Homework for Monday April 30, 1,2,3,4,5,6 in Section 10.1

LINEAR DIFFERENTIAL EQUATIONS. \(Df = f' \) is a linear map on smooth functions \(C^\infty \). Also \(G_h f = hf \) is a linear map. Composition and addition of linear maps gives new linear maps. For example \(T f = D^2 f + hf \) is a linear map. If \(T \) is obtained like this then \(T f = 0 \) is called a linear differential equation. For linear maps \(T = p(D) \) which are polynomials in \(D \), the problem \(T f = 0 \) or more generally the eigenvalue problem \(T f = \lambda f \) are differential equations with constant coefficients. The eigenspace to the eigenvalue \(\lambda \) is a linear space. Especially, the kernel of \(T \) is a linear space.

FINDING THE KERNEL OF A POLYNOMIAL IN \(D \). How do we find a basis for the kernel of \(T f = f'' + 2f' + f \)? The linear map \(T \) can be written as a polynomial in \(D \) which means \(T = D^2 - D - 2 = (D + 1)(D - 2) \). The kernel of \(T \) contains the kernel of \(D - \lambda \) which is one-dimensional and spanned by \(f_1 = e^{2x} \). The kernel of \(T = (D - 2)(D + 1) \) also contains the kernel of \(D + 1 \) which is spanned by \(f_2 = e^{-x} \). The kernel of \(T \) is therefore two dimensional and spanned by \(e^{2x} \) and \(e^{-x} \).

THEOREM: If \(T = p(D) = D^n + a_{n-1} D^{n-1} + \ldots + a_1 D + a_0 \) on \(C^\infty \) then \(\dim(\ker(T)) = n \).

PROOF. \(T = p(D) = \prod(D - \lambda_j) \), where \(\lambda_j \) are the roots of the polynomial \(p \). The kernel of \(T \) contains the kernel of \(D - \lambda \) which is spanned by \(f_j(t) = e^\lambda t \). In the case when we have a factor \((D - \lambda_j)^k \) of \(T \), then we have to consider the kernel of \((D - \lambda_j)^k \) which is \(q(t)e^{\lambda t} \), where \(q \) is a polynomial of degree \(k - 1 \). For example, the kernel of \((D - 1)^3 \) consists of all functions \((a + bt + ct^2)e^t \).

SECOND PROOF. Write this as \(ADF = A\hat{f} = 0 \), where \(A \) is a \(n \times n \) matrix and \(F = [f, f', \ldots, f^{(n-1)}]^T \), where \(f^{(k)} = D^k f \) is the \(k \)th derivative. The linear map \(T = AD \) acts on vectors of functions. If all eigenvalues \(\lambda_j \) of \(A \) are different (they are the same \(\lambda_j \) as before), then \(A \) can be diagonalized. Solving the diagonal case \(BD = 0 \) is easy. It has a \(n \) dimensional kernel of vectors \(F = [f_1, \ldots, f_n]^T \), where \(f_i(t) = t \). If \(B = SAS^{-1} \), and \(F \) is in the kernel of \(BD \), then \(SF \) is in the kernel of \(AD \).

REMARK. The result can be generalized to the case, when \(a_j \) are functions of \(t \). Especially, \(T f = g \) has a solution, when \(T \) is of the form above. It is important that the highest power \(D^n \) has nothing in front of it which can be zero for some \(t \). For example \(tDf = f' \) has no solution in \(C^\infty \), because we can not integrate \(e^t/t \).

WHY ARE WE INTERESTED IN THE KERNEL?

- Equations \(T f = 0 \) where \(T = p(D) \) form linear differential equations with constant coefficients and we want to understand all solutions. Such equations are called homogeneous. Solving means finding a basis of the kernel of \(T \). In the above example, a general solution of \(f'' + 2f' + f = 0 \) can be written as \(f(t) = a_1 f_1(t) + a_2 f_2(t) \). If we fix two values like \(f(0), f'(0) \) or \(f(0), f(1) \), the solution is unique.
- If we want to solve \(T f = g \), which corresponds to a inhomogeneous equation then \(T^{-1} \) is not unique because we have a kernel. If \(g \) is in the image of \(T \) we can find at least one solution \(f \). The general solution is then \(f + \ker(T) \). For example, for \(T = D^2 \), which has \(C^\infty \) as its image, we can find a solution to \(D^2 f = t^5 \) by integrating twice: \(f(t) = \frac{t^6}{20} \). The kernel of \(T \) consists of all linear functions \(at + b \). The general solution to \(D^2 = t^5 \) is \(at + b + t^5/20 \). The integration constants parameterize actually the kernel of a linear map.
- In order to find the eigenspace of \(T \) to the eigenvalue \(\lambda \) we have to find the kernel of \(T - \lambda \).

AN EIGENVALUE PROBLEM. If \(T \) is the linear map \(T f = f'' \), what are the eigenvalues and eigenvectors?

SOLUTION. \(T f = \lambda f \) means \(f''(x) = \lambda f(x) \). You remember that the solutions are all of the form \(f(x) = a \cos(\lambda t) + b \sin(\lambda t) \). The kernel of \(D^2 \) consists of all functions \(f(x) = ax + b \). A basis of the kernel are \(f_1(x) = 1, f_2(x) = x \). The kernel is two-dimensional.
ON A DIFFERENT SPACE. Let us look at $C^\infty(I)$ consisting of all functions on the interval $I = [0, \pi]$ for which $f(0) = 0$ and $f(\pi) = 0.$ Now, in order that $f(0) = 0$ and $f(\pi) = 0,$ we must have $\lambda = n$ and $a = 0.$ The linear map T has the eigenfunctions $f_n(x) = \sin(nx)$ to the eigenvalues $\lambda_n = -n^2.$ The kernel of T is now trivial because there is no nonzero function f which satisfy $Tf = 0.$

INTERPRETATION. For the eigenvalue problem $Tf = \lambda f$ on $C^\infty(I),$ the numbers λ are the possible frequencies of the standing wave which is kept fixed at 0 and $\pi.$

QUANTUM MECHANICAL INTERPRETATION. The problem $Tf = \lambda f$ on $C^\infty(I)$ describes the quantum mechanical particle in a box $[0, \pi].$ While $P = i\hbar D$ is the linear map representing the momentum, $H = P^2/2m - (\hbar^2/2m)D^2$ represents the kinetic energy. (In the case of the Hydrogen atom, we had additionally the energy of the y and z direction as well as the potential energy). The functions $\sin(nx)$ are eigenfunctions of $-D^2$ to the eigenvalue $\lambda_n = n^2,$ where $n = 1, 2, 3, \ldots.$ Therefore, $E_n = 2m n^2/\hbar^2$ are the eigenvalues of $H.$

These are the possible energies of the particle in the box. The quantized appearance of the energies is the origin for the name "quantum mechanics." If a particle is represented by $f_n = \sqrt{2/\pi} \sin(nx),$ which is normalized so that $\int_0^\pi f_n^2 \, dx = 1,$ then $f_n^2(x)$ is a probability density. The probability to find a particle with energy $2m n^2/\hbar^2$ in an interval $[a, b]$ is $\frac{2}{\pi} \int_a^b \sin^2(nx) \, dx.$ Max Planck (on left picture) had been forced to consider a discrete energy spectrum in order to explain the blackbody radiation.

Probability distribution in $n = 1$ Probability distribution in $n = 2$ Probability distribution in $n = 3$

MOTIVATION: WAVES. If we bend a string located on the graph of a function $x \mapsto T(x)$ on $[0, \pi]$ satisfying $T(0) = T(\pi) = 0,$ then the force $F(x)$ which pulls it back at the point x is proportional to $T''.$ The string $T(x, t)$ satisfies $\ddot{T}(x, t) = c^2 T''(x, t),$ where c is a constant. If we write $T(x, t) = u(x)v(t),$ then $\ddot{u} = \ddot{v}$ and $T'' = uv''.$ The equation becomes now $\ddot{u} = \ddot{v}$ or $\ddot{u}/(\ddot{v}) = u''/u.$ Because the left hand side depends only on t and the right hand side only on $x,$ we have $\ddot{v}/(\ddot{v}) = u''/u = -n^2 = \text{const}.$ The right equation is an eigenvalue problem $\ddot{v} = \lambda u$ which has solutions for $\lambda = -n^2.$ The eigenvectors are $u_n(x) = \sin(nx).$ Now, $v_n(t) = \exp(inct)$ solves $\ddot{v} = -c^2 n^2 v$ so that $T_n(x, t) = u_n(x)v_n(t) = \sin(nx) \exp(inct)$ are solutions of the wave equation. General solutions can be obtained by taking superpositions of these waves $T(x, t) = \sum_n c_n \sin(nx) \exp(inct).$ The coefficients $c_n = a_n + ib_n$ are obtained from $T(x, 0) = \sum_n a_n \sin(nx)$ and $\dot{T}(x, 0) = \sum_n b_n n c_n \sin(nx).$ These are Fourier series which we will look at in the next class.