^2y^2 + y^3$. The curve starts at $A = (1, 0)$ and ends at $B = (2\pi, 0)$. The solution is $f(B) - f(A) = 8\pi^3$.

29.12. If $F = E$ is an electric field, then the line integral $\int_a^b E(r(t)) \cdot r'(t) \, dt$ is an electric potential. In celestial mechanics, if F is the gravitational field, then $\int_a^b F(r(t)) \cdot r'(t) \, dt$ is a gravitational potential difference. If $f(x, y, z)$ is a temperature and $r(t)$ the path of a fly in the room, then $f(r(t))$ is the temperature, which the fly experiences at the point $r(t)$ at time t. The change of temperature for the fly is $\frac{d}{dt} f(r(t))$. The line-integral of the temperature gradient ∇f along the path of the fly coincides with the temperature difference.

29.13. A device which implements a non-gradient force field is called a perpetual motion machine. It realizes a force field for which the energy gain is positive along some closed loop. The first law of thermodynamics forbids the existence of such a machine. It is informative to contemplate the ideas which people have come up and to see why they don’t work. We will look at examples in the seminar.

29.14. Let $F(x, y) = [P, Q] = [\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}]$. Its potential $f(x, y) = \arctan(y/x)$ has the property that $f_x = (-y/x^2)/(1 + y^2/x^2) = P, f_y = (1/x)/(1 + y^2/x^2) = Q$. In the seminar you ponder the riddle that the line integral along the unit circle is zero:

$$\int_0^{2\pi} \left[\frac{-\sin(t)}{\cos^2(t) + \sin^2(t)}, \frac{\cos(t)}{\cos^2(t) + \sin^2(t)} \right] \cdot [\sin(t), \cos(t)] \, dt = \int_0^{2\pi} 1 \, dt = 2\pi.$$

The vector field F is called the vortex.
Figure 3. The vortex vector field has a singularity at (0, 0). All the curl is concentrated at (0, 0).

Homework

Problem 29.1: Let C be the space curve $r(t) = [\cos(t), \sin(t), \sin(t)]$ for $t \in [0, \pi/2]$ and let $F(x, y, z) = [y, x, 15]$. Calculate the line integral $\int_C F \cdot dr$.

Problem 29.2: What is the work done by moving in the force field $F(x, y) = [2x^3 + 1, 4\pi \sin(\pi y^4) y^3]$ along the quartic $y = x^4$ from $(-1, 1)$ to $(1, 1)$?

Problem 29.3: Let F be the vector field $F(x, y) = [-y, x]/2$. Compute the line integral of F along the curve $r(t) = [a \cos(t), b \sin(t)]$ with width $2a$ and height $2b$. The result should depend on a and b.

Problem 29.4: Archimedes swims around a curve $x^{22} + y^{22} = 1$ in a hot tub, in which the water has the velocity $F(x, y) = [3x^3 + 5y, 10y^4 + 5x]$. Calculate the line integral $\int_C F \cdot dr$ when moving from $(1, 0)$ to $(-1, 0)$ along the curve.

Problem 29.5: Find a closed curve $C : r(t)$ for which the vector field $F(x, y) = [P(x, y), Q(x, y)] = [xy, x^2]$ satisfies $\int_C F(r(t)) \cdot r'(t) \, dt \neq 0$.
Unit 30: Perpetual motion machines

Seminar

30.1. Wouldn’t it be nice to have a machine which would produce energy from nothing? Humans have dreamed about this for centuries. There is no mathematical proof that such a machine can not exist. It is an experimental fact that all isolated physical process we know preserve energy. \(^1\) In experiments, we see that all basic forces of nature are gradient fields. So, how come we can harvest energy from the wind force for example? Wind energy is driven by external sources, in particular the solar energy which heats up different parts of the earth surface. The sun energy comes from nuclear processes, mainly the fusion process.

30.2. It is a nice sport to come up with machines which seem to work or then to analyze a given machine which has been constructed and to find why it fails.

30.3. Our first machine is a circular pipe which is half filled with water. On the side without water, the gravitational force pulls a wooden ball down. On the water side, the buoyancy force pulls the ball up. Valves are in place so that the water stays in place.

Problem A: Analyse the pipe machine. You can assume that operating the valves uses arbitrary little energy and when opening one of the valves, the water stays in place.

![Figure 1. A half filled pipe produces a non-conservative force field.](image)

\(^1\)Except for very short time, where virtual particles can appear and disappear in a short time frame.
30.4. An other class of machines uses magnets. Magnets are arranged in a circular way to produce a circular non-conservative force field in which a magnet is pushed forward.

![Magnets](image)

Figure 2. Magnets arranged so that a magnet always gets pushed forward (positive parts of magnets repel, equal parts attract).

Problem B: Analyze the magnet machine. Experiment with real magnets.

30.5. And then there are mechanical machines. Here is an example with weights.

![Hammer](image)

Figure 3. Mechanical perpetual motion machine: the torque on the left hand side is larger as the hammers are further out. The wheel moves counter clockwise.

Problem C: Analyze the hammer machine using line integrals using the gravitational potential $f(x, y, z) = z$.
30.6. You all know that a sponge, a paper or a plant put into water lifts up the water using the capillary effect. In narrow spaces, this force can beat gravity.

Problem D: Why does the “capillary lifting machine” not work?

30.7. Why are there no “perpetual motion machines”? There is no fundamental principle which forbids it. We could certainly produce a computer simulation of a world, where energy conservation fails. But it is like with “time machines”. If such a machine would exist in our physical world, there would be serious dangers luring for a physicist who studies it. Benjamin Peirce refers in his book “A system of analytic mechanics” of 1855 to the “Antropic Principle”: “Such a series of motions would receive the technical name of a ‘perpetual motion’ by which is to be understood, that of a system which would constantly return to the same position, with an increase of power, unless a portion of the power were drawn off in some way and appropriated, if it were desired, to some species of work. A constitution of the fixed forces, such as that here supposed and in which a perpetual motion would possible, may not, perhaps, be incompatible with the unbounded power of the Creator; but, if it had been introduced into nature, it would have proved destructive to human belief, in the spiritual origin of force, and the necessity of a First Cause superior to matter, and would have subjected the grand plans of Divine benevolence to the will and caprice of man”.

Problem E: Can you reformulate this “anthropic principle” in more modern terms? What could be the fate of a universe in which energy conservation does not hold in macroscopic physics?

30.8. Non-conservative fields can also be generated by optical illusion as M.C. Escher did. The illusion suggests the existence of a force field which is not conservative. Can you figure out how Escher’s pictures “work”? This is part of the homework. Here is a last possible task for the seminar:

Problem F: Find some perpetual motion machine on the web (i.e. youtube). If you find something interesting, share with others. Why does it not work?
Problem G: Finally, if you have adventure spirit, Come up with a machine which actually works, get some seed money from investors or by crowd sourcing and then start production.

![Image of Escher Stairs](image)

Figure 5. Escher Stairs.

Homework

30.1 The force field $F(x, y) = [-y/(x^2 + y^2), x/(x^2 + y^2)]$ produces a non-conservative force. A body put near the vortex will spin around it. Check that the field is a gradient field $F = \nabla f$ with $f = \arctan(y/x)$. Draw the level curves of f, take a path $r(t) = [\cos(t), \sin(t)]$ and verify that $d/dt f(r(t)) = \nabla f(r(t)) \cdot r'(t) = 1$ for all t so that $\int_0^{2\pi} \nabla f(r(t)) \cdot r'(t) dt = 2\pi$. Why does this not contradict the fundamental theorem?

30.2 If $H(x, y)$ is a function of two variables, then a curve $r(t) = [x(t), y(t)]$ satisfying $x'(t) = H_y(x, y)$ and $y'(t) = -H_x(x, y)$ is called a solution of the Hamiltonian system. The function $H(x, y)$ is called the energy of the system. Verify that $d/dt H(x(t), y(t)) = 0$ meaning that energy is conserved.

30.3 Design a vector field $F(x, y) = [P(x, y), Q(x, y)]$ which has the property such that for any closed curve $C: r(t)$ in $\{x^2 + y^2 > 1\}$ winding once around the hole $\{x^2 + y^2 \leq 1\}$, the line integral $\int_C F(r(t)) \cdot r'(t) dt$ is a multiple of 6π. An example of a curve winding once around is $r(t) = [2\cos(t), 2\sin(t)]$ with $0 \leq t \leq 2\pi$.

30.4 A heat engine is a system that convert heat energy into mechanical energy. We have seen such a machine in class. How does it work?

30.5 Explain the Escher waterfall illusion.

Oliver Knill, knill@math.harvard.edu, Math 22a, Harvard College, Fall 2018
Unit 31: Green’s theorem

Lecture

31.1. For a C^1 vector field $F = [P, Q]$ in a region $G \subset \mathbb{R}^2$, the curl is defined as $\text{curl}(F) = Q_x - P_y$. Assume the boundary C of G oriented so that the region G is to the left (meaning that if $r(t) = [x(t), y(t)]$ is a parametrization, then the turned velocity $[-y'(t), x'(t)]$ cuts through G close to $r(t)$). Green’s theorem assures that if C is made of a finite collection of smooth curves, then

Theorem: $\int \int_G \text{curl}(F) \, dxdy = \int_C F(r(t)) \cdot dr(t)$.

31.2. Proof. It is enough to prove the theorem for $F = [0, Q]$ or $F = [P, 0]$ separately and for regions G which are both “bottom to top” $G = B = \{ a \leq x \leq b, c(x) \leq y \leq d(x) \}$ and “left to right” $G = L = \{ c \leq y \leq d, a(y) \leq x \leq b(y) \}$. For $F = [P, 0]$, use a bottom to top integral, where the two vertical integrals along $r(t) = [b,t]$ and $r(t) = [a,t]$ are zero. The integrals along $r(t) = [t, c(t)]$ and $r(t) = [t, d(t)]$ give

$$ \int_b^b P(t, c(t)) \, ds - \int_a^b P(t, d(t)) \, ds = \int_a^b \int_{c(t)}^{d(t)} -P_y(t, s) \, ds \, dt = \int \int_G -P_y \, ds \, dt. $$

For $F = [Q, 0]$, use a left to right integral, where the bottom and top integrals are zero and where

$$ \int_c^d Q(b(t), t) \, dt - \int_c^d Q(a(t), t) \, dt = \int_c^d \int_{a(s)}^{b(s)} Q_x(t, s) \, dtds = \int \int_G Q_x \, ds \, dt. $$

In general, write $F = [0, Q] + [P, 0]$, use the first computation for $[P, 0]$ and the second computation for $[0, Q]$. In general, cut G along a small grid so that each part is of both types. When adding the line integrals, only the boundary survives. QED.

Figure 1. To prove Green cut the region into regions which are “bottom to top” and “left to right”. Interior cuts cancel.
31.3. To see that we can cut G into regions of both types, turn the coordinate system first a tiny bit so that no horizontal nor vertical line segments appear at the boundary. This is possible because we assume the boundary to consist of finitely many smooth pieces. Now also use a slightly turned grid to chop up the region into smaller parts. Now we have a situation where each piece has the form $G = \{(x, y) \mid c(x) \leq y \leq d(x)\} = \{(x, y) \mid a(y) \leq x \leq b(y)\}$, where a, b, c, d are piecewise smooth functions.

31.4. Green assures:

Theorem: If F is irrotational in \mathbb{R}^2, then F is a gradient field.

31.5. There are four properties which are equivalent if F is differentiable in \mathbb{R}^2: A) F is a gradient field, B) F has the closed loop property, C) F has the path independence property, and D) F is irrotational. We have seen in the proof seminar that the vortex vector field $F = [-y, x]/(x^2 + y^2)$ is a counter example to a more general theorem if the field is not differentiable at some point.

Applications

31.6. Green’s theorem allows to compute areas. If $\text{curl}(F) = 1$ and C is a curve enclosing a region G, then $\text{Area}(G) = \int_C F(r(t)) \cdot r'(t) \, dt$. For example, with $F = [-y, x]/2$, and $r(t) = [a \cos(t), b \sin(t)]$, then $\int_C F \cdot dr = \int_0^{2\pi} [-b \sin(t), a \cos(t)] \cdot [-a \sin(t), b \cos(t)]/2 \, dt = \int_0^{2\pi} ab/2 \, dt = \pi ab$ is the area of the ellipse $x^2/a^2 + y^2/b^2 = 1$.

31.7. What is the area of the region enclosed by $r(t) = [\cos(t), \sin(t) + \cos(22t)/22]$?

Take $F(x, y) = [0, x]$. The line integral is $\int_0^{2\pi} [0, \cos(t)] \cdot [-\sin(t), \cos(t) - \sin(22t)] \, dt = \pi$.

31.8. The planimeter is an analogue computer which computes the area of regions. It works because of Green’s theorem. The vector $F(x, y)$ is a unit vector perpendicular to the second leg $(a, b) \to (x, y)$ if $(0, 0) \to (a, b)$ is the second leg. Given (x, y) we find (a, b) by intersecting two circles. The magic is that the curl of F is constant 1. The following computer assisted computation proves this:

```math
s = \textbf{Solve}\left[\{(x-a)^2+(y-b)^2==1,a^2+b^2==1\},\{a, b\}\right];
\{A,B\} = \textbf{First}\left[\{a, b\} / . s\right]; F = \{-y-B, x-A\}; \textbf{Simplify}\left[\text{Curl}\left[F,\{x, y\}\right]\right]
```

![Figure 2](image-url) The planimeter is an analog computer which allows to compute the area of a region enclosed by a curve.
31.9. Problem: Compute \(F(x, y) = [x^2 - 4y^3/3, 8xy^2 + y^5] \) along the boundary of the rectangle \([0, 1] \times [0, 2]\) oriented counter clockwise. Solution: Since \(\text{curl}(F) = Q_x - P_y = 8y^2 + 4y^2 = 12y^2 \) we have \(\int_C F \cdot dr = \int_0^1 \int_0^2 12y^2 \, dy \, dx = 32. \)

31.10. Problem: Find the line integral of the vector field

\[
F(x, y) = \left[\frac{x + y}{3x + 3y^2} \right]
\]

along the boundary \(C \) of the quadratic Koch island. The counter clockwise oriented \(C \) encloses the island \(G \) which has 289 unit squares. Solution: \(\text{curl}(F) = 2 \), so that \(\iint_G 2 \, dA = 2 \text{Area}(G) = 578. \)

![Figure 3. Koch islands constructed by a Lindenmayer system, a recursive grammar. It starts with \(F + F + F + F \) and recursion \(F \rightarrow F - F + F + F \). [F="moving forward by 1", + = “turn by 90 degrees”, − = “turn by (−90) degrees”]

Homework

Problem 31.1: Calculate the line integral \(\int_C F \cdot dr \) with \(F = [-22y + 3x^2 \sin(y) + 2222 \sin(x^6), x^3 \cos(y) + 234y^2 \sin(y)]^T \) along a triangle \(C \) which traverses the vertices \((0, 0), (7, 0)\) and \((7, 11)\) back to \((0, 0)\) in this order.

Problem 31.2: A classical problem asks to compute the area of the region bounded by the hypocycloid

\[
r(t) = [4 \cos^3(t), 4 \sin^3(t)], 0 \leq t \leq 2\pi.
\]

We can not do that directly so easily. Guess which theorem to use, then use it!

Problem 32.3: Find \(\int_C [\sin(\sqrt{1 + x^3}), 7x] \cdot dr \), where \(C \) is the boundary of the region \(K(n) \). You see in the picture \(K(0), K(1), K(2), K(3), K(4) \). The first \(K(0) \) is an equilateral triangle of length 1. The second \(K(1) \) is \(K(0) \) with 3 equilateral triangles of length 1/3 added. \(K(2) \) is \(K(1) \) with \(3 \times 4^1 \) equilateral triangles of length 1/9 added. \(K(3) \) is \(K(2) \) with \(3 \times 4^2 \) of length 1/27 added and \(K(4) \) is \(K(3) \) with \(3 \times 4^3 \) triangles of length 1/81 added. What is the line integral in the Koch Snowflake limit \(K = K(\infty) \)? The curve \(K \) is a fractal of dimension \(\log(4)/\log(3) = 1.26 \ldots \).
Problem 32.4: Given the scalar function $f(x, y) = x^5 + xy^4$, compute the line integral of

$$F(x, y) = [5y - 3y^2, -6xy + y^4] + \nabla(f)$$

along the boundary of the Monster region given in the picture. There are four boundary curves, oriented as shown in the picture: a large ellipse of area 16, two circles of area 1 and 2 as well as a small ellipse (the mouth) of area 3. “Mike” from Monsters, Inc. warns you about orientations!

Problem 32.5: Let C be the boundary curve of the white Yang part of the Yin-Yang symbol in the disc of radius 6. You can see in the image that the curve C has three parts, and that the orientation of each part is given. Find the line integral of the vector field

$$F(x, y) = [-y + \sin(e^x), x]^T$$

along C. There are three separate line integrals.
Unit 32: Stokes theorem

Lecture

32.1. Given a C^1 surface $S = r(G)$ in \mathbb{R}^3 and a differentiable vector field $F = [P, Q, R]$, we can form the flux integral

$$\iiint_S F \cdot dS = \iiint_G F(r(u, v)) \cdot r_u \times r_v \, dudv.$$

For $F = [P, Q, R]$, the curl is defined as $\nabla \times F = [R_y - Q_z, P_z - R_z, Q_x - P_y]$. The Stokes theorem tells that if $C = r(I)$ is the boundary of $S = r(G)$ and I is oriented so that G is to the left, then

Theorem: $\iiint_S \text{curl}(F) \cdot dS = \int_C F \cdot dr.$

32.2. Proof. The key is the “important formula”

$$\text{curl}(F)(r(u, v)) \cdot (r_u \times r_v) = F_u \cdot r_v - F_v \cdot r_u.$$

This is straightforward and done in class. Now define the field $\tilde{F}(u, v) = [\tilde{P}, \tilde{Q}] = [F(r(u, v)) \cdot r_u(u, v), F(r(u, v)) \cdot r_v(u, v)]$ in the uv-plane. The 2-dimensional curl of \tilde{F} is $\tilde{Q}_u - \tilde{P}_v = F_u \cdot r_v - F_v \cdot r_u$ as we can see by using Clairaut $r_{uv} = r_{vu}$. The Stokes theorem is now a direct consequence of Green’s theorem proven last time. QED.

\[1\]

Figure 1. The paddle wheel measures curl. The boundary C has S “to the left”. The pant surface illustrates a “cobordism”.

\[1\]Mathematicians say: “we pulled back the field from \mathbb{R}^3 to \mathbb{R}^2 along the parametrization”.

32.3. Problem: Compute the flux of $F(x, y, z) = [0, 0, 8z^2]^T$ through the upper half unit sphere S oriented outwards. **Solution:** we parametrize the surface as $r(u, v) = [\cos(u) \sin(v), \sin(u) \sin(v), \cos(v)]^T$. Because $r_u \times r_v = -\sin(v)r$, this parametrization has the wrong orientation! We continue nevertheless and just change the sign at the end. We have $F(r(u, v)) = [0, 0, 8\cos^2(v)]^T$ so that

$$\int_0^{2\pi} \int_0^{\pi/2} -[0, 0, 8\cos^2(v)]^T \cdot [\cos(u) \sin^2(v), \sin(u) \sin^2(v), \cos(v) \sin(v)]^T dvdu.$$

The flux integral is $\int_0^{2\pi} \int_0^{\pi/2} -8 \cos^3(v) \sin(v) dvdu$ which is $2\pi \cdot 8 \cos^4(v)/4|_0^{\pi/2} = -4\pi$. The flux with the outward orientation is $+4\pi$. We could not use the Stokes theorem here because we don’t deal with the flux of the curl but the flux of F itself.

32.4. Problem: What is the value of $\int_C F \cdot dr$ if $F = [\sin(\sin(x)) + z^2, e^y + x^3 + y^2, \sin(y^2) + z^2]$ and C is the unit polygon $(0, 0, 0) \rightarrow (1, 0, 0) \rightarrow (1, 1, 0) \rightarrow (0, 1, 0) \rightarrow (0, 0, 0)$? **Solution:** use Stokes theorem. The curl of F is $[2y \cos(y^2), 2z, 3xz^2]$. The surface $S : r(u, v) = [u, v, 0]$ with $0 \leq u \leq 1$ and $0 \leq v \leq 1$ has C as boundary. Stokes allows to compute $\iint_S \text{curl}(F) \cdot dS$ instead. Since $r_u \times r_v = [0, 0, 1]$, the flux integral is $\int_0^1 \int_0^1 3u^2 dvdu = 1$. The computation of the line integral would have been more painful.

32.5. Problem: Compute the flux of the curl of $F(x, y, z) = [0, 1, 8z^2]^T$ through the upper half sphere S oriented outwards. **Solution:** Great, it is here, where we can use Stokes theorem $\iint_S \text{curl}(F) \cdot dS = \int_C F \cdot dr$, where C is the boundary curve which can be parametrized by $r(t) = [\cos(t), \sin(t), 0]^T$ with $0 \leq t \leq 2\pi$. Before diving into the computation of the line integral, it is good to check, whether the vector field is a gradient field. Indeed, we see that $\text{curl}(F) = [0, 0, 0]$. This means that $F = \nabla f$ for some potential f implying by the fundamental theorem of line integrals that $\int_C F \cdot dr = 0$. But wait a minute, if the curl of F is zero, couldn’t we just have seen directly that the flux of the curl through the surface is zero? Yes, we could have seen that before: for a gradient field, the flux of the curl of F through a surface is always zero, for the simple reason that the curl of such a field is zero.

32.6. Problem. What is the flux of the curl of $F(x, y, z) = [\sin(xy)z, ze^{\cos(x+y)}z, x^5 + z^{22}]$ through the lower ellipsoid S given by $x^2/4 + y^2/9 + z^2/16 = 1$, $z < 0$? **Solution:** by Stokes theorem, it is the line integral $\int_C F \cdot dr$. Through the boundary $r(t) = [2\cos(t), 3\sin(t), 0]$. But in the xy-plane $z = 0$, the field F is zero. The result is zero.

32.7. Problem. What is the flux of the curl of F through an ellipsoid $x^2/4 + y^2/9 + z^2/16 = 1$? **Solution:** We can cut the ellipsoid into two parts to get two surfaces with boundary. The upper part $S_+ = \{(x, y, z) \in S, z > 0\}$ has the boundary $C_+ : r(t) = [2\cos(t), 3\sin(t), 0]$ which matches the orientation of the surface. Stokes theorem tells that $\iint_{S_+} \text{curl}(F) \cdot dS = \int_{C_+} F \cdot dr$. The lower part $S_- = \{(x, y, z) \in S, z < 0\}$ has the boundary $C_- : r(t) = [2\cos(t), -3\sin(t), 0]$ which matches the orientation of the lower part. Stokes theorem tells that $\iint_{S_-} \text{curl}(F) \cdot dS = \int_{C_-} F \cdot dr$. Together we have $\int_{C_-} F \cdot dr + \int_{C_+} F \cdot dr = 0$ as the line integrals have just different signs. The result is zero.
32.8. The left hand side of the important formula (it “imports” the curl) is defined only in three dimensions. But the right hand side also makes sense in \(\mathbb{R}^n \). It is \(\text{tr}((dF)^*dr) \), where * rotates the 2-frame by 90 degrees. The Stokes theorem for 2-surfaces works for \(\mathbb{R}^n \) if \(n \geq 2 \). For \(n = 2 \), we have with \(x(u,v) = u, y(u,v) = v \) the identity \(\text{tr}((dF)^*dr) = Q_x - P_y \), which is Green’s theorem. Stokes has the general structure \[\int_G \delta F = \int_{\delta G} F \], where \(\delta F \) is a derivative of \(F \) and \(\delta G \) is the boundary of \(G \).

Theorem: Stokes holds for fields \(F \) and 2-dimensional \(S \) in \(\mathbb{R}^n \) for \(n \geq 2 \).

32.9. Why are we interested in \(\mathbb{R}^n \) and not only in \(\mathbb{R}^3 \)? One example is that 2-dimensional surfaces appear as “paths” which a moving string in 11 dimension traces. More important maybe is that statisticians work by definition in high dimensional spaces. When dealing with \(n \) data points, one works in \(\mathbb{R}^n \). Why would you care about theorems like Stokes in statistics? As a matter of fact, integral theorems in general allow to simplify computations. As we have seen in Green’s theorem, when computing the sum over all the curls, there are cancellations happening in the inside. Integral theorems “see these cancellations” and allow to bypass and ignore stuff which does not matter.

32.10. The fundamental theorem of line integrals \(\int_a^b \text{tr}(df(r(t))dr(t))dt = f(r(b)) - f(r(a)) \) holds also in \(\mathbb{R}^n \). The flux integral

\[\int_G \text{tr}(F^*(r(u,v))dr(u,v)) \, dudv \]

is the analogue of a line integral in two dimensions. Written like this, we don’t need the cross product. And not yet the language of differential forms.

32.11. Stokes deals with “fields” and “space”. What happens if the field is space itself, that is if \(F^* = dr \)? It is of interest. For \(m = 1 \), and \(F = dr^T \), then \(\int_a^b |dr|^2 \, dt \) is the action integral in physics. A general Maupertius principle assures that it is equivalent to the arc length \(\int_a^b |dr| \, dt \) in the sense that minimizing arc length between two points is equivalent to minimize the action integral (which is more like the energy one uses to get from the first point to the second). Now, in two dimensions we have \(\int_G \text{tr}(dr^T dr) \, dudv \). We can compare this with \(\int_G \text{det}(dr^T dr) \, dudv \) which is called the Nambu-Goto action, which resembles the surface area \(\int_G \sqrt{\text{det}(dr^T dr)} \, dudv \) also called the Polyakov action. Nature likes to minimize. Free particles move on shortest paths, minimize the arc length. Maupertius tells that minimizing the length \(\int_A^B |r'(t)| \, dt \) of a path equivalent to minimizing \(\int_A^B r'(t) \cdot r'(t) \, dt \) which essentially is the integrated kinetic energy or gasoline use to go from A to B. For the purpose of minimizing stuff this also works for two dimensional actions. Minimizing the surface area \(\int_G |r_u \times r_v| \, dudv \) among all surfaces connecting two one dimensional curves is equivalent to minimize \(\int_G |r_u \times r_v|^2 \, dudv \). Also in higher dimensions, Nambu-Goto and Polyakov are equivalent.

\(^2\)I learned the “important formula” from Andrew Cotton-Clay in 2009: http://www.math.harvard.edu/archive/21a_2009/exhibits/stokesgreen
Problem 32.1: Use Stokes to find $\int_C F \cdot dr$, where $F(x,y,z) = [12x^2 y, 4x^3, 12xy + e^{(e^z)}]$ and C is the curve of intersection of the hyperbolic paraboloid $z = y^2 - x^2$ and the cylinder $x^2 + y^2 = 1$, oriented counterclockwise as viewed from above.

Problem 32.2: Evaluate the flux integral $\int\int_S \text{curl}(F) \cdot dS$, where $F(x,y,z) = [xe^{y^2}z^3 + 2xyze^{x^2+z}, xe^{y^2}z^3 + ye^{x^2+z} + ze^x]T$ and where S is the part of the ellipsoid $x^2 + y^2/4 + (z+1)^2 = 2$, $z > 0$ oriented so that the normal vector points upwards.

Problem 32.3: Find the line integral $\int_C F \cdot dr$, where C is the circle of radius 3 in the xz-plane oriented counter clockwise when looking from the point $(0,1,0)$ onto the plane and where F is the vector field

$F(x,y,z) = [4x^2z + x^5, \cos(e^y), -4xz^2 + \sin(\sin(z))]T$.

Use a convenient surface S which has C as a boundary.

Problem 32.4: Find the flux integral $\int\int_S \text{curl}(F) \cdot dS$, where $F(x,y,z) = [2 \cos(\pi y)e^{2x} + z^2, x^2 \cos(z\pi/2) - \pi \sin(\pi y)e^{2x}, 2xz]T$ and S is the surface parametrized by

$r(s,t) = [(1 - s^{1/3})\cos(t) - 4s^2, (1 - s^{1/3})\sin(t), 5s]T$

with $0 \leq t \leq 2\pi, 0 \leq s \leq 1$ and oriented so that the normal vectors point to the outside of the thorn.

Problem 32.5: Assume S is the surface $x^{22} + y^8 + z^6 = 100$ and $F = [e^{e^{2z}}, 22x^2yz, x - y - \sin(zx)]$. Explain why $\int\int_S \text{curl}(F) \cdot dS = 0$.

Oliver Knill, knill@math.harvard.edu, Math 22A, Harvard College, Fall 2018
Unit 33: Discrete Vector Calculus

Seminar

33.1. In this seminar, we replace the space \(\mathbb{R}^n \) with a finite graph \(G = (V, E) \), where \(V \) is a set of vertices called **nodes** and \(E \) is a set of **edges** called connections. A **scalar field** is a function \(f \) which assigns to every vertex \(x \) a function value \(f(x) \). We assume the vertices to be ordered leading to an order of the edges: draw an arrow \(a \to b \) if \(a < b \). This a priori order has no effect on any of the theorems. A **vector field** assigns to every edge a number \(F \). A **curve** is a list of nodes \(x_1, x_2, \ldots, x_n \) such that \(x_1 \) is connected to \(x_2 \), \(x_2 \) is connected to \(x_3 \) etc. The gradient \(\nabla f \) of a scalar function \(f \) is the vector field \(F(a, b) = f(b) - f(a) \). The line integral \(\int_C F \cdot dr \) is defined as \(\sum_{e \in C} F(e) de \). We just add up the function values of \(F \) along the curve \(C \), positive \(de = 1 \) if we go with the arrow, negative \(de = -1 \) if we go against the arrow.

Problem A: Check the **closed loop property** of the gradient field \(\nabla f \) shown in the graph of Figure 1.

![Figure 1](image)

Figure 1. We see a graph with 4 vertices and 5 edges. The scalar function \(f \) is given by the values on the round vertices. It defines a gradient vector field \(F = \nabla f \) which is a function on edges.

33.2. The **discrete fundamental theorem of line integrals** is:

Theorem: If \(F = \nabla f \) is a gradient field and \(C \) is a curve from \(a \) to \(b \), then \(\int_C \nabla f \cdot dr = f(b) - f(a) \).
Problem B: Prove the discrete fundamental theorem of line integrals by induction on the length of the curve C.

33.3. Let’s look at some terminology. Given a vertex x in a graph G, the unit sphere $S(x)$ of x is the sub-graph generated by the set of vertices directly attached to x. The unit sphere of the vertex labeled 11 in Figure 2 for example is the circular graph generated by the vertices $\{2, 4, 9, 8, 7, 9\}$. It is a “circle”. The unit sphere of the vertex with label 4 in that figure is the graph generated by the vertices $\{11, 7, 1\}$. It is a linear graph, a half circle.

33.4. A graph is called a discrete two-dimensional region, if every unit sphere $S(x)$ is a circular graph with 4 or more vertices or a linear graph with 2 or more vertices. The set of vertices for which the unit sphere is circular form the interior of the region. The other vertices form the boundary of the region. A two dimensional region without boundary is called closed. In Figure 2 for example, there are 4 interior points and 9 boundary points. In Figure 6, we see a closed region.

33.5. The curl of a vector field F is a function on the triangles T of G. To get the value of the triangle (a, b, c) we form the line integral of F along the curve $C: a \to b \to c \to a$. Each triangle is assumed to be oriented (if drawn in the plane, then counter clockwise).

33.6. Given a function F on the triangles of a region G which is oriented, the flux integral $\iint_G F(x) \, dA$ is defined as $\sum_{t \in T} f(t)$, where T is the set of triangles in G.

![Figure 2](image_url)

Figure 2. A gradient field on a two-dimensional region with boundary. Check that the curl is zero everywhere.

33.7. Here is the discrete Green theorem:

Theorem: If F is a vector field on a 2-dimensional discrete region G, and the boundary C is oriented in a compatible way with the region, then $\iint_G \text{curl}(F) \, dA = \int_C F \cdot dr$.

33.8. Figure 3 shows a region equipped with a vector field F.

Problem C: Write in the curl of the vector field in Figure 3.
Problem D: Prove the discrete Green theorem by induction on the number of triangles.

Homework

33.1 Check that the curl of a gradient field is zero: \(\text{curl}(\text{grad}(f)) = 0 \) for every triangle.

33.2 Figure 4 shows a tree, a graph without closed loops. Find a potential function \(f \). You can assume that the value at the top node is 0. You see then that the function value right below is 1. Get all the function values of the potential.

33.3 Find a vector field on a circular graph with 5 vertices which is not a gradient field.
Figure 5. Fill in a vector field which is not a gradient field.

33.4 Figure 6 shows a vector field on the octahedron a two dimensional discrete sphere. Determine all the curls and check that the sum of all curls is zero.

Figure 6. On a closed discrete 2-dimensional region like an octahedron, the sum of the curls of a vector field are zero.

33.5 Construct your own 2-dimensional discrete region and define a vector field on it, then check the Green theorem by computing the sum of the curls and the line integral along the boundary.
Unit 34: Stokes Applications

Topology

34.1. A region E in \mathbb{R}^n is called **simply connected** if it is connected and for every closed loop C in E there is a continuous deformation C_s of C within G such that $C_0 = C$ and $C_1(t) = P$ is a point. For example, $C(t) = [\cos(t), \sin(t), 0]$ can be deformed in $E = \mathbb{R}^3$ to a point with $C_s(t) = [(1 - s) \cos(t), (1 - s) \sin(t), 0]$ as $C_1(t) = P = [0, 0, 0]$ for all t. Each Euclidean space \mathbb{R}^n is simply connected. The region $G = \{x^2 + y^2 > 0\} \subset \mathbb{R}^3$ is not simply connected as the circle $C : r(t) = [\cos(t), \sin(t), 0]$ winding around the z-axis can not be pulled together to a point within G. The region $G = \{x^2 + y^2 + z^2 > 0\} \subset \mathbb{R}^3$ is simply connected, but $G = \{x^2 + y^2 > 0\}$ in \mathbb{R}^2 is not. Remember that F was called **irrotational** if $\text{curl}(F) = 0$ everywhere.

Theorem: If F is irrotational on a simply connected E then $F = \nabla f$ in E.

34.2. Proof: since E is simply connected and $\text{curl}(F) = 0$, every closed loop C can be filled in by a surface $S = \bigcup_{0 \leq s \leq 1} C_s$ which has the boundary C. Stokes theorem gives $\int_S F \cdot dr = \iint_S \text{curl}(F) \cdot dS = 0$. The closed loop property implies path independence. A potential f can be obtained by fixing a base point p in E, then define for any other point x a path C_{px} going from p to x. The potential function f is then defined as $f(x) = \int_{C_{px}} F \cdot dr$. QED

34.3. The field $F(x, y, z) = [-y/(x^2 + y^2), x/(x^2 + y^2), 0]$ is defined everywhere except on the z-axis. The domain E, where F is defined is not simply connected. There is no global function f which is a potential for F.

34.4. The notion of “simply connectedness” is important in topology. The first solved Millenium problem, the **Poincaré conjecture**, is now a theorem. It tells that a 3-dimensional manifold which is simply connected is topologically equivalent to the 3-sphere $\{x^2 + y^2 + z^2 + w^2 = 1\} \subset \mathbb{R}^4$. In two dimensions, the result was known for a long time already, because the structure of 2-dimensional connected manifolds is known.

Electromagnetism

34.5. The **Maxwell-Faraday equation** in electromagnetism relates the electric field E and the magnetic field B with the partial differential equation $\text{curl}(E) = -\frac{d}{dt}B$. Given a surface S, the flux integral $\iint_S B \cdot dS$ is called the **magnetic flux**
of B through the surface. If we integrate the Maxwell-Faraday equation, we see that $\int_S \text{curl}(E) \cdot dS$ is equal to minus the rate of change of the magnetic flux $-\frac{d}{dt} \int_S B \cdot dS$. Stokes theorem now assures that $\int_S \text{curl}(E) \cdot dS = \int_C E \cdot dr$ is the line integral of the electric field along the boundary. But this is electric potential or voltage. We see:

We can generate an electric potential by changing the magnetic flux.

34.6. Changing the magnetic flux can happen in various ways. We can generate a changing magnetic field by using alternating current. This is how transformers work. An other way to change the flux is to rotate a wire in a fixed magnetic field. This is the principle of the dynamo:

Figure 1. The dynamo, implemented using the ray tracer Povray. Electric current is generated by moving a wire in a fixed magnetic field.

34.7. The vector field $A(x, y, z) = \frac{[-y, x, 0]}{(x^2+y^2+z^2)^{3/2}}$ is called the vector potential of a magnetic field $B = \text{curl}(A)$. The picture shows some flow lines of this magnetic dipole field B. **Problem:** Find the flux of B through the lower half sphere $x^2 + y^2 + z^2 = 1, z \leq 0$ oriented downwards. **Solution:** Since we have an integral of the curl of the vector field A, we use Stokes theorem and integrate $A(r(t))$ along the boundary curve $r(t) = [\cos(t), -\sin(t), 0]$. First of all, we have $A(r(t)) = [\sin(t), \cos(t), 0]$. The velocity is $r'(t) = [-\sin(t), \cos(t), 0]$. The integral is $\int_0^{2\pi} -1 \, dt = -2\pi$.

Figure 2. The flux of the magnetic field B through a surface can be computed with Stokes by computing a line integral of the vector potential A.

34.8. Here are all the four magical Maxwell equations for the electric field E and magnetic field B related to the charge density σ and the electric current j. The constant c is the speed of light. (By using suitable coordinates, one can assume $c = 1$.)

$$
\text{div}(E) = 4\pi \sigma, \text{div}(B) = 0, c \cdot \text{curl}(E) = -B_t, c \cdot \text{curl}(B) = E_t + 4\pi j.
$$
Fluid dynamics

34.9. If \(F \) is the fluid velocity field and \(C \) is a closed curve, then \(\int_C F \cdot dr \) is called the circulation of \(F \) along \(C \). The curl of \(F \) is called the vorticity of \(F \). A vortex line is a flow line of curl(\(F \)). Given a curve \(C \), we can let any point in \(C \) flow along the vorticity field. This produces a vortex tube \(S \). The flux of the vorticity though a surface \(S \) is the vortex strength of \(F \) through \(S \). Stokes theorem implies the Helmholtz theorem.

Theorem: If \(C_s \) flows along \(F \), then \(\int_{C_s} F \cdot dr \) stays constant.

34.10. Proof: Let \(C \) be a closed curve and \(C_s(t) \) be the curve after letting it flow using a deformation parameter \(s \). The deformation produces a tube surface \(S = \bigcup_{s=0}^{t} C_s \) which has the boundary \(C \) and \(C_t \). Since the curl of \(F \) is always tangent to the surface \(S \), the flux of the curl of \(F \) through \(S \) is zero. Stokes theorem implies that \(\int_C F \cdot dr - \int_{C_s} F \cdot dr = 0 \). The negative sign is because the orientation of \(C_s \) is different from the orientation of \(C \) if the surface has to be to the left.

![Figure 3. Helmholtz theorem assures that the circulation along a flux tube is constant. This is a direct application of Stokes theorem: because the curl of \(F \) is tangent to the tube, there is no flux through the tube.](image)

Complex analysis

34.11. An application of Green’s theorem is obtained, when integrating in the complex plane \(\mathbb{C} \). Given a function \(f(z) = u(z) + iv(z) \) from \(\mathbb{C} \) to \(\mathbb{C} \) and a closed path \(C \) parametrized by \(r(t) = x(t) + iy(t) \) in \(\mathbb{C} \), define the complex integral \(\int_a^b (u(x(t) + iy(t)) + iv(x(t) + iy(t)))(x'(t) + iy'(t)) \) \(dt \). This is \(\int_a^b u(r(t))x'(t) - v(r(t))y'(t) \) \(dt \) + \(i \int_a^b v(r(t))x'(t) + u(r(t))y'(t) \) \(dt \). These are two line integrals. The real part is \(F = [u, -v] \), the imaginary part is \(F = [v, u] \). Assume \(C \) bounds a region \(G \), then Green’s theorem tells that the first integral is \(\iint_G -v_x - u_y dxdy \) and the second integral is \(\iint_G u_x - v_y dxdy \). It turns out now that for nice functions \(f \) like polynomials, the Cauchy-Riemann differential equations \(u_x = v_y, v_x = -u_y \) hold so that these line integrals are zero. We have therefore

Theorem: If \(f \) is a polynomial and \(C \) a closed loop, \(\int_C f(z) \) \(dz = 0 \)
Problem 34.1: We can measure how many magnetic monopoles there are in the interior of a closed surface S by computing $\int \int_S B \cdot dS$. We see that $B = \text{curl}(A)$ for a magnetic potential A, which is a vector field. What is $\int \int_S B \cdot dS$? (We will see in the next lecture why this tells about the amount of magnetic monopoles inside S.)

Problem 34.2:

a) Define $\text{div}([P,Q,R]) = P_x + Q_y + R_z$. Check that $\text{div}(\text{curl}(F)) = 0$.

b) Is $\text{div}(\text{grad}(f)) = 0$ for all functions?

c) Is $\text{curl}(\text{curl}(F)) = [0,0,0]$ for all fields?

d) Which of the regions in Figure 4 are simply connected?

e) Which of the capital letters $A - Z$ are not simply connected?

Figure 4. Complement $B \setminus T$ of the solid torus T in a ball B, the solid $\{1 < x^2 + y^2 + z^2 < 4\}$ or the complement of two small balls in a larger ball.

Problem 34.3: Let S be the torus $r(u,v) = [(3 + \cos(u))\cos(v), (3 + \cos(u))\sin(v), \sin(u)]$ and F the vector field $F(x,y,z) = [-y, x, 0]$. What is the flux of F through S? (No computation and no Stokes theorem is needed).

Problem 34.4: If F is a vector field, which is everywhere perpendicular to a surface S pointing in the normal direction of S, and $|F(x,y,z)| = 1$. What is $\int \int_S F \cdot dS$?

Problem 34.5:

a) Can you find a vector field F with $\text{curl}(F) = [0, x^2, 0]$?

b) Can you find a vector field F with $\text{curl}(F) = [0, 0, x^2]$?

c) Can you find a vector field $F = [P, Q, R]$ such that $\text{div}(F) = x^2$?

d) Can you find a gradient field $F = \nabla(f)$ such that $\text{div}(F) = x^2$?

e) Given a function $g(x,y,z)$, find F such that $\text{div}(F) = g$.

Oliver Knill, knill@math.harvard.edu, Math 22a, Harvard College, Fall 2018
Unit 35: Gauss theorem

Lecture

35.1. The divergence of a vector field $F = [P, Q, R]$ in \mathbb{R}^3 is defined as $\text{div}(F) = \nabla \cdot F = P_x + Q_y + R_z$. Let G be a solid in \mathbb{R}^3 bound by a surface S made of finitely many smooth surfaces, oriented so the normal vector to S points outwards. The divergence theorem or Gauss theorem is

Theorem: $\iiint_G \text{div}(F) \, dV = \iint_S F \cdot dS$.

![Figure 1](image1.png) The boundary of a solid is oriented outwards. The divergence measures the expansion of a box flowing in the field. The flux of $\text{curl}(F)$ through a closed surface is 0. No field is created inside.

35.2. Proof. If G is a solid of the form $G = \{(x, y, z)|(x, y) \in U, g(x, y) \leq z \leq h(x, y)\}$ and $F = [0, 0, R]$, then $\iiint_G \text{div}(F) \, dV = \iint_U \int_{g(x,y)}^{h(x,y)} R_z \, dz \, dy \, dx$ which is $\iiint_G R(x, y, h(x, y)) - R(x, y, g(x, y)) \, dy \, dx$. The flux of $F = [0, 0, R]$ through a surface $r(u, v) = [u, v, h(u, v)]$ is

$$\int\int_G [0, 0, R(u, v, h(u, v))] \cdot [-g_u, g_v, 1] \, dv \, du = \int\int_G R(x, y, h(x, y)) \, dx \, dy.$$

Similarly, the flux through the bottom surface is $-\int\int_G R(x, y, g(x, y)) \, dx \, dy$. In general, write $F = [P, Q, R] = [P, 0, 0] + [0, Q, 0] + [0, 0, R]$ to get the claim for solid which are simultaneously bound by graphs of functions in x and y, or y and z or x and z. A general solid can be cut into such solids.
35.3. The theorem gives meaning to the term divergence. The total divergence over a small region is equal to the flux of the field through the boundary. If this is positive, then more field leaves than enters and field is “generated” inside. The divergence measures the expansion of the field. The field \(F(x, y, z) = [x, 0, 0] \) for example expands, while \(f(x, y, z) = [-x, 0, 0] \) compresses. \(F(x, y, z) = [y, z, x] \) is “incompressible”.

35.4. The divergence theorem holds in any dimension \(m \). If \(F = [F_1, \ldots, F_m] \) is the vector field, then \(\sum \partial_{x_i} F_i \) is defined as the divergence of \(F \). If \(G \) is an \(m \)-dimensional region with boundary \(S = s(G) \), then the flux of \(F \) through \(S \) is defined as \(\int_G F(s(u)) \cdot n(s(u))|ds(u)| \), where \(n(s(u)) \) is a unit normal vector. This can be explained a bit better using the language of differential forms which is introduced next time.

35.5. The divergence of \(F = [P, Q] \) is defined as \(P_x + Q_y \). If \(F^\perp = [Q, -P] \) is the turned vector field, then \(\text{div}(F^\perp) = Q_x - P_y \) is the curl of \(F \). Green’s theorem tells that \(\iint_G \text{curl}(F) \, dx \, dy \) which is \(\iint_G \text{div}(F^\perp) \, dx \, dy \) is the line integral \(\int_C F \cdot dr \). The line integral for \(F \) is the flux integral for \(F^\perp \). The two dimensional divergence theorem is Green’s theorem “turned”.

Examples

35.6. Problem: Compute the flux of \(F = [x, y, z] \) through the sphere of radius \(\rho \) bounding a ball \(G \), oriented outwards. **Solution:** As \(\text{div}(F) = 3 \) we have \(\iiint_G \text{div}(F) \, dV = 3 \cdot 4\pi \rho^3 / 3 \). The flux through the boundary is \(\int_S F \cdot dS \). As in spherical coordinates, \(F(r(\phi, \theta)) \cdot r_\phi \times r_\theta = \rho^3 \sin(\phi) \), the flux is \(\int_0^{2\pi} \int_0^\pi \rho^3 \sin(\phi) \, d\phi \, d\theta = 4\pi \rho^3 \) also.

35.7. Problem: What is the flux of the vector field \(F(x, y, z) = [6x + y^3, 3z^2 + 8y, 22z + \sin(x)] \) through the solid \(G = [0, 3] \times [0, 3] \times [0, 3] \ \setminus \ [(1, 2] \times [1, 2] \times [0, 3] \cup [0, 3] \times [1, 2] \times [0, 3] \cup [0, 3] \times [0, 3] \times [1, 2]) \) which is a cube with three perpendicular cubic holes which is the first stage of the Menger sponge construction? **Solution:** As \(\text{div}(F) = 22 + 8 + 6 = 36 \), the result is 36 times the volume of the solid which is 36(27 - 7) = 720.

![Figure 2](image-url) The gravity inside the moon is such that an elevator crossing the moon oscillates like a harmonic oscillator. The flux of \(F = [0, 0, z] \) through a surface is the volume inside.
35.8. Problem. How does the gravitational field look like inside the moon in distance ρ to the origin? Solution. A direct computation of summing up all the field values $F(x) = \int \int \frac{G(x-y)}{|x-y|^3} dy$ is difficult as we can not compute in spherical coordinates. Fortunately we have the divergence theorem. The field $F(x)$ has constant length $F(\rho) = |F(x)|$ for x on a sphere $S(\rho)$ of radius ρ and points inwards. So $\int \int S(\rho) F \cdot dS = -4\pi \rho^2 F(\rho)$. Gauss was able to write down the gravitational field as a partial differential equation $\text{div}(F(x)) = 4\pi \sigma(x)$, where $\sigma(x)$ is the mass density of the solid. We see then with the divergence theorem that $\int \int \int B(\rho) 4\pi \sigma(x) dx$ is equal to $-4\pi \rho^2 F(\rho)$. Assuming σ to be constant, we have $4\pi (\frac{4\pi \rho^3}{3}) \rho = -4\pi \rho^2 F(\rho)$ which gives $F(\rho) = (4\sigma/3)\rho$. The field grows linearly inside the body. If ρ is bigger than the radius of the moon, then $\int \int \int B(\rho) 4\pi \sigma(x) dx$ is equal to $4\pi M$, where $M = \int \int \int G \sigma(x) dx$ is the mass of the moon. We see that in that case $F(\rho) = M/\rho^2$, which is the Newton law.

35.9. Problem: Compute using the divergence theorem the flux of the vector field $F(x,y,z) = [2342434y, 2xy, 4yz + 21341324xy]^T$ through the unit cube $[0,1] \times [0,1] \times [0,1]$ which is opened on the top. Solution: the divergence of F is $2x + 4y$. Integrating this over the unit cube gives $1 + 2 = 3$. The flux through all 6 faces is 3. The flux through the face $z = 1$ is $\int_0^1 \int_0^1 4y dxdy = 2$. We have to subtract this and get $3 - 2 = 1$.

35.10. Similarly as Green’s theorem allowed area computation using line integrals the volume of a region can be computed as a flux integral: take a vector field F with constant divergence 1 like $F(x,y,z) = [0,0,z]$. We have $\int \int S [0,0,z] \cdot dS = \text{Vol}(G)$.

35.11. Example: For an ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2$, where the parametrization is $r(\phi, \theta) = [a \sin(\phi) \cos(\theta), b \sin(\phi) \sin(\theta), c \cos(\phi)]$, we have $[0,0,c \cos(\phi)][ab \sin(\phi) \cos(\phi)] = abc \sin(\phi) \cos^2(\phi)$ leading to $2\pi abc/3 = 4\pi abc/3$.

35.12. A computer can determine the volume of a solid enclosed by a triangulated surface by computing the flux of the vector field $F = [0,0,z]$ through the surface. The vector field has divergence 1 so that by the divergence theorem, the flux gives the volume. A computer stores a geometric object using triangles. Assume ABC is that triangle. If $n = AB \times AC$ points outside the region, then the flux is $F \cdot n/2$. A computer can now add up all these values and get the volume.

Figure 3. A cow, a Klein bottle and a car from the Mathematica example files and produce closed surfaces. The Klein bottle does not have an interior however.
Problem 35.1: Use the divergence theorem to calculate the flux of $F(x, y, z) = [x^3, y^3, z^3]^T$ through the sphere $S : x^2 + y^2 + z^2 = 1$, where the sphere is oriented so that the normal vector points outwards.

Problem 35.2: Assume the vector field $F(x, y, z) = [5x^3 + 12xy^2, y^3 + e^y \sin(z), 5z^3 + e^y \cos(z)]^T$ is the magnetic field of the sun whose surface is a sphere of radius 3 oriented with the outward orientation. Compute the magnetic flux $\int \int_S F \cdot dS$.

Problem 35.3: Find the flux of the vector field $F(x, y, z) = [xy, yz, zx]^T$ through the solid cylinder $x^2 + y^2 \leq 1, 0 \leq z \leq 2$.

Problem 35.4: Find the flux of $F(x, y, z) = [x + y + z, x + z, z + y]^T$ through the Menger sponge M_n defined in the unit cube and take the limit $n \to \infty$.

Problem 35.5: Compute the flux of the vector field $F(x, y, z, w) = [x + 2y^2, 3x + 4y^5, 6z + 8z^9, 7w + 9x^{10}]^T$ through the three 3-sphere $x^2 + y^2 + z^2 + w^2 = 1$ in \mathbb{R}^4, oriented outwards.

Figure 4. Approximations to the Menger sponge.
Unit 36: General Stokes

Lecture

36.1. We know already \(E = \mathbb{R}^n = M(n, 1) \), the space of column vectors and its dual \(E^* = M(1, n) \), the space of row vectors. To get more general objects, it is important to think about vectors as maps. A row vector is a linear map \(F : E \to \mathbb{R} \) defined by \(F(u) = Fu \) and a column vector defines a linear map \(F : E^* \to \mathbb{R} \) by \(F(u) = uF \). A map \(F(x_1, \ldots, x_n) \) of several variables is called multi-linear, if it is linear in each coordinate. The set \(T_q^p(E) \) of all multi-linear maps \(F : (E^*)^p \times E^q \to \mathbb{R} \) is the space of tensors of type \((p, q)\). We have \(T_0^0(E) = E \) and \(T_0^1(E) = E^* \) and \(T_1^1(E) \) is \(M(n, n) \) the space of \(n \times n \) matrices: given a matrix \(A \), a column vector \(v \in E \) and a row vector \(w \in E^* \), we have the bi-linear map \(F(v, w) = wAv \). It is linear in \(v \) and in \(w \).

36.2. Let \(\Lambda^q(E) \) be the subspace of \(T_q^0(E) \) which consists of tensors \(F \) of type \((0, q)\) such that \(F(x_1, \ldots, x_q) \) is anti-symmetric in \(x_1, \ldots, x_q \in E \): this means \(F(x_{\sigma(1)}, \ldots, x_{\sigma(q)}) = (-1)^{\sigma} F(x_1, \ldots, x_q) \) for all \(i, j = 1, \ldots, q \), where \((-1)^{\sigma} \) is the sign of the permutation \(\sigma \) of \(\{1, \ldots, n\} \). If the Binomial coefficient \(B(n, q) = n!/(q!(n-q)! \) counts the number of subsets with \(q \) elements \(i_1 < \cdots < i_q \) of \(\{1, \ldots, n\} \) and \(E \) has dimension \(n \), then \(\Lambda^q(E) \) has dimension \(B(n, q) \). A map \(F : E \to T_q^0(E) \) is called a \((p, q)\)-tensor field. The set \(T_0^1(E) \) is the space of vector fields. If \(g : \mathbb{R}^m \to \mathbb{R}^n \) is a smooth map, then \(F = d^kg \) is a tensor field of type \((0, k)\). A \(k \)-form is a \((0, k)\)-tensor field \(F \) with \(F(x) \in \Lambda^k(E) \). A \(2 \)-form in \(\mathbb{R}^3 \) for example attaches to \(x \) a bi-linear, anti-symmetric map \(F(x)(u, v) = -F(x)(v, u) \). One writes \(Pdydz + Qdxdz + Rdxdy \) where \(dydz(u, v) = u_2v_3 - u_3v_2 \), \(dxdz(u, v) = u_1v_3 - u_3v_1 \), \(dxdy(u, v) = u_1v_2 - v_1u_2 \).

36.3. The exterior derivative \(d : \Lambda^p \to \Lambda^{p+1} \) is defined for \(f \in \Lambda^0 \) as \(df = f_{x_1}dx_1 + \cdots + f_{x_n}dx_n \) and \(df(\sum f_{x_i}dx_i, u_{x_{i_1}}, \ldots, u_{x_{i_p}}) = \sum f_{x_i}dx_i(u_{x_{i_1}}, \ldots, u_{x_{i_p}}) \). For \(F = Pdx + Qdy \), for example, it is \((P_xdx + P_ydy)dx + (Q_xdx + Q_ydy)dy = \text{curl} \). If \(r : G \subset \mathbb{R}^m \to \mathbb{R}^n \) is a parametrization, then \(S = r(G) \) is a \(m \)-surface and \(\delta S = r(\delta G) \) is its boundary in \(\mathbb{R}^n \). If \(F \in \Lambda^p(\mathbb{R}^n) \) is a \(p \)-form on \(\mathbb{R}^n \), then \(r^*F(x(u_1, \ldots, u_p)) = F(r(x))(dr(x)(u_1), dr(x)(u_2), \ldots, dr(x)(u_p)) \) is a \(p \)-form in \(\mathbb{R}^m \) called the pull-back of \(r \). Given a \(p \)-form \(F \) and an \(p \)-surface \(S = r(G) \), define the integral \(\int_S F = \int_G r^* F \). The general Stokes theorem is

Theorem: \(\int_S dF = \int_{\partial S} F \) for a \((m - 1)\)-form \(F \) and \(m \) surface \(S \) in \(E \).
36.4. Proof. As in the proof of the divergence theorem, we can assume that the region G is simultaneously of the form $g_j(x_1,\ldots,\hat{x}_j,\ldots,x_m) \leq x_j \leq h_j(x_1,\ldots,\hat{x}_j,\ldots,x_m)$, where $1 \leq j \leq n$ and that $F = [0,\ldots,0,F_j,0,\ldots,0]$. The coordinate independent definition of dF reduces the result to the divergence theorem in G. QED

Examples

36.5. For $n = 1$, there are only 0-forms and 1-forms. Both are scalar functions. We write f for a 0-form and $F = f dx$ for a 1-form. The symbol dx abbreviates the linear map $dx(u) = u$. The 1-form assigns to every point the linear map $f(x) dx(u) = f(x) u$. The exterior derivative $d : \Lambda^0 \rightarrow \Lambda^1$ is given by $d F(u) = f'(x) u$. Stokes theorem is the fundamental theorem of calculus $\int_a^b f'(x) dx = f(b) - f(a)$.

36.6. For $n = 2$, there are 0-forms, 1-forms, and 2-forms. It is custom to write $F = Pdx + Qdy$ rather than $F = [P,Q]$ which is thought of as a linear map $F(x,y)(u) = P(x,y)u_1 + Q(x,y)u_2$. A 2-form is also written as $F = f dx dy$ or $F = f dx \land dy$. Here $dx dy$ means the bi-linear map $dx dy(u,v) = (u_1v_2 - u_2v_1)$. The 2-form defines such a bi-linear map at every point (x,y). The exterior derivative $d : \Lambda^0 \rightarrow \Lambda^1$ is $d f(x,y)(u_1,u_2) = f_x(x,y)u_1 + f_y(x,y)u_2$ which encodes the Jacobian $df = [f_x,f_y]$, a row vector. The exterior derivative of a 1-form $F = P dx + Q dy$ is $d F(x,y)(u,v) = (-1)^1 P_y(x,y) \det([u,v]) + (-1)^2 Q_x(x,y) \det([u,v])$ which is $(Q_x - P_y) dx dy$. Using coordinates is convenient as $d F = P_y dy dx + Q_x dx dy = (Q_x - P_y) dx dy$ using now that $dy dx = -dx dy$.

36.7. For $n = 3$, we write $F = P dx + Q dy + R dz$ for a 1-form, and $F = P dy dz + Q dz dx + R dx dy$ for a 2-form. Here $dy dz = dy \land dz$ are symbols representing bi-linear maps like $dy dz(u,v) = u_2v_3 - v_2u_3$. As a 2-form has 3 components, it can be visualized as a vector field. A 3-form $f dx dy dz$ defines a scalar function f. The exterior derivative of the 1-form gives the curl because $d(P dx + Q dy + R dz) = P_y dy dx + P_z dz dx + Q_x dx dy + Q_z dz dy + R_x dx dz + R_y dy dz$ which is $(R_y - Q_z) dy dz + (P_z - R_x) dz dx + (Q_x - P_y) dx dy$. The exterior derivative of a 2-form $P dy dz + Q dz dx + R dx dy$ is $P_z dx dy dz + Q_y dy dz dx + R_x dx dz dy = (P_x + Q_y + R_z) dx dy dz$. To integrate a 2-form $F = x^2 y dz dx + y dx dy + z dx dz$ over a surface $r(u,v) = [x,y,z] = [uv,u,v,u+v]$ with $G = \{u^2 + v^2 \leq 1\}$ we end up with integrating $F(r(u,v)) \cdot r_u \times r_v$. In order to integrate $d F$ for a 1-form $F = P dx + Q dy + R dz$ we can also pull back F and get $\int_G F_v(r(u,v))r_u - F_u(r(u,v))r_v \ dudv$.

36.8. For $n = 4$, we have 0-forms f, 1-forms $f = P dx + Q dy + R dz + S dw$ and 2-forms $F = F_{12} dx dy + F_{13} dx dz + F_{14} dx dw + F_{23} dy dz + F_{24} dy dw + F_{34} dz dw$ which are objects with 6 components. Then 3-forms $F = P dy dz dw + Q dx dw dz + R dx dz dy$ and finally 4-forms $f dx dy dz dw$.

Remarks

36.9. Historically, differential forms emerged in 1922 with Élie Cartan. Most textbooks introduce the Grassmanian algebra early and use the language of “chains” for example which is the language used in algebraic topology. It was Jean Dieudonné in 1972 who freed the general Stokes theorem from chains and used first the coordinate free pull
back idea. This allowed us in this lecture to formulate the general Stokes theorem from scratch on a single page with all definitions.

36.10. What is a differential form? We have seen a mathematically precise definition: a differential form is a kind of field: a multi-linear anti-symmetric function attached to each point of space. But what is the intuition and what are ways to “visualize” and “see” and “understand” such an object? Here are four paths. Maybe one of them helps:

A) Using Stokes one can see a form as a functional F, which assigns to a m-dimensional oriented surface S a number $\int_S F \cdot dS$ such that $\int_S F \cdot dS = \int_S (-F) \cdot dS = -\int_S F \cdot dS$. This way of thinking about forms matches what we do in the discrete. If we have a k-form on a graph, then this is a function on k-dimensional oriented complete subgraphs. Given a graph S we have $\int_S F \cdot dS = \sum_{x \in S} F(x)$, where the sum is over all k-dimensional simplices in S.

B) One can understand differential forms better using arithmetic, the Grassmanian algebra. This is done with the help of the tensor product, which induces an exterior product $F \wedge G$ on $\Lambda^p \times \Lambda^q \rightarrow \Lambda^{p+q}$. This product generalizes the cross product $\Lambda^1 \times \Lambda^1 \rightarrow \Lambda^2$ which works for $n = 3$ as there, the space of 1-forms Λ^1 and 2-forms Λ^2 can be identified. The exterior algebra structure helps to understand k-forms. We can for example see a 2-form as an exterior product $F \wedge G$ of two 1-forms. We can think of a 2-form for example as attaching two vectors at a point and identify two such frames if their orientation and parallelogram areas match.

C) A third way comes through physics. We are familiar with manifestations of electromagnetism: we see light, we use magnets to attach papers to the fridge or have magnetic forces keep the laptop lid closed. Electric fields are felt when combing the hair, as we see sparks generated by the high electric field obtained by stripping away the electrons from the head. We use magnetic fields to store information on hard drives and electric fields to store information on a SSD harddrive. Non-visible electromagnetic fields are used when communicating using cell phones or connecting through blue-tooth or wireless network connections. The electro-magnetic field E, B is actually a 2-form in 4-dimensions. The $B(4, 2) = 6$ components are $(E_1, E_2, E_3, B_1, B_2, B_3)$.

D) A fourth way comes through discretization. When formulating Stokes on a discrete network, everything is much easier: a k-form is just a function on oriented k-dimensional complete subgraphs of a network. Start with a graph $G = (V, E)$ and orient the complete subgraphs arbitrarily. Given a k-form F, a function on k-simplices has an exterior derivative at a $k + 1$ dimensional simplex x is defined as $dF(x) = \sum_{y \subset x} \sigma(y, x)F(y)$, where the sum is over all k-dimensional sub-simplices of x and $\sigma(y, x) = 1$ if the orientation of y matches the orientation of x or -1 else. We have for example seen that for a 1-form F, a function on edges, the exterior derivative at a triangle x is the sum over the F values of the edges, where we add up the value negatively if the arrow of the edge does not match the orientation of the triangle.

1David Bachman’s text on differential forms: “it is a thing which can be integrated”.

36.11. An electromagnetic field is determined by a 1-form A in 4-dimensional space time. The electromagnetic field is $F = dA$. The Maxwell equations are $dF = 0$ (the relation $d \circ d = 0$ is seen in the homework). The second part of the Maxwell equations are $d^* F = j$, where $d^* : \Lambda^p \rightarrow \Lambda^{p-1}$ is the adjoint and j is a 1-form encoding both the electric charge and the electric current. We can always gauge with a gradient $A = df$ so that $d^*(A + df) = 0$. The Maxwell equations reduced to the Poisson equation $LF = (dd^* + d^*d)F = j$, where L is the Laplacian on 1-forms. In vacuum, without electric charges or currents, we have the wave equation $LF = 0$. And there was light.

Homework

Problem 36.1: Given the 1-form $F(x, y, z, w) = [x^3, y^5, z^5, w^2] = x^3dx + y^5dy + z^5dz + w^2dw$ and the curve $C = r(t) = [\cos(t), \sin(t), \cos(t), \sin(t)]$ with $0 \leq t \leq \pi$. Find the line integral $\int_C F(r(t)) \cdot dr$.

Problem 36.2: Given the 1-form $F = [xyz, xy, wx, wxy] = xyzdx + xdy + wdxz + wxydw$, find the curl dF. Now find $\iint_S dF$ over the 2-dimensional surface $S : x^2 + y^2 \leq 1, z = 1, w = 1$ which has as a boundary the curve $C = r(t) = [\cos(t), \sin(t), 1, 1]^T$, $0 \leq t \leq 2\pi$. You certainly can use the Stokes theorem. If you like to compute both sides of the theorem you can see how the theorem works. The 2-manifold S is parametrized by $r(t, s) = [s, t, 1, 1]^T$. The $(r_s \wedge r_t)_i$ has 6 components, where only one component $(r_s \wedge r_t)_2$ is nonzero. This will match with the $dF_{12} = Pdxdy$ part of the 6-component 2-form dF building the curl. We will have to integrate then over $G = s^2 + t^2 \leq 1$.

Problem 36.3: Given the 2-form $F = z^4xdxdz + xyzw^2dydw$ and the 3-sphere $x^2 + y^2 + z^2 + w^2 = 1$ oriented outwards. What is the integral $\iiint_S dF$? To compute this 3D integral, you can use the general integral theorem.

Problem 36.4: Given the 3-form $F = xyzdxdydz + y^2zdydzdw$, find the divergence dF. Now find the flux of F through the unit sphere $x^2 + y^2 + z^2 + w^2 = 1$ oriented outwards.

Problem 36.5:

a) Take $f(x, y, z, w)$. Check that $F = df$ satisfies $dG = 0$.

b) Take $F = F_1dx + F_2dy + F_3dz + F_4dw$. Compute the curl $G = dF$ and check that $dG = 0$.

c) Take the 2-form $F = F_1dx + F_2dy + F_3dz + F_4dw + F_5dydz + F_6dydw + F_7dzdw$. Write down the 3-form $G = dF$ and check $dG = 0$.

d) Take the 3-form $F = F_1dydzdw + F_2dxdzdw + F_3dxdydw + F_4dxdydz$ and compute the 4-form $G = dF$. Check that $dG = 0$.
Unit 37: A Discrete World

37.1. A 0-form \(f \) on a graph \(G = (V,E) \) is a function on the vertices \(V \). It is what we call a scalar function. A 1-form is a function on the oriented edges \(E \) meaning \(F(a,b) = -F(b,a) \). Informally, as in the continuum, we think of a 1-form as a vector field. The gradient \(F(a,b) = df(a,b) = f(b) - f(a) \) of a 0-form \(f \) is a 1 form \(F \). The curl of a vector field \(F \) is a 2-form. It is a function on triangles \((a,b,c)\) given by \(dF(a,b,c) = F(a,b) + F(b,c) + F(c,a) \) which can be seen as the line integral along the boundary of the triangle. When describing \(p \)-forms for \(p > 0 \), orientation matters. To fix it, just enumerate the vertices \(V \) and then choose the orientation of an edge \((a,b)\) with \(a < b \) or the orientation of a triangle \((a,b,c)\) if \(a < b < c \). The discrete Stokes theorem \(\int_S \text{curl}(F) \cdot dS = \int_C F \cdot dr \) told us that the sum of the curls of \(F \) on triangles of a surface \(S \) is equal to the line integral of \(F \) along the boundary \(C \) of \(S \).

37.2. A tetrahedral graph is a collection of 4 nodes which all are connected to each other. A 3-form on a graph \(G \) is a function on tetrahedral sub-graphs \(x \) of \(G \). An example is the divergence \(dF(x) \) of a 2-form \(F \) which is defined as the sum of the \(F(y) \) values of the triangles \(y \subset x \) enclosing the tetrahedron \(x \). As in the continuum, the orientation plays a role. Here is the discrete divergence theorem for a solid \(G \) is built by tetrahedra \(x \) and where the boundary surface \(S \) consists of triangles:

Problem A: Check that \(\sum_{x \in G} \text{div}(F)(x) = \sum_{y \in S} F(y) \).
Hint: prove by induction with respect to the number of tetrahedra. First check that if G is a single tetrahedron, this is the definition of the divergence. Then see what happens if a new tetrahedron is added.

37.3. We also have seen that the divergence of the curl of a vector field F is zero: We had $\text{curl}(F) = [R_y - Q_z, P_z - R_x, Q_x - P_y]$ and taking the x derivative of $R_y - Q_z$ is $R_{yx} - Q_{zx}$, the y derivative of $P_z - R_x$ is $P_{yz} - R_{xy}$ and the z-derivative of $Q_x - P_y$ is $Q_{xz} - P_{yz}$. Adding them all up gives 0. In the discrete it is even simpler. Start with a 1-form F on the edges of a graph. Then form the curls, which are functions on the triangles, then add up all these curls. You check:

Problem B: Check: $\text{div}(\text{curl}(F))(x) = 0$ of every F and tetrahedron x.

37.4. The general Stokes theorem is not much different. A p-simplex in a graph is a collection of $p + 1$ nodes which are all connected to each other. A p-form is a function on the set of p-simplices x in G. The function value is fixed if the simplex is given in an oriented way but defined also if the simplices are oriented differently, we just have $F(x_0, \ldots, x_p) = (-1)^p f(\sigma(x_0), \ldots, \sigma(x_p))$ if σ is a permutation. For example $F(x_0, x_1, x_2) = F(x_1, x_2, x_0) = F(x_2, x_0, x_1) = -F(x_1, x_0, x_2) = -F(x_0, x_2, x_1) = -F(x_2, x_1, x_0)$.

37.5. The exterior derivative of p-form F is the $(p + 1)$-form

$$dF(x_0, \ldots, x_{p+1}) = \sum_{j=0}^{p+1} (-1)^j F(x_0, \ldots, \hat{x}_j, \ldots, x_{p+1}).$$

Problem C: Check in general that $ddF = 0$.

37.6. The general Stokes theorem tells that for a m-dimensional graph G with boundary S and a $(m-1)$-form F we have

Theorem: $\sum_{x \in G} dF(x) = \sum_{y \in S} F(y)$

Gravity

37.7. The Newton equations $\frac{d^2}{dt^2} x_k = -\sum_j G m_j / |x_k - x_j|^3$ with gravitational constant G describe the motion of finitely many mass points with positions $x_k(t) \in \mathbb{R}^3$ and mass m_k. These classical laws govern the motion of planets in our solar system, stars in a galaxy or galaxies in a galaxy cluster. While relativity modifies this Newtonian picture slightly and produces corrections which for example manifest in the Perihel advancement of Mercury, the Newtonian theory is amazingly accurate. Gauss derived the gravitational inverse square force F from $\text{div}(F) = 4\pi \sigma$, where σ is the mass density. While divergence usually maps a 2-form to a 3-form, it is the adjoint d^* of the gradient d. In \mathbb{R}^3 it is equivalent. Now, $L = \text{div} \circ \text{grad} = d^*d : \Lambda^0 \to \Lambda^0$ is called the Kirchhoff Laplacian. The Gauss law of gravity therefore is the Poisson equation $[LV = 4\pi \sigma]$, where V is the gravitational potential, a 0-form. Since $d^* = 0$ on 0-forms, we can also write $L = dd^* + d^*d$. Classical gravity gets from a mass density σ the gravitational potential V and so the gravitational field as a gradient $F = dV$:
$$(d^*d + dd^*)V = 4\pi \sigma$$ defines the gravitational 1-form $F = dV$.

Electromagnetism

37.8. The Maxwell equations $\text{div}(E) = 4\pi \sigma$, $\text{div}(B) = 0$, $\text{curl}(E) = -B_t$, $\text{curl}(B) = E_t + 4\pi i$ become more elegant when written in four-dimensional space-time \mathbb{R}^4. There are then two equations only. The first is $dF = 0$ which is evident from $F = dA$ and $d^2 = 0$. The second is $d^*F = 4\pi j$, where j is the 4-current encoding both the charge density σ as well as the electric current i. Now $dF = 0$ implies in a simply connected region that $F = dA$, where A is an electro-magnetic potential. If $d^*A = 0$ (which can always be achieved by adding a gradient to A) we get the Poisson equation $LA = (dd^* + d^*d)A = 4\pi j$. This completely encodes the Maxwell equations; we can look at it also in a discrete network. Classical electromagnetism in a world with charge and current density j is the field $F = dA$, where A is obtained from

$$(d^*d + dd^*)A = 4\pi j$$ defines the electromagnetic 2-form $F = dA$.

Quantum mechanics and beyond

37.9. In this last homework we deal with a small universe G. We call it Gaia, the primordial deity of earth. In Greek mythology, Gaia was the daughter of Aether the god of air and Hemera the goddess of light. We only create the gravitational field, the electromagnetic field on G and some quanta, so there will be matter and light in this world. But that mathematics is exactly as in the universe we live in: the classical gravitational field is described with the language of Gauss which we have seen to imply the Newton law of gravity. The electromagnetic field is formulated according to Maxwell, but directly in space-time. We also look a bit at quantum mechanics as the eigenvalues and eigenvectors of the Laplacian L play a role when looking at the Wheeler De Witt equation, a time-independent Schrödinger equation in space time

$$(d^*d + dd^*)F = \lambda F$$ defines a wave function F on p-forms.

37.10. The rest will be up to you: it remains to include the Fermionic constituents of matter (quarks (building mesons and baryons) as well as leptons) and bosons (photons, gluons, vector bosons and the Higgs) as well as a few other details. Don’t worry, a former student has solved a similar homework assignment in less than 7 days ...

Figure 2. The Greek goddess Gaia, seen in a Roman relief sculpture from the “Ara Pacis Augustae" in Rome. (Image by Dr. Sarah E. Bond.)
Problem 37.1:
Given the 1-form F in Figure 3a, find the 0-form $f(x) = d^*F(x) = \sum_{e, e \to x} F(e)$. Check $\sum_{x \in V} d^*F(x) = 0$. (Conservation law)

Problem 37.2:
a) Given the 0-form f in Figure 3b, find $F = df$, then compute $d^*F = d^*df = Lf$.
b) Given the 2-form H in Figure 3c, find a 1 form F such that $dF = H$.

Problem 37.3:
Given the 0-form f in Figure 4a check that this is f satisfies $L_0 f = \lambda f$ for some constant λ. This is called an eigenvalue of L. We write L_p for $dd^* + d^*d$ restricted to p-forms.

Problem 37.4:
In Figure 4c you see a 2-form H. Check that this is H satisfies $L_2 H = \lambda H$ for some constant λ. What is the eigenvalue?

Problem 37.5:
Find $f = d^*F$ and $H = dF$ for the 1-form F in Figure 4b. Then check $d^*H + df = (d^*d + dd^*)F = \lambda F$ for some constant λ.

Figure 3. a) a 1-form, b) a 0-form, and c) a 2-form

Figure 4. Eigenvectors. a) for L_0 b) for L_1 and c) for L_2.

Oliver Knill, knill@math.harvard.edu, Math 22A, Harvard College, Fall 2018
Unit 38: Geometries and Fields

Lecture

38.1. Integral theorems deal with geometries \(G \) and fields \(F \). Integration pairs them up and gives the Stokes theorem

\[
\int_G dF = \int_{\partial G} F
\]

It involves the boundary \(\partial G \) of \(G \) and the exterior derivative \(dF \) of \(F \). One can classify the theorems by looking at the dimension \(n \) of space and the dimension \(m \) of the object we are integrating over. In dimension \(n \), there are \(n \) theorems:

38.2. The Fundamental theorem of line integrals is a theorem about the gradient \(\nabla f \). It tells that if \(C \) is a curve going from \(A \) to \(B \) and \(f \) is a function (that is a 0-form), then

Theorem: \(\int_C \nabla f \cdot dr = f(B) - f(A) \)

In calculus we write the 1-form as a column vector field \(\nabla f \). It actually is a 1-form \(F = df \), a field which attaches a row vector to every point. If the 1-form is evaluated at \(r'(t) \) one gets \(df(r(t))(r'(t)) \) which is the matrix product. We integrate then the pull back of the 1-form on the interval \([a, b]\). It is the switch from row vectors to column vectors which leads to the dot product \(\nabla f(r(t)) \cdot r'(t) \). For closed curves, the line integral is zero. It follows also that integration is path independent.

38.3. Green’s theorem tells that if \(G \subset \mathbb{R}^2 \) is a region bound by a curve \(C \) having \(G \) to the left, then

Theorem: \(\iint_G \text{curl}(F) \, dxdy = \int_C F \cdot dr \)
In the language of forms, \(F = Pdx + Qdy \) is a 1-form and \(dF = (P_x dx + P_y dy)dx + (Q_x dx + Q_y dy)dy = (Q_x - P_y) dx dy \) is a 2-form. We write this 2-form \(dF \) as \(Q_x - P_y \) and treat it as a scalar function even so this is not the same as a 0-form, which is a scalar function. If \(\text{curl}(F) = 0 \) everywhere in \(\mathbb{R}^2 \) then \(F \) is a gradient field.

38.4. Stokes theorem tells that if \(S \) is a surface with boundary \(C \) oriented to have \(S \) to the left and \(F \) is a vector field, then

\[
\text{Theorem: } \iint_S \text{curl}(F) \cdot dS = \int_C F \cdot dr
\]

In the general framework, the field \(F = Pdx + Qdy + Rdz \) is a 1-form and the 2-form \(dF = (P_x dx + P_y dy + P_z dz)dx + (Q_x dx + Q_y dy + Q_z dz)dy + (R_x dx + R_y dy + R_z dz)dz = (Q_x - P_y) dx dy + (R_y - Q_z) dy dz + (P_z - R_x) dz dx \) is written as a column vector field \(\text{curl}(F) = [R_y - Q_z, P_z - R_x, Q_x - P_y]^T \). To understand the flux integral, we need to see what a bilinear form like \(dx dy \) does on the pair of vectors \(r_u, r_v \). In the case \(dx dy \) we have \(dx dy(r_u, r_v) = x_u y_v - y_u x_v \) which is the third component of the cross product \(r_u \times r_v \) with \(r_u = [x_u, y_u, z_u]^T \). Integrating \(dF \) over \(S \) is the same as integrating the dot product of \(\text{curl}(F) \cdot r_u \times r_v \). Stokes theorem implies that the flux of the curl of \(F \) only depends on the boundary of \(S \). In particular, the flux of the curl through a closed surface is zero because the boundary is empty.
38.5. Gauss theorem: if the surface S bounds a solid E in space, is oriented outwards, and F is a vector field, then

Theorem: $\iiint_E \text{div}(F) \, dV = \iint_S F \cdot dS$

Gauss theorem deals with a 2-form $F = Pdydz + Qdzdx + Rdxdy$, but because a 2-form has three components, we can write it as a vector field $F = [P, Q, R]^T$. We have computed $dF = (P_x \, dx + P_y \, dy + Q_z \, dz)dydz + (Q_x \, dx + Q_y \, dy + Q_z \, dz)dzdx + (R_x \, dx + R_y \, dy + R_z \, dz)dxdy$, where only the terms $P_x \, dydz + Q_y \, dydzdx + R_z \, dzdxdy = (P_x + Q_y + R_z)\, dx\, dy\, dz$ survive which we associate again with the scalar function $\text{div}(F) = P_x + Q_y + R_z$. The integral of a 3-form over a 3-solid is the usual triple integral. For a divergence free vector field F, the flux through a closed surface is zero. Divergence-free fields are also called incompressible or source free.

Remarks

38.6. We see why the 3 dimensional case looks confusing at first. We have three theorems which look very different. This type of confusion is common in science: we put things in the same bucket which actually are different: it is only in 3 dimensions that 1-forms and 2-forms can be identified. Actually, more is mixed up: not only are 1-forms and 2-forms identified, they are also written as vector fields which are T^1_0 tensor fields. From the tensor calculus point of view, we identify the three spaces $T^1_0(E) = E, T^2_0(E) = \Lambda^1(E) = E^* \oplus \mathbb{R}^2 \ominus T^0_0$ and $\Lambda^2(E) \subset T^2_0$. While we can still always identify vector fields with 1-forms, this identification in a general non-flat space will depend on the metric. In \mathbb{R}^4, the 2-forms have dimension 6 and can no more be written as a vector. One still does. The electro-magnetic F is a 2-form in \mathbb{R}^4 which we write as a pair of two time-dependent vector fields, the electric field E and the magnetic field B.

38.7. Geometries and fields are remarkably similar. On geometries, the boundary operation δ satisfies $\delta \circ \delta = 0$. On fields the derivative operation d satisfies $d \circ d = 0$. ‘Geometries” as well as “fields” come with an orientation: $r_u \times r_v = -r_v \times r_u$, hence $\text{dx\,dy} = -\text{dy\,dx}$. The operations d and δ look different because calculus deals with smooth things like curves or surfaces leading to generalized functions. In quantum calculus they are thickened up and d, δ defined without limit. Fields and geometries then become indistinguishable elements in a Hilbert space. The exterior derivative d has as an adjoint $\delta = d^*$ which is the boundary operator. It is a kind of quantum field theory as d generates while d^* destroys a “particle”. $d^2 = \delta^2 = 0$ is a “Pauli exclusion”.

38.8. We can spin this further: a m-manifold S is the image of a parametrization $r : G \subset \mathbb{R}^m \to \mathbb{R}^n$. The Jacobian dr is a dual m-form, the exterior product of the m vectors dr_{u_1} up to dr_{u_m} (think of m column vectors attached to $r(u) \in S$). If we take a map $s : S \subset \mathbb{R}^n \to \mathbb{R}^m$ and look at $F = ds$, we can think of it as a m-form F (think of m row vectors attached to each point $x \in \mathbb{R}^n$). The map s defines $m \times n$ Jacobian $ds(x)$, while the Jacobian $dr(u)$ is the $n \times m$ matrix. Cauchy-Binet shows that the flux of $F = ds$ through $r(G) = S$ is the integral $\int_G F = \int_G \text{det}(ds(r(u))) \, dr(u) \, du = \int_S \text{det}(ds(x) \, dr(s(x)))$. If $s(r(u)) = u$, then this is a geometric functional. So: geometries G can come from maps from a space A to a space B, while fields F can come from maps from B to A. The action integral $\int_G F$ generalizes the Polyakov action $\int_G \text{det}(dr^T \, dr) = \int_G |dr|^2$, a case where F and G are dual meaning $s(r(u)) = u$.

Prototype examples

Problem: Compute the line integral of \(F(x, y, z) = [5x^4 + zy, 6y^5 + xz, 7x^6 + xy] \) along the path \(r(t) = [\sin(5t), \sin(2t), t^2/\pi^2] \) from \(t = 0 \) to \(t = 2\pi \).

Solution: The field is a gradient field \(df \) with \(f = x^5 + y^6 + z^7 + xyz \). We have \(A = r(0) = (0, 0, 0) \) and \(B = r(2\pi) = (0, 0, 4) \) and \(f(A) = 1 \) and \(f(B) = 4^7 \). The fundamental theorem of line integrals gives \(\int_C \nabla f \cdot dr = f(B) - f(A) = 4^7 \).

Problem: Find the line integral of the vector field \(F(x, y) = [x^4+\sin(x)+y+5xy, 4x+y^3] \) along the cardioid \(r(t) = (1+\sin(t))[\cos(t), \sin(t)] \), where \(t \) runs from \(t = 0 \) to \(t = 2\pi \).

Solution: We use Green’s theorem. Since curl(\(F \)) = \(3 - 5x \), the line integral is the double integral \(\iint_G 3 - 5x \, dxdy \). We integrate in polar coordinates and get \(\int_0^{2\pi} \int_0^{1+\sin(t)} (3 - 5r \cos(t)) r \, dr \, dt \) which is \(9\pi/2 \). One can short cut by noticing that by symmetry \(\int \int_G (-5x) \, dxdy = 0 \), so that the integral is 3 times the area \(\int_0^{2\pi} (1+\sin(t))^2/2 \, dt = 3\pi/2 \) of the cardioid.

Problem: Compute the line integral of \(F(x, y, z) = [x^3 + xy, y, z] \) along the polygonal path \(C \) connecting the points \((0, 0, 0), (2, 0, 0), (2, 1, 0), (0, 1, 0)\).

Solution: The path \(C \) bounds a surface \(S : r(u, v) = [u, v, 0] \) parameterized on \(G = \{(x, y) \mid x \in [0, 2], y \in [0, 1]\} \). By Stokes theorem, the line integral is equal to the flux of curl(\(F \))(x, y, z) = \([0, 0, -x] \) through \(S \). The normal vector of \(S \) is \(r_u \times r_v = [1, 0, 0] \times [0, 1, 0] = [0, 0, 1] \) so that \(\int_S \text{curl}(F) \cdot dS = \int_0^2 \int_0^{1+\sin(t)} [0, 0, -u] \cdot [0, 0, 1] \, dv \, du = \int_0^2 \int_0^1 \, -u \, dv \, du = -2 \).

Problem: Compute the flux of the vector field \(F(x, y, z) = [-x, y, z^2] \) through the boundary \(S \) of the rectangular box \(G = [0, 3] \times [-1, 2] \times [1, 2] \).

Solution: By the Gauss theorem, the flux is equal to the triple integral of \(\text{div}(F) = 2z \) over the box: \(\int_0^3 \int_{-1}^2 \int_1^2 2z \, dz \, dy \, dx = (3 - 0)(2 - (-1))(4 - 1) = 27 \).
Unit 40: Calculus in Hyperspace

Geometries

40.1. The four dimensional Euclidean space $\mathbb{R}^4 = M(4, 1)$ is the space of column vectors with four real components $X = [x, y, z, w]^T$. If we think of such a vector as a point, we also write $X = (x, y, z, w)$. The dot product is the inner product. It allows us to define the length $|X| = \sqrt{X \cdot X}$, the distance $|X - Y|$ and the angles $\cos(\alpha) = (X \cdot Y)/(|X||Y|)$ between vectors. The Cartesian coordinate system has now four axes which are perpendicular to each other. Historically, as \mathbb{R}^4 is the space of quaternions, it is customary to label the coordinate directions as $1 = [1, 0, 0, 0]$, $i = [0, 1, 0, 0]$, $j = [0, 0, 1, 0]$, $k = [0, 0, 0, 1]$. A vector $[3, 4, 5, 1]$ for example is then written also as $3 + 4i + 5j + k$. We will however keep the vector-form. We will come back in the last section of this document about why quaternions are natural.

40.2. The kernel of the 1×4 matrix $A = [a, b, c, d]$ defines the linear hyperplane $ax + by + cz + dw = 0$. It is a 3-dimensional linear space. An example is the coordinate hyperplane $x = 0$, which consists of all points $\{(0, y, z, w), y, z, w \in \mathbb{R}\}$. More generally, the solution space $ax + by + cz + dw = e$ is an affine hyperplane. The kernel of a 2×4 matrix is in general, an intersection of two hyperplanes, a 2-dimensional plane, which we just call a plane. The kernel of a 3×4 matrix A is in general a line. Geometrically, it is the intersection of three hyperplanes.

40.3. A symmetric 4×4 matrix B, a row vector $A \in M(1, 4)$ and a constant e define the hyper quadric $X \cdot BX + AX = e$. For a diagonal matrix $B = \text{Diag}(a, b, c, d)$, this gives the quadric $ax^2 + by^2 + cz^2 + dw^2 = e$. Examples are the 3-sphere $x^2 + y^2 + z^2 + w^2 = 1$, the hyper paraboloid $x^2 + y^2 + z^2 = w$, the 3-cylinder $x^2 + y^2 + z^2 = 1$ which is the product of a 2-sphere and a line. Or the cylinder-plane $x^2 + y^2 = 1$ which can be seen as the product of the 1-sphere with a 2-plane. There are three types of hyperboloids like $x^2 + y^2 + z^2 - w^2 = 1$ or $x^2 - y^2 - z^2 - w^2 = 1$. One could call them 1-hyper-hyperboloids, 2-hyper-hyperboloids and 3-hyper-hyperboloids, using the Morse index as a label. There is still 1-hyperbolic-paraboloid $x^2 + y^2 - z^2 = w$ but there are more degenerate surfaces like $x^2 - y^2 = w$. The two-dimensional torus \mathbb{T}^2 can be realized here as a quadratic surface. It is the intersection of $x^2 + y^2 = 1$, $z^2 + w^2 = 1$. This is the flat torus. We can not realize the two-dimensional torus in a flat way in our three dimensional space \mathbb{R}^3. In hyper-space, it can. There is also a three dimensional torus \mathbb{T}^3. To get a parametrization, start with the 2-torus parametrization $r(\phi, \theta) = [(3 + \cos(\phi))\cos(\theta), (3 + \cos(\phi))\sin(\theta), \sin(\phi)]$ then expand
because every term \(\phi \) is fixed, we get the flat 2-torus mentioned above. We can compute 4

\[
4 \frac{\partial r}{\partial t} = 18 + 6 \cos(\phi) + 6 \sin(\phi) + \sin(2\phi)
\]

which simplifies to expression with 6 terms. We have

\[
\frac{\partial d}{\partial t} = 0
\]

because \(d \) is fixed, we get a translated scaled version of the 2-torus. If \(\psi \) is fixed we get the flat 2-torus mentioned above.

40.4. In single variable calculus, one looks at graphs \(\{(x, y) \mid y = f(x)\} \) of functions of one variable. In multi-variable, one adds graphs \(\{(x, y, z) \mid z = f(x, y)\} \) of functions of two variables. The **graph of a function** \(w = f(x, y, z) \) is now a 3-dimensional space. Paraboloids like \(w = x^2 + y^2 + z^2 \) or \(w = x^2 + y^2 - z^2 \) are graphs. Another example is the **three dimensional bell hyper-surface** \(w = f(x, y, z) = \pi^{-3/2} e^{-x^2-y^2+z^2} \), where the constant has been chosen so that the **hyper-volume** \(0 \leq w \leq f(x, y, z) \) is equal to 1. For obvious reasons, we usually do not draw the graph of a function of three variables as we would have to draw in 4 dimensions. Now, in hyperspace, we can do that.

40.5. Spaces can be parametrized in the same way as we parametrized curves or surfaces in three dimensions. A **curve** is defined by four real functions \(x(t), y(t), z(t), w(t) \) of one variables and written as \(r(t) = [x(t), y(t), z(t), w(t)]^T \). A **surface** is parametrized by \(r(u, v) = [(x(u, v), y(u, v), z(u, v), w(u, v)) \]. A **hypersurface** is now defined by \(r(u, v, t) = [x(u, v, t), y(u, v, t), z(u, v, t), w(u, v, t)] \).

40.6. A **coordinate change** is defined by a map from \(\mathbb{R}^4 \) to \(\mathbb{R}^4 \) given by four differentiable functions: \(r(u, v, s, t) = [x(u, v, s, t), y(u, v, s, t), z(u, v, s, t), w(u, v, s, t)] \). We have seen already the parametrization \(r(\phi, \theta_1, \theta_0) = [\cos(\phi) \cos(\theta_1), \cos(\phi) \sin(\theta_1), \sin(\phi) \cos(\theta_2), \sin(\phi) \sin(\theta_2)] \) of the **unit 3-sphere** = **hyper-sphere** \(x^2 + y^2 + z^2 + w^2 = 1 \). Because \(z = x^2 + y^2 + z^2 \) is a cylinder, there is also a natural **cylindrical coordinate system** in four dimensions. It is given by \(r(\rho, \phi, \theta, w) = [\rho \sin(\phi) \cos(\theta), \rho \sin(\phi) \sin(\theta), \rho \cos(\phi), w] \). If we write down the Jacobian matrix and compute the determinant we get \(\rho^2 \sin(\phi) \) as in spherical coordinates.

Fields

40.7. A **scalar function** \(f(x, y, z, w) \) is also called a 0-form. A **vector field** is denoted by \(F = [P, Q, R, S]^T \) and a **1-form** \(F = [P, Q, R, S] \) is written as \(F = Pdx + Qdy + Rdz + Sdw \). A **2-form** \(F \) has 6 components: \(F = Adx + Bdy + Cdz + Pdydz + Qdydz + Rdw \). A **3-form** again has four components \(Pdydzdw + Qdydzdw + Rdw dw + Sdxdydz \) and a **4-form** is again completely determined by a scalar function \(f \) because \(F = f dxdydzdw \).

40.8. The **exterior derivatives** are computed by using the anti-commutation rule like \(dxdy = -dydx \) and \(df = f_x dx + f_y dy + f_z dz + f_w dw \) and extending this to terms like \(Pdydz = dPdydz = (P_x dx + P_y dy + P_z dz + P_{w} dw) dydz = P_x dx dy dz + P_w dw dy dz \). For a 1-form \(F = Pdx + Qdy + Rdz + Sdw \) we have

\[
dF = P_x dx + P_y dy + P_z dz + P_{w} dw + Q_x dx dy + Q_y dy dz + Q_z dz dw + Q_{w} dw dy
\]

To express this with 6 terms.

\[
\frac{ddF}{0} \] because every term like \(f_{yz} dw dy dx \) is paired with a term like \(P_{yz} dy dz dx \). For a 2-form
\[F = \frac{\partial}{\partial x} F(x,y,z) \text{d}x + \frac{\partial}{\partial y} F(x,y,z) \text{d}y + \frac{\partial}{\partial z} F(x,y,z) \text{d}z \]

The gradient of a function \(f(x,y,z) \) is defined as
\[\nabla f(x,y,z) = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right] ^T \]

The hyper-curl of a hyper-vector field \(F(x,y,z) \) is zero. The divergence of the hyper-curl is zero. The gradient of the hyper-curl is the Laplacian (using the identifications, the divergence map can be identified with the adjoint \(-d^*\)). The chain rule is \(d/dt f(r(t)) = \nabla f(r(t)) \cdot r'(t) \).

The fundamental theorem of line integrals is
\[\int C \nabla f(r(t)) \cdot r'(t) \text{d}t = f(r(b)) - f(r(a)) \]

The Stokes theorem tells that for a surface \(S \) and 1 form \(F \)
\[\oint_S \text{curl}(F) \cdot dS = \int_C F \cdot dr \]

The Hyper Stokes theorem assures that for a hypersurface \(S \) and a 2-form \(F \), the flux of the hyper-curl of \(F \) through \(G \) (a 3D-integral) is the flux of \(F \) through the boundary surface \(S \) (a 2D-integral)
\[\int \int \int_G \text{hyper-curl}(F) \cdot dG = \int \int_S F \cdot dS \]

The divergence theorem assures that for a 3-form (identified as a vector field \(F \)) and a solid \(G \) with boundary hyper-surface \(S \), we have
\[\iiint_G \text{div}(F) \text{d}V = \iint_S F \cdot dS. \]
QUATERNIONS

40.16. **Hyperspace** \mathbb{R}^4 is special: it is the only Euclidean space for which the unit sphere is a non-Abelian Lie group. A Lie group G is a manifold $r(\mathbb{R}^n) \subset \mathbb{R}^n$ on which one has a group operation $x \ast y$ which has the property that for every y, the maps $x \to x \ast y$ and $x \to y \ast x$ are smooth maps on G. To have a group (G, \ast) we must have the property that $(x \ast y) \ast z = x \ast (y \ast z)$ and that there is a 1-element $1 \ast x = x \ast 1 = x$ such that every element x has an inverse x^{-1} satisfying $x \ast x^{-1} = 1$. The circle $\{x^2 + y^2 = 1\} = \{z \in \mathbb{C}||z| = 1\}$ is an example of a group. This multiplication is Abelian if $x \ast y = y \ast x$ for all $x, y \in G$. The complex plane $\mathbb{C} = \mathbb{R}^2$ is characterized as the only Euclidean space \mathbb{R}^n in which the unit sphere $T^1 = \{|x| = 1\}$ is an Abelian Lie group. Why Lie groups? They are the dough, elementary particles are baked from! Electromagnetism is built from T^1 for example.

40.17. One can write a vector in \mathbb{R}^4 also as $v = a + ib + jc + kd$ where i, j, k are symbols. Hamilton noticed that when defining $i^2 = j^2 = k^2 = ijk = -1$, the 4-dimensional space becomes an algebra. An algebra is a linear space which also features a multiplication. Now one has already $\mathbb{M}(2, 2)$, the space of 2×2 matrices, which is a 4-dimensional algebra, but the algebra which Hamilton found is a division algebra: every non-zero element can be inverted. This is not the case for $\mathbb{M}(2, 2)$. The matrix in which all elements are 1 for example is non zero but it is also not invertible.

40.18. The algebra which Hamilton defined through the relations $i^2 = j^2 = k^2 = ijk = -1$ is called the quaternion algebra \mathbb{H}. If $\overline{v} = a - ib - jc - kd$, then $|v|^2 = v \cdot v = v\overline{v}$, where the right hand side is a quaternion multiplication. One can readily check that $|vw| = |v||w|$. The reason is that quaternions v can be realized as complex 2×2-matrices: if $A(v) = \begin{bmatrix} a + ib & c + id \\ -c + id & a - ib \end{bmatrix}$, then $|v| = \det(A(v))$ and $A(v)A(w) = A(vw)$. Your favorite AI helps to check this last identity quickly.

```Import "Quaternions "; A[{x_, y_, z_, w_}] := \{\{x+I*y, z+I*w\},\{-z+I*w, x-I*y\}\}; Q=Quaternion [a, b, c, d] ** Quaternion [p, q, r, s]; Simplify [A[{a, b, c, d}].A[{p, q, r, s}]]==A[Table [Q[[k]],\{k, 4\}]]];
```

40.19. An algebra with the property $|v \ast w| = |v||w|$ is a normed division algebra. By theorems of Hurwitz and Frobenius, there are only four: the reals \mathbb{R}, the complex \mathbb{C}, the quaternions \mathbb{H} and the octonions \mathbb{O}. For an associative division algebra, the unit sphere is a Lie group. Because the unit sphere of \mathbb{R} has only two points, the 1-circle $\{|z| = 1\} \subset \mathbb{C}$ and the unit 3-sphere $\{|z| = 1\} \subset \mathbb{H}$ are the only spheres that are Lie groups. There is a unique non-commutative one, the 3-sphere and a unique commutative one, the 1-sphere.

Theorem: \mathbb{H} is the only non-Abelian associative normed division algebra.

1Manifolds can be described abstractly, but a theorem of John Nash assures that every manifold can be embedded in some \mathbb{R}^n. So, looking at images of maps r is no loss of generality!
Unit 41: Keywords for Final (see also Units 13+28)

Discrete Calculus

- $G = (V, E)$ graph with vertex set V and edge set E.
- 0-form: function on V. Discrete scalar function
- 1-form: function on E. Discrete vector field
- 2-form: function on triangles T.
- $d(f) = \text{grad}(f)$ is a function on edges $a \rightarrow b$ defined by $f(b) - f(a)$.
- $H = dF = \text{curl}(F)$ is a function on triangles obtained by summing F along the triangle.
- d^*H is a function on edges. Add up the attached triangle values.
- d^*F is a function on vertices. Add up the attached edge values.

New People

- Cartan, Maxwell, Stokes, Green, Gauss, Newton, Maxwell, Kirchhoff, Menger, Koch, Escher, Peirce

Partial Derivatives

- $L(x, y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$ linear approximation
- $Q(x, y) = L(x_0, y_0) + f_{xx}(x - x_0)^2/2 + f_{yy}(y - y_0)^2/2 + f_{xy}(x - x_0)(y - y_0)$.
- Use $L(x, y)$ to estimate $f(x, y)$ near $f(x_0, y_0)$. The result is $f(x_0, y_0) + a(x - x_0) + b(y - y_0)$
- Tangent plane: $ax + by + cz = d$ with $a = f_x, b = f_y, c = f_z, d = ax_0 + by_0 + cz_0$
- Estimate $f(x, y)$ by $L(x, y)$ or $Q(x, y)$ near (x_0, y_0)
- $f_{xy} = f_{yx}$ Clairaut’s theorem for functions which are in C^2.
- $r_u(u, v), r_v(u, v)$ tangent to surface parameterized by $r(u, v)$

Parametrization

- $r : G \subset \mathbb{R}^m \rightarrow \mathbb{R}^n$, dr Jacobian
- $g = dr^T dr$ first fundamental form, $|dr| = \sqrt{g}$ distortion factor.
- $\text{curl}(F)(r(u, v)) \cdot (r_u \times r_v) = F_u \cdot r_v - F_v \cdot r_u$ important formula

Partial Differential Equations

- $f_{xy} = f_{yx}$ Clairaut
- $f_t = f_{xx}$ heat equation
- $f_{tt} - f_{xx} = 0$ wave equation
- $f_x - f_t = 0$ transport equation
- $f_{xx} + f_{yy} = 0$ Laplace equation
\[f_t + ff_x = f_{xx} \] Burgers equation
\[dF^* = j, dF = 0, \text{ Maxwell equations} \]
\[\text{div}(F) = 4\pi \sigma, \text{ Gravity equation} \]

\textbf{Gradient}

\[\nabla f(x, y) = [f_x, f_y]^T, \quad \nabla f(x, y, z) = [f_x, f_y, f_z]^T, \text{ gradient} \]
\[D_v f = \nabla f \cdot v \text{ directional derivative} \]
\[\frac{d}{dt}(f(t)) = \nabla f(r(t)) \cdot r'(t) \text{ chain rule} \]
\[\nabla f(x_0, y_0) \text{ is orthogonal to the level curve } f(x, y) = c \text{ containing } (x_0, y_0) \]
\[\nabla f(x_0, y_0, z_0) \text{ is orthogonal to the level surface } f(x, y, z) = c \text{ containing } (x_0, y_0, z_0) \]
\[\frac{d}{dt}(f + tv) = D_v f \text{ by chain rule} \]
\[(x - x_0)f_x(x_0, y_0) + (y - y_0)f_y(x_0, y_0) = 0 \text{ tangent line} \]
\[(x - x_0)f_x(x_0, y_0, z_0) + (y - y_0)f_y(x_0, y_0, z_0) + (z - z_0)f_z(x_0, y_0, z_0) = 0 \text{ tangent plane} \]
\[D_v f(x_0, y_0) \text{ is maximal in the direction } \nabla f(x_0, y_0)/|\nabla f(x_0, y_0)| \]
\[f(x, y) \text{ increases in the direction of } \nabla f/|\nabla f| \text{ at points which are not critical points} \]
\[\text{if } D_v f(x) = 0 \text{ for all } v, \text{ then } \nabla f(x) = 0 \]
\[f(x, y, z) = c \text{ defines } y = g(x, y), \text{ and } g_x(x, y) = -f_z(x, y, z)/f_z(x, y, z) \text{ implicit diff} \]

\textbf{Extrema}

\[\nabla f(x, y) = [0, 0]^T, \text{ critical point} \]
\[D = \det(D^2 f) = f_{xx}f_{yy} - f_{xy}^2 \text{ discriminant.} \]
\[\text{Morse: critical point and } D \neq 0, \text{ in 2D looks like } x^2 + y^2, x^2 - y^2, -x^2 - y^2 \]
\[f(x_0, y_0) \geq f(x, y) \text{ in a neighborhood of } (x_0, y_0) \text{ local maximum} \]
\[f(x_0, y_0) \leq f(x, y) \text{ in a neighborhood of } (x_0, y_0) \text{ local minimum} \]
\[\nabla f(x, y) = \lambda \nabla g(x, y), g(x, y) = c, \lambda \text{ Lagrange equations} \]
\[\nabla f(x, y, z) = \lambda \nabla g(x, y, z), g(x, y, z) = c, \lambda \text{ Lagrange equations} \]
\[\text{second derivative test: } \nabla f = (0, 0), D > 0, f_{xx} < 0 \text{ local min, } \nabla f = (0, 0), D > 0, f_{xx} > 0 \text{ local max, } \nabla f = (0, 0), D < 0 \text{ saddle point} \]
\[f(x_0, y_0) \geq f(x, y) \text{ everywhere, global maximum} \]
\[f(x_0, y_0) \leq f(x, y) \text{ everywhere, global minimum} \]

\textbf{Double Integrals}

\[\int_R \int f(x, y) \, dy \, dx \text{ double integral} \]
\[\int_a^b \int_c^d f(x, y) \, dy \, dx \text{ integral over rectangle} \]
\[\int_a^b \int_{f(x)}^{d(x)} f(x, y) \, dy \, dx \text{ bottom-top region} \]
\[\int_a^b \int_{g(y)}^{b(y)} f(x, y) \, dx \, dy \text{ left-right region} \]
\[\int_R \int f(r, \theta) \, |r| \, dr \, d\theta \text{ polar coordinates} \]
\[\int_R \int [r_u \times r_v] \, |r| \, du \, dv \text{ surface area} \]
\[\int_a^b \int_c^d f(x, y) \, dy \, dx = \int_c^d \int_a^b f(x, y) \, dx \, dy \text{ Fubini} \]
\[\int_R \int_{\frac{1}{R}} \, dx \, dy \text{ area of region } R \]
\[\int_R \int f(x, y) \, dx \, dy \text{ signed volume of solid bound by graph of } f \text{ and } xy\text{-plane} \]

\textbf{Triple Integrals}
\[\iiint_R f(x, y, z) \, dz \, dy \, dx \] triple integral
\[\int_a^b \int_y^u f(x, y, z) \, dz \, dy \, dx \] integral over rectangular box
\[\int_a^b \int_{g_1(y)}^{g_2(x)} \int_{h_1(y)}^{h_2(y)} f(x, y) \, dz \, dy \, dx \] type I region
\[\iiint_R f(r, \theta, z) \, r \, dr \, d\theta \, dz \] integral in cylindrical coordinates
\[\int_a^b \int_c^d f(x, y, z) \, dz \, dy \, dx \] Fubini
\[V = \iiint_E 1 \, dz \, dy \, dx \] volume of solid \(E \)
\[M = \iiint_E \sigma(x, y, z) \, dx \, dy \, dz \] mass of solid \(E \) with density \(\sigma \)

Line Integrals

\[F(x, y) = [P(x, y), Q(x, y)]^T \] vector field in the plane
\[F(x, y, z) = [P(x, y, z), Q(x, y, z), R(x, y, z)]^T \] vector field in space
\[\int_C F \cdot dr = \int_a^b F(r(t)) \cdot r'(t) \, dt \] line integral
\[F(x, y) = \nabla f(x, y) \] gradient field = potential field = conservative field

Fundamental theorem of line integrals

FTL: \[F(x, y) = \nabla f(x, y), \int_a^b F(r(t)) \cdot r'(t) \, dt = f(r(b)) - f(r(a)) \]

closed loop property \(\int_C F \, dr = 0 \), for all closed curves \(C \)

always equivalent: closed loop property, path independence and gradient field

mixed derivative test \(\text{curl}(F) \neq 0 \) assures \(F \) is not a gradient field

in simply connected regions: \(\text{curl}(F) = 0 \) implies that field \(F \) is conservative

Conservative field: can not be used for perpetual motion.

Green’s Theorem

\[F(x, y) = [P, Q]^T, \text{curl in two dimensions:} \, \text{curl}(F) = Q_x - P_y \]

Green’s theorem: \(C \) boundary of \(R \), then \[\int_C F \cdot dr = \iiint_R \text{curl}(F) \, dx \, dy \]

Area computation: Take \(F \) with \(\text{curl}(F) = Q_x - P_y = 1 \) like \(F = [-y, 0]^T \) or \(F = [0, x]^T \)

Green’s theorem is useful to compute difficult line integrals or difficult 2D integrals

Flux integrals

\[F(x, y, z) \] vector field, \(S = r(R) \) parametrized surface

\[r_u \times r_v \, dudv = dS \] 2-form on surface

\[\int_S F \cdot dS = \int_S F(r(u, v)) \cdot (r_u \times r_v) \, dudv \] flux integral

Stokes Theorem

\[F(x, y, z) = [P, Q, R]^T, \text{curl}([P, Q, R]^T) = [R_y - Q_z, P_z - R_x, Q_x - P_y]^T = \nabla \times F \]

Stokes’s theorem: \(C \) boundary of surface \(S \), then \[\int_C F \cdot dr = \int_S \text{curl}(F) \cdot dS \]

Stokes theorem allows to compute difficult flux integrals or difficult line integrals

Grad Curl Div

\[\nabla = [\partial_x, \partial_y, \partial_z]^T, \, F = \nabla f, \, \text{curl}(F) = \nabla \times F, \, \text{div}(F) = \nabla \cdot F \]

\[\text{div} (\text{curl}(F)) = 0 \quad \text{and} \quad \text{curl}(\text{grad}(f)) = 0 \]
Linear Algebra and Vector Analysis

\[
\text{div}(\text{grad}(f)) = \Delta f \quad \text{Laplacian}
\]

incompressible = divergence free field: \(\text{div}(F) = 0 \) everywhere. Implies \(F = \text{curl}(H) \)

irrotational = curl\((F) = 0 \) everywhere. Implies \(F = \text{grad}(f) \)

Divergence Theorem

\[
\text{div}(\begin{bmatrix} P \\ Q \\ R \end{bmatrix}) = P_x + Q_y + R_z = \nabla \cdot F
\]

divergence theorem: solid \(E \), boundary \(S \) then \(\int_S F \cdot dS = \iiint_E \text{div}(F) \, dV \)

the divergence theorem allows to compute difficult flux integrals or difficult 3D integrals

Some topology

simply connected region \(D \): can deform any closed curve within \(D \) to a point

interior of a region \(D \): points in \(D \) for which small neighborhood is still in \(D \)

boundary of curve \(C \): the end points of the curve

boundary of \(S \) points on surface not in the interior of the parameter domain

boundary of solid \(G \): points in \(G \) which are not in the interior of \(D \)

closed surface: a surface without boundary like a sphere

closed curve: a surface with no boundary like a knot

Some surface parameterizations

sphere of radius \(\rho \): \(r(u,v) = [\rho \cos(u) \sin(v), \rho \sin(u) \sin(v), \rho \cos(v)]^T \)

graph of function \(f(x,y) = r(u,v) = [u,v,f(u,v)]^T \)

example: Paraboloid: \(r(u,v) = [u,v,u^2 + v^2]^T \).

plane containing \(P \) and vectors \(u,v \): \(r(s,t) = P + su + tv \)

surface of revolution: distance \(g(z) \) of \(z - \text{axis} : r(u,v) = [g(v) \cos(u), g(v) \sin(u), v]^T \)

example: Cylinder: \(r(u,v) = [\cos(u), \sin(u), v]^T \)

example: Cone: \(r(u,v) = [v \cos(u), v \sin(u), v]^T \)

example: Paraboloid: \(r(u,v) = [\sqrt{v} \cos(u), \sqrt{v} \sin(u), v]^T \)

Integration for integral theorems

Double and triple integral: \(\iiint_G f(x,y) dA, \iiint_G f(x,y,z) dV \).

Line integral: \(\int_a^b F(r(t)) \cdot r'(t) \, dt \)

Flux integral: \(\int_S F(r(u,v)) \cdot (r_u \times r_v) \, dudv \)

Differential forms

A k-form is a field, which attaches at every point a multi-linear anti-symmetric map of \(k \) variables.

\(F = 5x^3 dydz + 7 \sin(y) xdx + 3 \cos(xy) dxdy \) is an example of a 2-form. In calculus

this is identified with a vector field \(F = [5x^3, 7\sin(y)x, 3\cos(xy)] \).

The exterior derivative of a term like \(F = P dxdy \) is \(dF = (P_x dx + P_y dy + P_z dz) dxdy = P_x dx dy + P_y dy dz + P_z dz dx \).

The general stokes theorem tells \(\int_G dF = \int_{\partial G} F \), where \(\partial G \) is the boundary of \(G \).

Oliver Knill, knill@math.harvard.edu, Math 22a, Harvard College, Fall 2018
Problem 41P.1) (10 points):
On the graph G in Figure 1 we are given a 1-form F on a graph $G = (V, E)$.

a) (3 points) Write the values of the curl dF. As a 2-form it is a function on the set T of triangles.

b) (3 points) Compute the “discrete divergence” $d^* F$, which is a 0-form, a function on the vertices.

c) (4 points) Find the value of the Laplacian $d^* dF + dd^* F$ and enter the values near the edges in Figure 2.

Figure 1. A graph with a 1-Form F. Enter here the result for a) and b).

Figure 2. Enter here the result for c).
Problem 41P.2) (10 points) Each question is one point:

a) Who formulated the law of gravity in the form the partial differential equation $\text{div}(F) = 4\pi\sigma$?

b) The expression $5x\, dx \, dx \, dz + 77dy \, dz \, dy + 3dx \, dy + 6dy \, dx$ simplifies to

c) What value is $\iint_S [x, y, z] \cdot dS$ if S is the unit sphere oriented outwards?

d) What is the distance between the point $(0, 0, 3)$ and the xy-plane?

e) Is it true that if $|r'(t)| = 1$ everywhere, then $r''(t)$ is perpendicular to the velocity $r'(t)$?

f) What is the distortion factor $|dr|$ for the change of coordinates $r(u,v) = [-2v, 3u]$?

g) If $r(u,v)$ parametrizes a surface in \mathbb{R}^3, is it true that $r_u \times (r_u \times r_v)$ tangent to the surface?

h) Yes or no: if $(0, 0, 0)$ is a maximum of $f(x,y,z)$ then $f_{xx}(0,0,0) < 0$.

i) Write down the quadratic approximation of $1 + x + y + \sin(x^2 - y^2)$?

j) If $S : f(x,y,z) = x^2 + y^2 + z^2 = 1$ is oriented outwards, then the flux of ∇f through S is either negative, zero or positive. Which of the three cases is it?

Problem 41P.3) (10 points) Each problem is 1 point:

a) Which of the triangles in Figure 3 is integrated over in $\int_0^1 \int_0^1 f(x,y) \, dx \, dy$?

b) We have seen a counter example for Clairaut’s theorem. This function $f(x,y)$ was in C^k but not in C^{k+1}. The integer k indicated how many times we could differentiate f continuously. What was the k?

c) To what group of partial differential equations belongs $\text{div}(E) = 4\pi j + E_t$?

d) Write down the Cauchy-Schwarz inequality.

e) Let G be the first stage of the Menger sponge (with 20 cubes from 27 cubes present). Is it simply connected?

f) Take an exterior derivative of the differential form $F = \sin(xz) \, dx \, dy$.

g) Parametrize the surface $x = z^2 - y^3$.

h) Parametrize the curve obtained by intersecting of the ellipsoid $x^2/4 + y^2 + z^2/9 = 1$ with the plane $y = 0$.

i) What surface is given in spherical coordinates as $\sin(\phi) \cos(\theta) = \cos(\phi)$?

j) Write down the general formula for the area of a triangle with vertices $(0,0,0), (a,b,c), (u,v,w)$.

Problem 41P.4) (10 points):

a) (6 points) Find the equation of the plane which contains the line $r(t) = [1+t, 2+t, 3-t]$ and which is perpendicular to the plane $\Sigma : x+2y-z = 4$.

b) (4 points) What is the angle between the normal vectors of Σ and the plane you just found?
Problem 41P.5 (10 points):

a) (8 points) Find the critical points of the function \(f(x, y) = \cos(x) + y^5 - 5y \) and classify them using the second derivative test. You can assume that \(0 \leq x < 2\pi \).

b) (2 points) Does the function \(f \) have a global maximum or a global minimum?

Problem 41P.6 (10 points):

a) (5 points) Use the Lagrange method to find the maximum of \(f(x, y) = y^2 - x \) under the constraint \(g(x, y) = x + x^3 - y^2 = 2 \).

b) (5 points) The Lagrange equations fail to find the maximum of \(f(x, y) = y^2 - x \) under the constraint \(g(x, y) = x^3 - y^2 = 0 \). Still, the Lagrange theorem still allows you to find the maximum. How?

Problem 41P.7 (10 points):

a) (6 points) Find the tangent plane at the point \(P = (4, 2, 1, 1) \) of the surface \(x^2 - 2y^2 + z^3 + w^2 = 2 \).

b) (4 points) Parametrize the line \(r(t) \) which passes through \(P \) which is perpendicular to the hyper surface at that point. Then find \((r(1) + r(-1))/2 \).

Problem 41P.8 (10 points):

a) Estimate \(f(0.012, 0.023) \) for \(f(x, y) = \log(1 + x + 3xy) \) using linear approximation.

b) Estimate \(f(0.012, 0.023) \) for \(f(x, y) = \log(1 + x + 3xy) \) using quadratic approximation.

Problem 41P.9 (10 points):

a) Let's look at the curve which satisfies the acceleration \(r''(t) = [-2\cos(t), -2\sin(t), -2\cos(t), -2\sin(t)] \), has the initial position \([2, 0, 2, 0]\) and initial velocity \([0, 2, 0, 2]\). Find \(r(t) \).

b) What is the curvature \(|T'(t)|/|r'(t)| \) of \(r(t) \) at \(t = 0 \)?
Problem 41P.10) (10 points):
a) Integrate the function $f(x, y) = x + x^2 - y^2$ over the region $1 < x^2 + y^2 < 4, xy > 0$.
b) Find the surface area of
$$r(t, s) = [\cos(t) \sin(s), \sin(t) \sin(s), \cos(s)]$$
$0 \leq t \leq 2\pi, 0 \leq s \leq t/2$.

Problem 41P.11) (10 points):
Let E be the solid
$$x^2 + y^2 \geq z^2, x^2 + y^2 + z^2 \leq 9, y \geq |x|.$$

a) (7 points) Integrate
$$\int \int \int _E x^2 + y^2 + z^2 \, dxdydz.$$
b) (3 points) Let F be a vector field
$$F = [x^3, y^3, z^3]$$
Find the flux of F through the boundary surface of E, oriented outwards.

Problem 41P.12) (10 points):
What is the line integral of the force field $F(x, y, z, w) = [1, 5y^4 + z, 6z^5 + y, 7w^6]^T + [y - w, 0, 0, 0]^T$ along the path $r(t) = [t^3, \sin(6t), \cos(8t), \sin(6t)]$ from $t = 0$ to $t = 2\pi$. Hint. We have written the field by purpose as the sum of two vector fields.

Problem 41P.13) (10 points):
Find the area of the region $|x|^{2/5} + |y|^{2/5} \leq 1$. Use an integral theorem.
Problem 41P.14) (10 points):
What is the flux of the vector field \(F(x, y, z, w) = [x + \cos(y), y + z^2, 2z, 3w] \) through the boundary of the solid \(E : 1 \leq x \leq 3, 3 \leq y \leq 5, 0 \leq z \leq 1, 4 \leq w \leq 8 \) oriented outwards?

Problem 41P.15) (10 points):
Find the flux of the curl of the vector field
\[
F(x, y, z) = [-z, z + \sin(xyz), x - 3]^T
\]
through the twisted surface seen in Figure 3 is oriented inwards and parametrized by
\[
r(t, s) = [(3 + 2 \cos(t)) \cos(s), (3 + 2 \cos(t)) \sin(s), s + 2 \sin(t)],
\]
where \(0 \leq s \leq 7\pi/2 \) and \(0 \leq t \leq 2\pi \).

Figure 5. The boundary of the surface is made of two circles \(r(t, 0) \) and \(r(t, 7\pi/2) \). The picture gives the direction of the velocity vectors of these curves (which in each case might or might not be compatible with the orientation of the surface).
Welcome to the final exam. Please don’t get started yet. We start all together at 9:00 AM after getting reminded about some formalities. You can fill out the attendance slip already. Also, you can already enter your name into the larger box above.

- You only need this booklet and something to write. Please stow away any other material and any electronic devices. Remember the honor code.
- Please write neatly and give details. Except for problems 2 and 3 we want to see details, even if the answer should be obvious to you.
- Try to answer the question on the same page. There is additional space on the back of each page. If you must, use additional scratch paper at the end.
- If you finish a problem somewhere else, please indicate on the problem page where we can find it.
- You have 180 minutes for this 3-hourly.
Problem 41E.1) (10 points):
The graph $G = (V,E)$ in Figure 1 represents a discrete surface in which all triangles are oriented counterclockwise. The values of a 1-form $= \text{vector field} F$ are given.

a) (2 points) Find the line integral of F along the boundary curve oriented counter clockwise.
b) (2 points) Compute the curl $H = dF$ and write its values into the triangles.
c) (2 points) What is the sum of all curl values? Why does it agree with the result in a)?
d) (2 points) Find also $g = d^*F$ and enter it near the vertices.
e) (1 point) True or False: $\sum_{x \in V} g(x) = 0$.
f) (1 point) True or False: we called $L = dd^*$ the Laplacian of G.

![Figure 1](image-url). A discrete 2-dimensional region on which a 1-form F models a vector field. You compute the curl dF and divergence d^*F of F.

Problem 41E.2) (10 points) Each question is one point:

a) Name the 3-dimensional analogue of the Mandelbrot set.

b) If A is a 5×4 matrix, then A^T is a $m \times n$ matrix. What is m and n?

c) Write down the general formula for the arc length of a curve

$$r(t) = [x(t), y(t), z(t)]^T$$

with $a \leq t \leq b$.

d) Write down one possible formula for the curvature of a curve

$$r(t) = [x(t), y(t), z(t)]^T.$$

e) We have seen a parametrization of the 3-sphere invoking three angles ϕ, θ_1, θ_2. Either write down the parametrization or recall the name of the mathematician after whom it this parametrization is named.

f) The general change of variable formula for $\Phi : R \rightarrow G$ is

$$\int\int\int_R f(u,v,w) \, dudvdw = \int\int\int_G f(x,y,z) \, dxdydz.$$

Fill in the blank part of the formula.

g) What is the numerical value of $\log(-i)$?

h) We have used the Fubini theorem to prove that C^2 functions $f(x,y)$ satisfy a partial differential equation. Please write down this important partial differential equation as well as its name. (It was used much later in the course.)

i) What is the integration factor $|dr|$ for the parametrization

$$r(u,v) = [a \cos(u) \sin(v), b \sin(u) \sin(v), c \cos(v)]^T?$$

j) In the first lecture, we have defined $\sqrt{\text{tr}(A^T A)}$ as the length of a matrix. What is the length of the 3×3 matrix which contains 1 everywhere?
Problem 41E.3) (10 points) Each problem is 1 point:

a) Assume that for a Morse function $f(x, y)$ the discriminant D at a critical point (x_0, y_0) is positive and that $f_{yy}(x_0, y_0) < 0$. What can you say about $f_{xx}(x_0, y_0)$?

b) We have proven the identity $|dr| = |r_u \times r_v|$, where r was a map from \mathbb{R}^m to \mathbb{R}^n. For which m and n was this identity defined?

c) Which of the following is the correct integration factor when using spherical coordinates in 4 dimensions?

\[
\begin{align*}
|d\Phi| &= r \\
|d\Phi| &= (3 + \cos(\phi)) \\
|d\Phi| &= \rho^2 \sin(\phi) \\
|d\Phi| &= \rho^3 \sin(2\phi)/2
\end{align*}
\]

d) Which of the following vector fields are gradient fields? (It could be none, one, two, three or all.)

\[
\begin{align*}
F &= [x, 0]^T \\
F &= [0, x]^T \\
F &= [x, y]^T \\
F &= [y, x]^T
\end{align*}
\]

e) Which of the following four surfaces is a one-sheeted hyperboloid? (It could be none, one, two, three or all.)

\[
\begin{align*}
x^2 + y^2 &= z^2 - 1 \\
x^2 - y^2 &= 1 - z^2 \\
x^2 + y^2 &= 1 - z^2 \\
x^2 - y^2 &= z^2 + 1
\end{align*}
\]

f) Parametrize the surface $x^2 + y^2 - z^2 = 1$ as

\[
r(\theta, z) = [...........,,]^T.
\]

g) Who was the creative person who discovered dark matter and proposed the mechanism of gravitational lensing?

h) What is the cosine of the angle between the matrices $A, B \in M(2, 2)$, where A is the identity matrix and B is the matrix which has 1 everywhere? You should get a concrete number.

i) We have seen the identity $|v|^2 + |w|^2 = |v - w|^2$, where v, w are vectors in \mathbb{R}^n. What conditions do v and w have to satisfy so that the identity holds?

j) Compute the exterior derivative dF of the differential form

\[
F = e^x \sin(y)dx dy + \cos(xyz)dy dz.
\]
Problem 41E.4) (10 points):

a) (4 points) Find the plane \(\Sigma \) which contains the three points
\[
A = (3, 2, 1), \quad B = (3, 3, 2), \quad C = (4, 3, 1).
\]
b) (3 points) What is the area of the triangle \(ABC \)?
c) (3 points) Find the distance of the origin \(O = (0, 0, 0) \) to the plane \(\Sigma \).

Problem 41E.5) (10 points):

a) (8 points) Find all the critical points of the function
\[
f(x, y) = x^5 - 5x + y^3 - 3y
\]
and classify these points using the second derivative test.
b) (2 points) Is any of these points a global maximum or global minimum of \(f \)?

Problem 41E.6) (10 points):

a) (8 points) Use the Lagrange method to find all the maxima and all the minima of
\[
f(x, y) = x^2 + y^2
\]
under the constraint
\[
g(x, y) = x^4 + y^4 = 16.
\]
b) (2 points) In our formulation of Lagrange theorem, we also mentioned the case, where \(\nabla g(x, y) = [0, 0]^T \). Why does this case not lead to a critical point here?

Problem 41E.7) (10 points):

a) (5 points) The hyper surface
\[
S = \{ f(x, y, z, w) = x^2 + y^2 + z^2 - w = 5 \}
\]
defines a three-dimensional manifold in \(\mathbb{R}^4 \). It is poetically called a hyper-paraboloid. Find the tangent plane to \(S \) at the point \((1, 2, 1, 1) \).
b) (5 points) What is the linear approximation \(L(x, y, z, w) \) of \(f(x, y, z, w) \) at this point \((1, 2, 1, 1) \)?
Problem 41E.8) (10 points):
Estimate the value $f(0.1, -0.02)$ for
$$f(x, y) = 3 + x^2 + y + \cos(x + y) + \sin(xy)$$
using quadratic approximation.

Problem 41E.9) (10 points):
a) (8 points) We vacation in the 5-star hotel called MOTEL 22 in 5-dimensional space and play there ping-pong. The ball is accelerated by gravity $r''(t) = [x(t), y(t), z(w), v(t), w(t)] = [0, 0, 0, 0, -10]^T$. We hit the ball at $r(0) = [4, 3, 2, 1, 2]^T$ and give it an initial velocity $r'(0) = [5, 6, 0, 0, 3]^T$. Find the trajectory $r(t)$.
b) (2 points) At which positive time $t > 0$ does the ping-pong ball hit the hyper ping-pong table $w = 0$? (The points in this space are labeled $[x, y, z, v, w]$.)

Problem 41E.10) (10 points):
a) (5 points) Integrate the function $f(x, y) = (x^2 + y^2)^{1/2}$ over the region $G = \{1 < x^2 + y^2 < 4, y > 0\}$.
b) (5 points) Find the area of the region enclosed by the curve $r(t) = [\cos(t), \sin(t) + \cos(2t)]^T$, with $0 \leq t \leq 2\pi$.

Problem 41E.11) (10 points):
a) (7 points) Integrate
$$f(x, y, z) = x^2 + y^2 + z^2$$
over the solid
$$G = \{x^2 + y^2 + z^2 \leq 4, z^2 < 1\}.$$
b) (3 points) What is the volume of the same solid G?

Problem 41E.12) (10 points):
a) (8 points) Compute the line integral of the vector field
$$F = [yzw + x^6, xzw + y^9, xyw - z^3, xyz + w^4]^T$$
along the path $r(t) = [t + \sin(t), \cos(2t), \sin(4t), \cos(7t)]^T$ from $t = 0$ to $t = 2\pi$.
b) (2 points) What is $\int_0^{2\pi} r'(t) \, dt$?
Problem 41E.13) (10 points):
a) (8 points) Find the line integral of the vector field
\[F(x, y) = [3x - y, 7y + \sin(y^4)]^T \]
along the polygon ABCDE with \(A = (0, 0), B = (2, 0), C = (2, 4), D = (2, 6), E = (0, 4) \). The path is closed. It starts at \(A \), then reaches \(B, C, D, E \) until returning to \(A \) again.
b) (2 points) What is line integral if the curve is traced in the opposite direction?

Problem 41E.14) (10 points):
a) (8 points) What is the flux of the vector field
\[F(x, y, z) = [y + x^3, z + y^3, x + z^3]^T \]
through the sphere \(S = \{ x^2 + y^2 + z^2 = 9 \} \) oriented outwards?
b) (2 points) What is the flux of the same vector field \(F \) through the same sphere \(S \) but where \(S \) is oriented inwards?

Problem 41E.15) (10 points):
a) (7 points) What is the flux of the curl of the vector field
\[F(x, y, z) = [-y, x + z(x^2 + y^5), z]^T \]
through the surface
\[S = \{ x^2 + y^2 + z^2 + z(x^4 + y^4 + 2\sin(x - y^2z)) = 1, z > 0 \} \]
oriented upwards?
b) (3 points) The surface in a) was not closed, it did not include the bottom part
\[D = \{ z = 0, x^2 + y^2 \leq 1 \} \, . \]
Assume now that we close the bottom and orient the bottom disc \(D \) downwards. What is the flux of the curl of the same vector field \(F \) through this closed surface obtained by taking the union of \(S \) and \(D \)?
Problem 41R.1) (10 points):
The graph G in Figure 1 represents a surface in which all triangles are oriented counterclockwise. We are given a 1-form = vector field F on G.

a) (3 points) Find the line integral of F along the boundary curve oriented counterclockwise.
b) (3 points) Enter the curl dF values in the triangles.
c) (2 points) What is the sum of all curl values?
d) (2 points) Why are the results in a) and c) the same?

Figure 1. A graph analogue to a 2-dimensional region with a 1-form F which models a vector field.
Problem 41R.2) (10 points) Each question is one point:

a) Assume F is a 1-form on a graph $G = (V,E)$. Define $f = d^*F$. Can you say something about $\sum_{x \in V} f(x)$?

b) The volume $V(S_n)$ of the n-dimensional sphere S_n has the property that $V((S_n) \rightarrow ...)$.

c) Who wrote the book “How to solve?” and who invented differential forms?

d) What is $(1 + i)^i$?

e) Green was not only doing mathematics, he had an other profession. Which one? Stokes theorem appeared first in an exam problem. Who was one of the pupils?

f) If B and C are row reductions of the same matrix A. What can you say about the length $|B - C|$?

g) We cited a Harvard professor who invoked the anthropic principle to exclude perpetual motion. Who was this? Also and unrelated: who found first the formula for the volume of the sphere?

h) In the relief below in Figure 2, we see the level curves of some function f. Is the function f a Morse function?

i) True or false? There is a non-zero function $f(x)$ which can be differentiated infinitely many times everywhere which has the property that all derivatives at 0 are 0.

j) What is the name of the lantern which approximates a cylinder but for which the surface area explodes?

![Figure 2. Contour map of some function $f(x,y)$.](image-url)
Problem 41E.3 (10 points) Each problem is 1 point:
a) What is the value of the Hessian determinant \(D = \det(d^2 f(x)) \) at a critical point \(x \) of a Morse function \(f \)?
b) What is the curl of a vector field \(F \) which is conservative?
c) Take the unit sphere and drill a hole of radius 1/10 from the surface to the center. Is the solid simply connected?
d) One of the three following identities is not defined. \(F \) are vector fields in \(\mathbb{R}^3 \). Which one?
 A) \(\text{curl}(\text{curl}(F)) \),
 B) \(\text{grad}(\text{div}(F)) \),
 C) \(\text{div}(\text{div}(F)) \).
e) Which of the following three vector fields can not be the curl of an other vector field?
 A) \(F = [x, y, z] \),
 B) \(F = [y, z, x] \),
 C) \(F = [z, x, y] \).
f) Which of the following vector fields is a gradient field?
 A) \(F = [x, y, z] \),
 B) \(F = [y, z, x] \),
 C) \(F = [z, x, y] \)?
g) What is the exterior derivative \(dF \) if \(F = xdy + zdz + xdx \)?
h) Is it true that \(\text{curl}(F) \) is always perpendicular to \(F \)?
i) Is there a differentiable function which violates the Fubini theorem? Is there a differentiable function which violates the Clairaut theorem?
j) What is the name of the partial differential equation \(\text{curl}(E) = -B \)?

Problem 41R.4 (10 points):
a) Find the equation \(ax + by + cz = d \) of the plane which contains both the line \(r(t) = [2 - t, t + 1, 3t] \) as well as the point \(P = (3, 5, 1) \).
b) What is the distance from \(P \) to the line?

Problem 41R.5 (10 points):
a) Find the critical points of the function \(f(x, y) = xy + x^2 + 2x \) and classify them using the second derivative test.
b) Does \(f \) have a global maximum or minimum?

Problem 41R.6 (10 points):
Use the Lagrange method to find the maximum of \(xyz \) under the constraint \(x + y + z - yz = 1 \).
Problem 41R.7) (10 points):
The surface \(f(x, y, z, w) = x^2 + y^2 + z^2 - w^2 = 1 \) is called a hyper-
hyperboloid. a) Find the tangent plane at the point \((1, 0, 1, 1)\).
b) The tangent plane has the form \(ax + by + cz + dw = e \). Parametrize
this plane.

Problem 41R.8) (10 points):
Estimate the cube root of \(1001 \times 999^2 \) using a quadratic approximation of
\(f(x, y) = (xy^2)^{1/3} \) at a suitable point.

Problem 41R.9) (10 points):
a) We live in 22 dimensional space and observe a planet moving
along a path \(r(t) \) experiencing the acceleration \(r''(t) = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] \). The planet is initially
at the point \(r(0) = [10, 0] \) and
has zero initial velocity. Were is it at time \(t = 1? \)
b) What is the curvature \(|T'(0)|/|r'(0)| \) at \(t = 0? \)

Problem 41R.10) (10 points):
a) Integrate the function \(f(x, y) = y \) over the region given in polar co-
dinates given as \(0 \leq r \leq \theta \).
b) Integrate the function \(f(x, y, z) = 3 + x + y \) over the solid given in
spherical coordinates as \(0 \leq \rho \leq \phi \).

Problem 41R.11) (10 points):
a) What is the volume of the solid \(G : x^4 + y^4 - 1 < z < 1 + 2x^2 + 2y^4, \)
\(|x| < 1, |y| < 1? \)
b) What is the average height \(\iiint_G z \, dV / \iiint_G 1 \, dV \)?

Problem 41R.12) (10 points):
Compute the line integral of the field \(F = [y^2 + x, y^5, z^3] \) along the path
\(r(t) = [t + \sin(t), 0, \sin(4t)] \) from \(t = 0 \) to \(t = \pi \).

Problem 41R.13) (10 points):
Find the line integral of the vector field \(F(x, y) = [x^{10} + y, y + \sin(\sin(y))] \)
along the triangle \(C = ABC \) with \(A = (0, 0), B = (2, 0), C = (0, 1) \) in the
order \(A \rightarrow B \rightarrow C \rightarrow A \).
Problem 41R.14) (10 points):
What is the flux of the vector field \(F[x, y, z, w] = [x^3, y^3, z^3, w^3] \) through the sphere \(x^2 + y^2 + z^2 + w^2 = 1 \) oriented outwards? Remember that we can parametrize the four dimensional ball \(E \) as \(r(\rho, \phi, \theta_1, \theta_2) = [\rho \cos(\phi) \cos(\theta), \rho \cos(\phi) \sin(\theta), \rho \sin(\phi) \cos(\theta), \rho \sin(\phi) \sin(\theta)] \) with \(0 \leq \rho \leq 1, 0 \leq \phi \leq \pi/2, 0 \leq \theta_1 \leq 2\pi, 0 \leq \theta_2 \leq 2\pi \).

Problem 41R.15) (10 points):
What is the flux of the curl of the vector field \(F[x, y, z, w] = [xyx, x + y^4wx, -y+x, x* w] \) through the disk surface \(r(u, v) = [0, u, v, 0], u^2 + v^2 \leq 1 \).
Unit 42: Some literature

42.1. Of course, the hope is that no other literature is needed. These lecture notes are quite dense. The idea is that you “write your own book” and fill in eventual gaps or work out some parts in more detail. We live in a time where many great resources are online. The total sum of the books below are in the ten thousands. Some are there for historical reasons, like Gibbs, Cartan or Gleason. For proof literature, see Unit 24.

Figure 1. Edwards, Blatter, Kaplan, Marsden-Tromba, Marsden-Ratiu

Figure 2. A bit more historical: Cartan, Gibbs-Wilson, Widder, Gleason, Loomis-Sternberg.

To the end, we added some physics books. Why physics? Well, we are made of matter and live for some time in space and essentially all calculus was developed in order to understand concepts like space, time and matter. There is no doubt that also in the future, both calculus and physics will remain tightly linked and continue to influence each other.
Figure 3. Spivak, Weintraub, Arnold, Thirring and Morita.

Figure 4. Popular choices: Adams-Thompson-Hass, Bachman, Stewart, Do Carmo and Hubbard-Hubbard.

Figure 5. Puzzling times for physics. Greene (Stringy), Smolin, Woit, Hossenfelder, Rovelli-Vidotto (all not so Stringy).

Oliver Knill, knill@math.harvard.edu, Math 22a, Harvard College, Fall 2018
Acknowledgements:

43.1. First of all thanks to the Math 22a class of the fall of 2018 for questions, comments, feedback and proofreading. So, thanks to Troy Appel, Ethan Arellano, Jordan Barkin, Vlad Batagui, David Bruno, Silvia Casacuberta, Ian Chan, Candice Chen, Michael Chen, Jackson Delgado, Isabel Diersen, Michaela Donato, Shelby Elder, William Elder, Phillip Evans, Eric Hansen, Emily He, Ben HoffnerBrodsky, Jerry Huang, Spencer Hurt, Lauren Jiang, Drew Kelner, Nour Khachemoune, Madeleine KlebanoffOBrien, Mary Kolesar, Jordan Lawanson, Tim Li, Jake Lim, Isaac Longobardi, Robert Malate, Emily Murdock, Samantha OSullivan, Christopher Ong, Moni Radev, Sanjana Ramrajvel, Isaac Robinson, Amia Ross, Julian Schmitt, Daniel Shin, Ross Simmons, Daniel Slaw, Sophia Sun, Varun Tekur, Grace Tian, Eddie Tu, Connor Wagaman, Carissa Wu, Rebecca Xi, Iris Xu, Mark Xu, Jenny Yao, Nicole Zhang, Jennifer Zhu and Richard Zhu. There were not hundreds of small things which the class has found but also substantial directives came from the class while teaching the course.

43.2. Thanks to Robin Gottlieb and Cliff Taubes for initiating the course and getting it off the ground. And to the TF’s David, Aditya and Elliot for helping running the course smoothly.

43.3. Thanks to Jameel Al-Aidroos, Wes Cain, Janet Chen and Dusty Grundmeyer for valuable discussions and feedback for early versions during the spring and the summer of 2018 while planning the course.

43.4. The cover picture uses a Povray code by Jaime Vives Piqueretes from 2005 illustrating height-fields.

Oliver Knill, knill@math.harvard.edu, Math 22A, Harvard College, Fall 2018