14: Chain rule

If \(f \) and \(g \) are functions of \(t \), then the **single variable chain rule** tells

\[
\frac{d}{dt} f(g(t)) = f'(g(t))g'(t).
\]

For example, \(d/dt \sin(\log(t)) = \cos(\log(t))/t \). This **chain rule** can be proven by linearising the functions \(f \) and \(g \) and verifying the chain rule in the linear case. The rule is useful for finding derivatives like \(\arccos(x) \): write \(1 = d/dx \cos(\arccos(x)) = -\sin(\arccos(x)) \arccos'(x) = -\sqrt{1-x^2} \arccos'(x) \) so that \(\arccos'(x) = -1/\sqrt{1-x^2} \).

1. Find the derivative \(d/dx \arctan(x) \). **Solution.** We have \(\sin' = \cos \) and \(\cos' = -\sin \) and from \(\cos^2(x) + \sin^2(x) = 1 \), follows \(1 + \tan^2(x) = 1/\cos^2(x) \). Therefore \(d/dx \tan(\arctan(x)) = 1/\cos^2(\arctan(x)) \tan'(x) = x \) Now \(1/\cos^2(x) = 1/(1 + \tan^2(x)) \) so that \(\tan'(x) = 1/(1 + x^2) \).

Define the **gradient** \(\nabla f(x,y) = [f_x(x,y), f_y(x,y)] \) or \(\nabla f(x,y,z) = [f_x(x,y,z), f_y(x,y,z), f_z(x,y,z)] \).

If \(\vec{r}(t) \) is curve and \(f \) is a function of several variables we can build a function \(t \mapsto f(\vec{r}(t)) \) of one variable. Similarly, If \(\vec{r}(t) \) is a parametrization of a curve in the plane and \(f \) is a function of two variables, then \(t \mapsto f(\vec{r}(t)) \) is a function of one variable.

The **multi-variable chain rule** is

\[
\frac{d}{dt} f(\vec{r}(t)) = \nabla f(\vec{r}(t)) \cdot \vec{r}'(t).
\]

Proof. When written out in two dimensions, it is

\[
\frac{d}{dt} f(x(t),y(t)) = f_x(x(t),y(t))x'(t) + f_y(x(t),y(t))y'(t).
\]

Now, the identity

\[
\frac{f(x(t+h),y(t+h))-f(x(t),y(t))}{h} = \frac{f(x(t+h),y(t+h))-f(x(t),y(t+h))}{h} + \frac{f(x(t),y(t+h))-f(x(t),y(t))}{h}
\]

holds for every \(h > 0 \). The left hand side converges to \(\frac{d}{dt} f(x(t),y(t)) \) in the limit \(h \to 0 \) and the right hand side to \(f_x(x(t),y(t))x'(t) + f_y(x(t),y(t))y'(t) \) using the single variable chain rule twice. Here is the proof of the latter, when we differentiate \(f \) with respect to \(t \) and \(y \) is treated as a constant:

\[
\frac{f(\ x(t+h)) - f(x(t))}{h} = \frac{[f(\ x(t) + (x(t+h)-x(t))) - f(x(t))] \cdot [x(t+h)-x(t)]}{h}.
\]

Write \(H(t) = x(t+h)-x(t) \) in the first part on the right hand side.

\[
\frac{f(x(t+h)) - f(x(t))}{h} = \frac{[f(x(t) + H) - f(x(t))] \cdot x(t + h) - x(t)}{h}.
\]

As \(h \to 0 \), we also have \(H \to 0 \) and the first part goes to \(f'(x(t)) \) and the second factor to \(x'(t) \).
We move on a circle \(\vec{r}(t) = [\cos(t), \sin(t)]\) on a table with temperature distribution \(f(x, y) = x^2 - y^3\). Find the rate of change of the temperature \(\nabla f(x, y) = [2x, -3y^2]\), \(\vec{r}'(t) = [-\sin(t), \cos(t)]\) \(\frac{d}{dt}(f(\vec{r}(t))) = \nabla T(\vec{r}(t)) \cdot \vec{r}'(t) = [2\cos(t), -3\sin(t)^2] \cdot [-\sin(t), \cos(t)] = -2\cos(t)\sin(t) - 3\sin^2(t)\cos(t)\).

From \(f(x, y) = 0\), we can express \(y\) as a function of \(x\). From \(\frac{d}{df}(x, y(x)) = \nabla f \cdot (1, y'(x)) = f_x + f_y y' = 0\), we get

Implicit differentiation: \(y' = -\frac{f_x}{f_y}\).

Even so, we do not know \(y(x)\), we can compute its derivative! Implicit differentiation works also in three variables. The equation \(f(x, y, z) = c\) defines a surface. Near a point where \(f_z\) is not zero, the surface can be described as a graph \(z = z(x, y)\). We can compute the derivative \(z_x\) without actually knowing the function \(z(x, y)\). To do so, we consider \(y\) a fixed parameter and compute using the chain rule \(f_x(x, y, z(x, y))1 + f_z(x, y)z_x(x, y) = 0\). This leads to the following

Implicit differentiation: \(z_x(x, y) = -\frac{f_x(x, y, z)}{f_z(x, y, z)}\), \(z_y(x, y) = -\frac{f_y(x, y, z)}{f_z(x, y, z)}\)

The surface \(f(x, y, z) = x^2 + y^2/4 + z^2/9 = 6\) is an ellipsoid. Compute \(z_x(x, y)\) at the point \((x, y, z) = (2, 1, 1)\). **Solution**: \(z_x(x, y) = -f_x(2, 1, 1)/f_z(2, 1, 1) = -4/(2/9) = -18\).

How does the chain rule relate to other differentiation rules? **Answer.** The chain rule is universal: it implies single variable differentiation rules like the addition, product and quotient rule in one dimensions:

\[f(x, y) = x + y, x = u(t), y = v(t), \frac{d}{dt}(x+y) = f_x u' + f_y v' = u' + v'. \]

\[f(x, y) = xy, x = u(t), y = v(t), \frac{d}{dt}(xy) = f_x u' + f_y v' = vu' + uv'. \]

\[f(x, y) = x/y, x = u(t), y = v(t), \frac{d}{dt}(x/y) = f_x u' + f_y v' = u'/y - v' u/v^2. \]

Can one prove the chain rule from linearization and just verifying it for linear functions? **Solution.** Yes, as in one dimensions, the chain rule follows from linearization. If \(f\) is a linear function \(f(x, y) = ax + by - c\) and if the curve \(\vec{r}(t) = [x_0 + tu, y_0 + tv]\) parametrizes a line. Then \(\frac{d}{dt}f(\vec{r}(t)) = \frac{d}{dt}(a(x_0 + tu) + b(y_0 + tv)) = au + bv\) and this is the dot product of \(\nabla f = (a, b)\) with \(\vec{r}'(t) = (u, v)\). Since the chain rule only refers to the derivatives of the functions which agree at the point, the chain rule is also true for general functions.

Mechanical systems are determined by the energy function \(H(x, y)\), which is a function of two variables. The first variable \(x\) is the position and the second variable \(y\) is the momentum. The equations of motion for the curve \(\vec{r}(t) = [x(t), y(t)]\) are called **Hamilton equations**:

\[x'(t) = H_y(x, y) \]

\[y'(t) = -H_x(x, y) \]

In a homework you verify that the energy of a Hamiltonian system is preserved: for every path \(\vec{r}(t) = [x(t), y(t)]\) solving the system, we have \(H(x(t), y(t)) = \text{const.}\).