Next: About this document Up: Billiards in the unit Previous: Discussion and open questions


References

1
S.B. Angenent. A remark on the topological entropy and invariant circles of an area preserving twistmap. In Twist mappings and their applications, volume 44 of IMA Vol. Math. Appl., pages 1-5. Springer, New York, 1992.

2
G. Benettin and J. Strelcyn. Numerical experiments on the free motion of a point mass moving in a plane convex region: Stochastic transition and entropy. Phys. Rev. A, 17, 1978.

3
M. Bialy. Convex billiards and a theorem of E.Hopf. Math. Z., 214:147-154, 1993.

4
G.D. Birkhoff. On the periodic motions of dynamical systems. Acta Math., 50:359-379, 1950.

5
V. Donnay. Using integrability to produce chaos: billiards with positive entropy. Commun. Math. Phys., 141:225-257, 1991.

6
E. Gutkin and A. Katok. Caustics for inner and outer billiards. Commun. Math. Phys., 173:101-133, 1995.

7
E. Gutkin and O. Knill. Billiards that share a triangular caustic. In J. Llibre E. A. Lacomba, editor, New trends for Hamiltonian systems and celestial mechanics, volume Volume 8 of Advanced Series in nonlinear dynamics. World Scientific, Singapore, 1996, 1996. Proceedings of the second International symposium on Hamiltonian Systems and Celestial Mechanics, Cocoyoc, Mexico, Sept. 13-17.

8
A. Hayli, T. Dumont, J.M. Ollangier, and J.M.Strelcyn. Results of some new calculations on Robnik billiards. J. Phys. A: Math. Gen., 20:3237-3249, 1987.

9
M. Hénon and J. Wisdom. The benettin-strelcyn oval billiard revisited. Physica D, 8:157-169, 1983.

10
A. Hubacher. Instability of the boundary in the billiard ball problem. Commun. Math. Phys., 108:483-488, 1987.

11
A. Katok and J.-M. Strelcyn. Invariant manifolds, entropy and billiards, smooth maps with singularities, volume 1222 of Lecture Notes in Mathematics. Springer-Verlag, 1986.

12
O. Knill. Isospectral deformations of random Jacobi operators. Commun. Math. Phys., 151:403-426, 1993.

13
F. Ledrappier and J-M. Strelcyn. A proof of the estimation from below in Pesin's entropy formula. Ergod. Th. Dyn. Sys., 2:203-219, 1982.

14
R. Markarian. Billiards with pesin region of measure one. Commun. Math. Phys., 118:87-97, 1993.

15
J. Mather. Glancing billiards. Ergod. Th. Dyn. Sys., 2:397-403, 1982.

16
Ya.B. Pesin. Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surveys, 32:55-114, 1977.

17
P. Richter, H-J. Scholz, and A. Wittek. A breathing chaos. Nonlinearity, 3:45-67, 1990.

18
M. Robnik. Classical dynamics of a family of billiards with analytic boundaries. J. Phys. A: Math. Gen., 16:3971-3986, 1983.

19
M. Rychlik. Periodic points of the billiard ball map in a convex domain. J. Diff. Geom., 30:191-205, 1989.

20
L. Stojanov. An estimate from above of the number of periodic orbits for semi-dispersed billiards. Commun. Math. Phys., 124:217-227, 1989.

21
S. Tabachnikov. Billiards. Panoramas et synthèses. Société Mathématique de France, 1995.

22
D.V. Treshchev V.V. Kozlov. Billiards, volume 89 of Translations of mathematical monographs. AMS, 1991.

23
M. Wojtkowski. Principles for the design of billiards with nonvanishing Lyapunov exponents. Commun. Math. Phys., 105:391-414, 1986.


Oliver Knill, Jul 10 1998