Next: About this document Up: Billiards that share a Previous: Discussion


References

1
S.B. Angenent. A remark on the topological entropy and invariant circles of an area preserving twistmap. In Twist mappings and their applications, volume 44 of IMA Vol. Math. Appl., pages 1-5. Springer, New York, 1992.

2
E. Gutkin and A. Katok. Caustics for inner and outer billiards. Commun. Math. Phys., 173:101-133, 1995.

3
E. Gutkin and O. Knill. Billiards that share a common convex caustic. Preprint, 1996.

4
A. Hubacher. Instability of the boundary in the billiard ball problem. Commun. Math. Phys., 108:483-488, 1987.

5
A. Katok. Some remarks on Birkhoff and Mather twist map theorems. Ergod. Th. Dyn. Sys., 2:185-194, 1982.

6
A. Katok and B. Hasselblatt. Introduction to the modern theory of dynamical systems, volume 54 of Encyclopedia of Mathematics and its applications. Cambridge University Press, 1995.

7
W.D. Neuman M. Brown. Proof of the Poincaré-Birkhoff fixed point theorem. Mich. Math. J., 24:21-31, 1975.

8
W.de Melo and S.van Strien. One-Dimensional Dynamics. A series of Modern Surveys in Mathematics. Springer, Berlin, 1993.

9
S. Pelikan and E. Slaminka. A bound for the fixed point index of area-preserving homeomorphisms of two manifolds. Ergod. Th. Dyn. Sys., 7:463-479, 1987.

10
C.P. Simon. A bound for the fixed-point index of an area-preserving map with applications to mechanics. Inv. Math., 26:187-200, 1974.

11
Ya.G. Sinai. Introduction to ergodic theory. Princeton University press, Princeton, 1976.

12
S. Tabachnikov. Billiards. Panoramas et synthèses. Société Mathématique de France, 1995.


Oliver Knill, Jul 8 1998