MAXIMAL AREA OF RECTANGLE. We want to extremize the area of a rectangle for which the length of the boundary is fixed 4. If the sides are \(x \) and \(y \), then we want to extremize \(f(x, y) = xy \) under the constraint \(g(x, y) = 2x + 2y = 4 \). The Lagrange equations \(y = 2\lambda, x = 2\lambda \) show that \(x = y \) and so \(x = y = 1 \).

The last problem could also been solved by substituting \(y = 2 - x \) into the area formula \(A = xy = x(2 - x) \) leading to a one-dimensional extremal problem: maximize \(f(x) = x(2 - x) \) on the interval \([0, 2]\). To do so, we have to find the extrema inside the interval and then consider also the boundary points \(x = 0, x = 2 \). Again, we get \(x = 1 \).

VOLUME OF CUBE. Extremize the volume \(f(x, y, z) = xyz \) of a box with fixed surface area \(xy + yz + xz = 3 \). To solve \(yz = \lambda(y + z), xz = \lambda(x + z), xy = \lambda(x + y), xy + yz + xz = 1 \), take quotients: \(z/x = (y + z)/(y + x), z/y = (z + x)/(y + x) \) which gives \(z(y + x) = x(y + z), z(y + x) = y(z + x) \) so that either \(xz = yz \) or \(xz = 0 \). Similarly, we get \(y = z \) or \(y = 0 \). The solution is \(x = y = z = 1 \).

ANOTHER SOLUTION. For a solution without Lagrange multipliers, we would plug in \(z = (1 - xy)/(y + x) \) and try to find the maximum of \(f(x, y) = xy(1 - xy)/(y + x) \) on the domain \(D = \{ x > 0, y > 0, xy \leq 1 \} \).

We first would have to find critical points inside the region \(D \):
\[
 f_x(x, y) = -y(1 - 2xy)/(x + y) - xy(1 - xy)/(x + y)^2 = 0
\]
\[
 f_y(x, y) = -x(1 - 2xy)/(x + y) - xy(1 - xy)/(x + y)^2 = 0
\]
The difference of these two equations gives \((x - y)(1 - 2xy) = 0 \) so that either \(x = y \) or \(xy = 1/2 \). The second case can not give us \(f_x = f_y = 0 \). The first condition \(x = y \) gives \(x = y = 1 \) which is not inside the region. However, on the boundary \(g(x, y) = xy = 1 \), the Lagrange equations \(\nabla f = \lambda \nabla g \) have a solution with \((x, y) = (1, 1) \).

The example illustrates the power of Lagrange multipliers. The substitution method is more complicated.

TWO CONSTRAINTS. (informal) The calculation with Lagrange multipliers can be generalized: if the goal is to optimize a function \(f(x, y, z) \) under the constraints \(g(x, y, z) = c, h(x, y, z) = d \), take the Lagrange equations
\[
\nabla f = \lambda \nabla g + \mu \nabla h, g = c, h = d
\]
which are 5 equations for the 5 unknowns \(x, y, z, \lambda, \mu \). Geometrically the gradient of \(f \) is in the plane spanned by the gradients of \(g \) and \(h \).
(This is the plane orthogonal to the curve \(\{ g = c, h = d \} \).)

GENERAL PROBLEM. Given a region \(G \) whose boundary is given by \(g(x, y) = c \). The task to maximize or minimize \(f(x, y) \) on \(G \) has the following steps:
I) Find extrema inside the region: compute critical points \(\nabla f = (0, 0) \) and classify them using the second derivative test.
II) Find extrema on the boundary using Lagrange: \(\nabla f = \lambda \nabla g, g = c \).
III) Compare the values of the functions obtained in I) and II) to find the maximum or minimum.
EXAMPLE. Extremize \(f(x, y) = 3x^2 - 4x - y^2 \) on the disc \(x^2 + y^2 \leq 1 \).

I) Inside the disc. There is only one critical point \((2/3, 0)\). The discriminant \(D = -6 \) so that \((2/3, 0)\) is a saddle point.

II) On the boundary solve \(6x - 4 = 2Ax, -2y = 2\lambda y \). There are four solutions: \((1/2, -\sqrt{3}/2), (1/2, +\sqrt{3}/2), (1,0), (-1,0)\).

III) A list of all candidates:

<table>
<thead>
<tr>
<th>((x, y))</th>
<th>(f(x,y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((2/3, 0))</td>
<td>(-4/3)</td>
</tr>
<tr>
<td>((1/2, -\sqrt{3}/2))</td>
<td>(-2)</td>
</tr>
<tr>
<td>((1/2, +\sqrt{3}/2))</td>
<td>(-2)</td>
</tr>
<tr>
<td>((1,0))</td>
<td>(-1)</td>
</tr>
<tr>
<td>((-1,0))</td>
<td>(7)</td>
</tr>
</tbody>
</table>

reveals that \((-1,0)\) is the maximum and \((1/2, -\sqrt{3}/2)\) are minima.

IN MATHEMATICA.

Here is how a machine solves the above problem. After defining the functions \(f \) and \(g \), the machine solves first the equations leading to critical points, and then the Lagrange equations (we put \(L = \lambda \)).

\[
\begin{align*}
 f[x_, y_] &:= 3x^2 - 4x - y^2 \\
 g[x_, y_] &:= x^2 + y^2 - 1 \\
 \text{Solve}\{D[f[x, y], x] == 0, D[f[x, y], y] == 0, \{x, y\}\} \\
 \text{Solve}\{D[f[x, y], x] == L \cdot D[g[x, y], x], D[f[x, y], y] == L \cdot D[g[x, y], y], g[x, y] == 0\}, \{x, y, L\}\end{align*}
\]

TRICKY LAGRANGE PROBLEM. Let \(p \) and \(q \) be positive constants such that \(\frac{1}{p} + \frac{1}{q} = 1 \). Use the method of Lagrange Multipliers to prove that for any \(x > 0, y > 0 \), the following inequality is true:

\[xy \leq \frac{x^p}{p} + \frac{y^q}{q} . \]

SOLUTION.

We have to find the maximum of \(f(x, y) = xy \) \((x > 0, y > 0)\) under the constraint \(\frac{x^p}{p} + \frac{y^q}{q} = c \).

The Lagrange equations \(x = \lambda x^{p-1}, y = \lambda y^{q-1} \) gives \(y/x = x^{p-1}/y^{q-1} \) so that \(y^q = x^p \).

Plugging this into \(x^p/q + y^q = c \) gives \(x^p(1/p + 1/q) = c \) or \(x = c^{1/p} \) and so \(y = c^{1/q} \). The maximal value of \(f(x, y) = xy \) is \(c^{1/p}c^{1/q} = c \). Therefore, everywhere

\[xy = f(x, y) \leq c = x^p/p + y^q/q . \]

SNELLS LAW of refraction is the problem to determine the fastest path between two points, if the path crosses a border of two media and the media have different indices of refraction. The law can be derived from Lagrange:

PROBLEM. A light ray travels from \(A = (-1,1) \) to the point \(B = (1,-1) \) crossing a boundary between two media (air and water). In the air \((y > 0)\) the speed of the ray is \(v_1 = 1 \) (in units of speed of light). In the second medium \((y < 0)\) the speed of light is \(v_2 = 0.9 \). The light ray travels on a straight line from \(A \) to a point \(P = (x, 0) \) on the boundary and on a straight line from \(P \) to \(B \). Verify Snell’s law of refraction \(\sin(\theta_1)/\sin(\theta_2) = v_1/v_2 \), where \(\theta_1 \) is the angle the ray makes in air with the \(y \) axis and where \(\theta_2 \) is the angle, the ray makes in water with the \(y \) axis.

SOLUTION. Minimize \(f(x,y) = \sqrt{(-1-x)^2 + y^2/v_1} + \sqrt{(1-x)^2 + y^2/v_2} = l_1/v_1 + l_2/v_2 \) under the constraint \(G(x,y) = y = 0 \). The Lagrange equations show that \(f_x(x,y) = 0 \). This is already Snells law because \(f_x = v_12(x+1)/(2l_1) + v_22(1-x)/(2l_2) = 0 \) means \(v_1/v_2 = \sin(\theta_1)/\sin(\theta_2) \). If \(v_1 \) is larger, then \(\theta_1 \) is larger.