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Abstract: We note that every finite or infinite dimensional real-analytic Hamiltonian
system with a quasi-periodic invariant KAM torus of finite dimensiond ≥ 2 can be
perturbed in such a way that the new real-analytic Hamiltonian system has a weakly
mixing invariant torus of the same dimension.

1. Introduction

By the celebrated Kolmogorov–Arnold–Moser theory, Hamiltonian systems often have
invariant tori on which the motion is quasi-periodic. While the dynamics on one-dimen-
sional periodic orbits is always trivial, the Hamiltonian dynamics induced on higher-
dimensional invariant tori can be interesting. The reason is the nontrivial ergodic theory
of the systems

dxi

dt
= αiF (x)−1 (1)

which are obtained by a change of time from a linear flowẋ = α and which have the
invariant measureµ = F(x)dx (see [1]). The flowφt can be either weakly mixing or
can be conjugated to the linear flowẋ = α. Weak mixing means limT →∞ T −1

∫ T

0 µ(Y ∩
φt (Y )) − µ(Y )2dt = 0 for any measurable setY and is a weak type of chaos.

The question of what kind of dynamics occurs for a givenα andF is interesting and
has been studied for quite a while. Much is known in the cased = 2, a situation of wider
interest because any smooth flow on the two-dimensional torus with no fixed points and
some absolutely continuous invariant measure reduces to (1) by a change of coordinates
[1]. In two dimensions and for smoothF , no strong mixingµ(Y ∩φt (Y )) → µ(Y )2 can
happen [4]. While Baire generically weakly mixing occurs [3], one can for almost all
α conjugate the system to the quasi-periodic flow withF = 1. While for Diophantine
rotation numbers, there is point spectrum by Kolmogorov’s theorem and for Liouville
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rotation number, there is zero-dimensional but continuous spectrum in general [3], it is
not known, if the dimension of spectral measures can become positive.

The ergodic theory of (1) is less understood in dimensionsd ≥ 3. We will note in
Sect. 2 that nearF = 1, we have generically weak mixing.

Arnold mentioned in an interview [6] that Kolmogorov’s work on KAM theory was
motivated by the question of whether mixing invariant tori exist for most Hamiltonian
systems. While this question is open, our note shows that in a weak sense, the answer
is yes: weakly mixing tori of dimensiond ≥ 2 occurs densely in some open sets of
Hamiltonian systems. The result does not only apply to finite dimensional systems. KAM
theorems for infinite dimensional Hamiltonian systems often lead to the persistence of
finite-dimensional invariant tori [5,9]. In such a situation, one can perturb the infinite-
dimensional Hamiltonian to obtain weakly mixing invariant measures of some PDE’s.

2. A Higher Dimensional Version of Sklover’s Theorem

Sklover has shown [10,1] that smooth differential equations on the two torus exist for
which the dynamics is weakly mixing. The weak mixing property is even Baire generic
[3] for real analyticF ’s. This can be generalized to higher dimensions:

Proposition 2.1 (Generalization of Sklover’s theorem).For a Baire generic set of
(F, α) nearF = 1, the flowẋi = α/F(x) has purely singular continuous spectrum.
Such systems are in general ergodic and weakly mixing.

Proof. If the coordinatesαi of α are rationally dependent, then every orbit is periodic
andTn is foliated by one-dimensional tori, which are parameterized byTn−1.

A general measure preserving flowTt on the torusTn defines a one parameter family
Ut of unitary operatorsUtf = f (T−t ) on the Hilbert spaceL2(Td , dx). By Stone’s
theorem there is an infinitesimal generatorL satisfyingUt = exp(iLt) which we call
the Liouville operator.

There is a continuum of distinct ergodic invariant measuresmy and the Liouville
operatorL is an integralL = ∫

Tn−1 L(y) dy, whereL(y) = p(y)∂x andp(y) is the
period of the flow.L has pure absolutely continuous spectrum on the orthocomplement
of constant functions if and only if the measure of all orbits with a given period has
measure zero. This condition forF is true for an open dense set ofF ’s.

If α is Diophantine and the realanalyticF near 1, then the flow is conjugated to the
linear flow and has pure point spectrum. This result of Arnold and Moser can also be
derived from the fact that every timet map is conjugated to a mapx 7→ x + α (see [7,
2]).

There is a dense set of Liouville operators with absolutely continuous spectrum and
a dense set of Liouville operators with discrete spectrum. By Simon’s theorem [11],
L Baire generically has purely singular continuous spectrum. (See [3] for details, like
how to deal with the fact that the different Liouville operators are defined on different
Hilbert spaces. Simon’s theorem is: LetX be a complete metric space of self-adjoint
operators on a separable Hilbert space for which convergence in the metric implies
strong resolvent convergence. Suppose the two sets of operators inX that have purely
continuous spectrum and purely discrete spectrum are both dense inX . Then there is a
denseGδ in X of operators that have purely singular continuous spectrum.)ut
Remark.While the result in two dimensions which we obtained together with A. Hof
[3] is global, we don’t know whether Proposition 2.1 can be made global in dimensions
d ≥ 3.
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3. Weakly Mixing Invariant Tori

Consider a Hamiltonian vector fieldXH with smooth HamiltonianH on a symplectic
manifoldM. The functionH is an integral of motion and the vector fieldXH is tangential
to any energy surfaceC = {x | H(x) = c}. If c is not a critical value forH , thenC

is a smooth submanifold and the vector fieldXH does not vanish onC. If K is another
Hamiltonian for whichC is an energy surface,

C = {x | H(x) = c} = {x | K(x) = c′ }
with dH, dK 6= 0 on C, then∇K(x) = F(x)∇H(x) at every pointx ∈ C with
F(x) 6= 0 and therefore

XK(x) = F(x)XH (x), F (x) 6= 0

on C. It follows thatXH andXK have the same orbits onC although their time pa-
rameterization will be changed in general. Especially, any invariant torus ofXH which
is contained in the energy surfaceC is an invariant torus ofXK and the change of the
Hamiltonian produces a time change on this torus. Changing the Hamiltonian is useful
for the study of periodic orbits (e.g. [12, Lemma 2.1]).

Lemma 3.1 (Poincaré trick). Given a Hamiltonian system with ad-dimensional in-
variant torusN . For any smooth functionF onN , with no roots on N, there exists a new
HamiltonianK which has the same invariant torus on which the dynamics is obtained
by a change of time with functionF .

Proof. An explicit choice forK is F(x)(H − c) which hasC = {K = 0}. ut
We also need to change the rotation vector on invariant quasi-periodic tori.

Lemma 3.2 (Change of the rotation vector).Given a Hamiltonian system with ad-
dimensional invariant torusN on which the dynamics is a rotation with rotation vector
α. For anyβ nearα, there exists a HamiltonianK nearH for which the torusN is still
invariant and quasi-periodic with rotation vectorβ.

Proof. A change of variablesA : z 7→ (φ, I ) defined near the invariant torusN brings
the Hamiltonian into action-angle variables on the invariant torus:

φ̇ = α + g(I, φ), İ = h(I, φ),

whereg(I, φ) and h(I, φ) vanish onN = {I = α} (see e.g. [8]). IfH̃ (φ, I ) =
H(A−1(φ, I )) is the Hamiltonian in these new variables, change it toK̃(φ, I ) =
H̃ (φ, I ) + (β − α)I and defineK(x, y) = H̃ (A(x, y)). The flow of XK leavesN
invariant and is conjugated there to a quasi-periodic flow with rotation vectorβ. ut
Remark.The invariant torusN obtained like this loses the KAM property during the
perturbation. However, by KAM, a different torus with the same rotation vectorα will
persist and the perturbed system will now have two invariant tori, one with rotation
numberα and one with rotation vectorβ.

Theorem 3.3. Given a real-analytic HamiltonianH for which there exists an invariant
torusN on which the dynamics is quasi-periodic, there exists a HamiltonianK arbitrarily
close toH for which the same torusN is still invariant and for which the dynamics on
N is ergodic and weakly mixing.
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Proof. Using Proposition 2.1, take(β, F ) with β nearα andF near 1 such that the
corresponding flow on the torus is weakly mixing. We make now a first change of the
HamiltonianH → K1 such that the rotation vector ofN is changed toβ.

Let c be the energy of an orbit onN . Let K = F(K1 − c) be the Hamiltonian
obtained fromK1. The flow of this Hamiltonian induced on the invariant torusN is
weakly mixing. ut

The result generalizes obviously to infinite-dimensional Hamiltonian systems for
which KAM theory assures that finite dimensional tori survive (see [5]). For example,
there are perturbations of some nonlinear wave equations which have weakly mixing
invariant tori.
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