Next: About this document Up: On nonconvex caustics of Previous: Appendix: Is there a


References

1
V. Arnold. Topological Invariants of Plane Curves and Caustics, volume 5 of University Lecture Series. Americal Mathematical Society, 1994.

2
I.K. Babenko. Periodic trajectories in a 3-dimensional birkhoff billiard. Math. USSR-Sbornik, 71:1-13, 1992.

3
M. Berger. Sur les caustiques des surfaces en dimension 3. C. R. Acad. Sc. Paris, 311:76-85, 1990.

4
M. Berger. La mathématique du billard. Pour la Science, 163:76-85, 1991.

5
M. Berger and B. Gostiaux. Differential Geometry: Manifolds, Curves and Surfaces. Springer-Verlag, New York, Berlin, Heidelberg, 1988.

6
G.D. Chakerian and H. Groemer. Convex bodies of constant width. In Handbook of convex geometry. Elsevier Science Publishers, 1993.

7
Y. Collin de Verdiére. Sur les longueurs des trajectoires périodiques d'un billiard. In Géométrie symplectique et de contact autour du théor/'eme de Poincaré-Birkhoff, Travaux en cours. Hermann, éditeurs des sciences et des arts, Paris, 1984.

8
R. Douady. Application du théorème des tores invariantes. These 3 ème cycle, Université Paris VII, 1982.

9
K. Falconer. Fractal Geometry, Mathematical Foundations and Applications. John Wiley and Sons, Chichester, 1990.

10
P. Funk. Über Flächen mit lauter geschlossenen geodätischen Linien. Math. Ann., 74:278-300, 1913.

11
P.M. Gruber. Baire categories in convexity. In Handbook of convex geometry. Elsevier Science Publishers, 1993.

12
P.M. Gruber. Only ellipsoids have caustics. Math. Ann., 303:185-194, 1995.

13
E. Gutkin. Billiard tables of constant width and dynamical characterizations of the circle. Proceedings of the Penn. State Workshop, 1993.

14
E. Gutkin and A. Katok. Caustics for inner and outer billiards. Commun. Math. Phys., 173:101-133, 1995.

15
A. Hubacher. Instability of the boundary in the billiard ball problem. Commun. Math. Phys., 108:483-488, 1987.

16
A. Katok and B. Hasselblatt. Introduction to the modern theory of dynamical systems, volume 54 of Encyclopedia of Mathematics and its applications. Cambridge University Press, 1995.

17
J. Mather. Glancing billiards. Ergod. Th. Dyn. Sys., 2:397-403, 1982.

18
J. Moser . Stable and random Motion in dynamical systems. Princeton University Press, Princeton, 1973.

19
J.C. Oxtoby. Measure and Category. Springer Verlag, New York, 1971.

20
H. Poritsky. The billiard ball problem on a table with a convex boundary-an illustrative dynamical problem. Annals of Mathematics, 51:456-470, 1950.

21
Ya.G. Sinai. Introduction to ergodic theory. Princeton University press, Princeton, 1976.

22
S. Tabachnikov. Around four vortices. Russian Math. Surveys, 45:229-230, 1990.

23
S. Tabachnikov. Billiards. Panoramas et synthèses. Société Mathématique de France, 1995.

24
D.V. Treshchev V.V. Kozlov. Billiards, volume 89 of Translations of mathematical monographs. AMS, 1991.

Department of Mathematics
University of Arizona
Tucson, AZ, 85721, USA


Oliver Knill, Translated Jun 12, 1998