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Abstract. Defined by a single axiom, finite abstract simplicial complexes belong to
the simplest constructs of mathematics. We look at a few theorems.

Theorems

1. Simplicial complexes

1.1. A finite abstract simplicial complex G is a finite set of non-empty sets which
is closed under the process of taking finite non-empty subsets. The Barycentric
refinement G1 of G is the set of finite subsets of the power set of G which are pairwise
contained into each other. The new complexG1 defines a finite simple graph Γ = (V,E),
where V = G and E are the pairs where one is contained in the other. G1 agrees with
the Whitney complex of Γ, the collection of vertex sets of complete sub graphs of Γ.
Other names for Whitney complexes are flag complexes or clique complexes.

Theorem: Barycentric refinements are Whitney complexes.

1.2. Examples of complexes not coming directly from graphs are buildings or matroids.
Oriented matroids are examples of elements of the ring R generated by simplicial
complexes. Still, the Barycentric refinement G1 of G always allows to study G with
the help of graph theory.

1.3. A subset H of G is called a sub-complex, if it is itself a simplicial complex. Any
subset H generates a sub-complex, the smallest simplicial complex in G containing H.
The set G of sub-complexes is a Boolean lattice because it is closed under intersection
and union. The f-vector of G is f = (v0, v1, . . . , vr), where vk is the number of elements
in G with cardinality k + 1. The integer r is the maximal dimension of G.

2. Poincaré-Hopf

2.1. A real-valued function f : G → R is locally injective if f(x) 6= f(y) for any
x ⊂ y or y ⊂ x. In other words, it is a coloring in the graph Γ representing G1. The
unit sphere S(x) of x ∈ G is the set {y ∈ G|(x, y) ∈ E(Γ)}. It is the unit sphere in the
metric space G, where the distance is the geodesic distance in the graph representing
G1. Define the stable unit sphere S−f (x) = {y ∈ S(x) | f(y) < f(x)} and the index

if (x) = χ(S−f (x)). The Poincaré-Hopf theorem is
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Theorem:
∑

x if (x) = χ(G).

2.2. Classically, for a smooth function with isolated critical points on a Riemannian
manifold M , the same definitions and result apply for if (x) = limr→0 χ(S−r,f (x)), where
Sr is the geodesic sphere of radius r in M centered at x.

2.3. If f(x) = dim(x), then if (x) = ω(x). Poincaré-Hopf tells then that χ(G) = χ(G1).
If f(x) = −dim(x), then if (x) = ω(x)(1 − χ(S(x))). For complexes for which every
unit sphere is a 2d-sphere, we have idim = −i−dim implying χ(G) = 0.

3. Gauss-Bonnet

3.1. Any probability space (Ω,A, P ) of locally injective functions defines a curvature
κ(x) = E[if (x)]. As we have integrated over f , the curvature value κ(x) only depends
on x.

Theorem:
∑

x κ(x) = χ(G).

3.2. If Ω is the product space
∏

x∈G[−1, 1] with product measure so that f → f(x) are
independent identically distributed random variables, then κ(x) = K(x) is the Levitt
curvature 1 +

∑
k=0(−1)kvk(S(x))/(k+ 1). The same applies if the probability space

consists of all colorings. If f = 1 + v0t + v1t
2 + . . . is the generating function of

the f -vector of the unit sphere, with anti-derivative F = t + v0t
2/2 + v1t

3/3..., then
κ = F (0)− F (−1). Compare χ(G) = f(0)− f(−1) and

∑
x χ(S(x)) = f ′(0)− f ′(−1).

3.3. If P is the Dirac measure on the single function f(x) = dim(x), then the curvature
is ω(x). If P is the Dirac measure on f(x) = −dim(x), then the curvature is ω(x)(1−
χ(S(x)).

4. Valuations

4.1. A real-valued function X on G is called a valuation if X(A ∩ B) + χ(A ∪ B) =
χ(A) + χ(B) for all A,B ∈ G. It is called an invariant valuation if X(A) = X(B)
if A and B are isomorphic. Let Gr denote the set of complexes of dimension r. The
discrete Hadwiger theorem assures:

Theorem: Invariant valuations on Gr have dimension r + 1.

4.2. A basis of the space of invariant valuations is given by vk : G → R. Every vector
X = (x0, . . . , xr) defines a valuation X(G) = X · f(G) on Gr.

5. The Stirling formula

5.1. The f -vectors transform linearly under Barycentric refinements. Let Stirling(x, y)
denote the Stirling numbers of the second kind. It is the number of times one can
partition a set of x elements into y non-empty subsets. The map f → Sf is the
Barycentric refinement operator

Theorem: f(G1) = Sf , where S(x, y) = Stirling(y, x)x!.
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5.2. The matrix is upper triangular with diagonal entries k! the factorial. If X(G) =
〈X, f(G)〉 = X(G1) = 〈X,Sf(G)〉 = 〈STXf(G), then X = STX so that X is an
eigenvector to the eigenvalue 1 of ST . The valuation with X = (1,−1, 1,−1, . . . ) is
the Euler characteristic χ(G). This shows that Euler characteristic is unique in the
class of translation invariant valuations.

Theorem: If X(1) = 1 and X(G) = X(G1) for all G, then X = χ.

6. The unimodularity theorem

6.1. A finite abstract simplicial complex G of n sets defines the n × n connection
matrix L(x, y) = 1 if x ∩ y 6= ∅ and L(x, y) = 0 if x ∩ y = ∅. The unimodularity
theorem is:

Theorem: For all G ∈ G, the matrix L is unimodular.

7. Wu characteristic

7.1. Using the notation x ∼ y if x ∩ y 6= ∅, define the Wu characteristic

ω(G) =
∑
x∼y

ω(x)ω(y) .

For a complete complex Kd+1 we have ω(Kd+1) = (−1)d. As every x ∈ G defines a
simplicial complex generated by {x}, the notation ω(x) is justified.

7.2. A complex G is a d-complex if every unit sphere is a (d− 1)-sphere. A complex
G is a d-complex with boundary if every unit sphere S(x) is either (d − 1) sphere
or a d− 1-ball. The sets for which S(x) is a ball form the boundary of G. A complex
without boundary is closed. d-complexes with or without boundary are pure: all
maximal sets have the same dimension.

Theorem: For a d-complex G with boundary, ω(G) = χ(G)− χ(δG).

7.3. For any d one can define higher Wu characteristic

ωk(G) =
∑

x1∼...xk

ω(x1) · · ·ω(xd)

summing over all simultaneously intersecting sets in G. As before ω(x) = (−1)dim(x) =
(−1)|x|−1. It can be generalized by assuming xk ∈ Gk to be in different complexes.
Especially important is the intersection number between two complexes G,H

ω(G,H) =
∑
x∼y

ω(x)ω(y) .
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8. The energy theorem

8.1. As L has determinant 1 or −1, the inverse g = L−1 is a matrix with integer
entries. The entries g(x, y) are the potential energy values between the simplices
x, y.

Theorem: For any complex G, we have
∑

x

∑
y g(x, y) = χ(G).

8.2. This energy theorem assures that the total potential energy of a complex is the
Euler characteristic.

9. Homotopy

9.1. The graph 1 = K1 is contractible. Inductively, a graph is contractible if there
exists a vertex x such that both S(x) and G−x are contractible. The step G→ G−x
is a homotopy step. Two graphs are homotopic if there exists a sequence of homotopy
steps or inverse steps which brings one into the other. Contractible is not the same
than homotopic to 1. A graph G is a unit ball if there exists a vertex such that
B(x) = G.

Theorem: If G is a unit ball then it is contractible.

9.2. It is proved by induction. It is not totally obvious. A cone extension G = D+x
for the dunce hat D obtained by attaching a vertex x to D is a ball but we can not
take x away. Any other point y can however be taken away by induction as G− y is a
ball with less elements.

Theorem: Contractible graphs have Euler characteristic 1.

9.3. The proof is done by induction starting with G = 1. It is not true that the Wu
characteristic

∑
x∼y ω(x)ω(y) is a homotopy invariant as ω(Kn+1) = (−1)n.

10. Spheres

10.1. The empty graph 0 is the (−1) sphere. A d-sphere G is a d-complex for
which all S(x) are (d − 1) spheres and for which there exists a vertex x such that
G− x is contractible. The 1-skeleton graphs of the octahedron and the icosahedron
are examples of 2-spheres. Circular graphs with more than 3 vertices are 1-spheres. A
simplicial complex G is a d-sphere, if the graph G1 is a d-sphere. Here is the polished
Euler Gem

Theorem: χ(G) = 1 + (−1)d for a d-sphere G.

Theorem: The join of a p-sphere with a q-sphere is a p+ q + 1-sphere.
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10.2. The generating function of G is fG(t) = 1+
∑∞

k=0 vk(G)tk+1 with vk(G) being
the number of k-dimensional sets in G. It satisfies

Theorem: fG+H(t) = fG(t) + fH(t)− 1 and fG⊕H(t) = fG(t)fH(t).

For example, for P2 ⊕ P2 = S4 we have (1 + 2t)(1 + 2t) = 1 + 4t+ 4t2.

10.3. Given a d-graph. The function dim(x) has every point a critical point and
S−(x) = {y ∈ S(x) | f(y) < f(x)} and S+(x) = {y ∈ S(x) | f(y) > f(x)} then
S(x) = S−(x) + S+(x).

10.4. Since by definition, a sphere becomes contractible after removing one of its
points:

Theorem: d-spheres admit functions with exactly two critical points.

Spheres are the d-graphs for which the minimal number of critical points is 2. There
are no d-graphs for which the minimal number of critical points is 1.

11. Platonic complexes

11.1. A combinatorial CW complex is an empty or finite ordered sequence of
spheres G = {c1, . . . , cn} such that Gn = {c1, . . . , cn} is obtained from Gn−1 =
{c1, . . . , cn−1} by selecting a sphere cn in Gn−1 such that cn is either empty or dif-
ferent from any cj. We identify cj with the cell filling out the sphere. Its dimension is 1
plus the dimension of the sphere. The Barycentric refinement G1 of G is the Whitney
complex of the graph with vertex set G and where two vertices a, b are connected if
one is a sub sphere of the other.

11.2. G is a d-sphere if G1 is a d-sphere as a simplicial complex. A subset H of G is
a sub-complex of G if H1 ⊂ G1 for the refinements.

11.3. The Levitt curvature of a cell cj is F (0)−F (−1), where F is the anti-derivative
of the f -generating function f = 1+ tv0 + t2v1 + . . . of the sphere S(cj). The curvature
of a cell x in a 2-sphere is 1−v0(S(x))/2+v1(S(x))/3 = 1−v0(S(x))/6. The curvature
of a cell in a 3 sphere is 0. Gauss-Bonnet assures that the sum of the curvatures is the
Euler characteristic.

11.4. A d-sphere G is called a Platonic d-polytope if for every 0 ≤ k ≤ d and any
cell dimension k, there exists a Platonic (d−1)-sphere Pk such that for any cell c of di-
mension k, the unit sphere S(x) is isomorphic to Pk. The −1-dimensional sphere 0 is as-
sumed to be Platonic. The 0-dimensional sphere consisting of two isolated points is Pla-
tonic too. The 1-dimensional complexes Ck with k ≥ 3 are the Platonic 1-spheres. With
C3 one denotes the 1-skeleton complex of K3. Let P = (p(−1), p(0), p(1), p(2), . . .
denote the number of Platonic d-polytopes. In the CW case, we have the familiar
Schläfli classification

Theorem: PlatonicCW = (1, 1,∞, 5, 6, 3, 3, 3, . . . ).
5
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11.5. The classification of Platonic polytopes of dimension d which are simplicial com-
plexes is easier. There is a unique Platonic solid in each dimension except in dimensions
1, 2, 3. In the 1-dimensional case there are infinitely many. In the two-dimensional case,
only the octahedron and icosahedron are Platonic. In the three dimensional case,
there is only the 600 cell and the 16 cell. After that the curvature condition and
Gauss-Bonnet constraint brings it down to the cross polytopes.

Theorem: PlatonicSC = (1, 1,∞, 2, 2, 1, 1, 1, 1, . . . ).

12. Dehn-Sommerville relations

12.1. Given a d-dimensional complex G, any integer vector (X0, . . . , Xd) in Zd+1

defines a valuation X(G) = X0v0 + . . . Xdvd. By distributing the values Xk at-
tached to each k-simplex in G equally to its k + 1 vertices, we get the curvature
K(x) =

∑d
k=0Xkvk−1(S(x))/(k + 1) for the valuation X and graph G at the vertex x.

The formula
∑

x∈V K(x) = X(G) is the Gauss-Bonnet theorem for X.

12.2. In the case X(G) = v1, the curvature is the vertex degree divided by 2 and
the formula reduces to the “Euler handshake”. If X = vd is the volume of G, then
K(x) is the number of d-simplices attached to x divided by d + 1. In the case X =
(1,−1, 1,−1, . . . ), X is the Euler characteristic and K is the discrete analogue of
the Euler form in differential geometry entering the Gauss-Bonnet-Chern theorem. For
d-graphs, there are some valuations which are zero. Define the Dehn-Sommerville
valuations

Xk,d =
d−1∑
j=k

(−1)j+d
(
j + 1

k + 1

)
vj(G) + vk(G) .

Theorem: For d-graphs, the Dehn-Sommerville curvatures are zero.

12.3. The proof is by noticing that the curvature of Xk,d is K(x) = Xk−1,d−1(S(x)).
This follows from the relation

Xk+1,d+1(l + 1)/(l + 1) = X(k, d)(l)/(k + 2) .

Use Gauss-Bonnet and induction using the fact that the unit sphere of a geometric
graph is geometric and that for d = 1, a geometric graph is a cyclic graph Cn with
n ≥ 4. For such a graph, the Dehn-Sommerville valuations are zero.

13. Dual Connection matrix

13.1. Define the dual connection matrix L(x, y) = 1−L(x, y) of a complex G with
n sets. L is the adjacency matrix of a dual connection graph (G,E), where two
simplices are connected, if they do not intersect: E = {(a, b) | a ∩ b = ∅}.

Theorem: 1− χ(G) = det(−LL).
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13.2. Let E be the constant matrix E(x, y) = 1. The result follows from unimodularity
det(L) = det(g) and the energy theorem telling that Lg = (E − L)g = Eg − 1 has the
eigenvalues of Eg minus 1 which are χ(G) and 0. Assume G has n sets:

Theorem: −LL has n− 1 eigenvalues 1 and one eigenvalue 1− χ(G).

13.3. The above formula is not the first one giving the Euler characteristic as a deter-
minant of a Laplacian. [12] show, using a formula of Stanley, that if A(x, y) = 1 if x is
not a subset of y and A(x, y) = 0 else, then 1− χ(G) = det(A).

14. Alexander Duality

14.1. The Alexander dual of G over the vertex set V is the simplicial complex
G∗ = {x ⊂ V | xc /∈ G}. It is the complex generated by the complements xc of the
sets x in G. For the complete complex Kd, the dual is the empty complex. In full
generality if G has n elements, one has for the Betti numbers bk(G):

Theorem: bk(G) = bn−3−k(G), k = 1, . . . , n− 1

14.2. In order for this statement to have content, one needs n ≥ 5. It does not for
G = C4 but it works for G = C5 already, where G∗ is the complement of a circle in a
3-sphere. The combinatorial Alexander duality is due to Kalai and Stanley.

15. Sard

15.1. Given a locally injective function f on a graph G = (V,E), define for c /∈ f(V )
the level surface {f = c} as the subgraph of the Barycentric refinement of G generated
by simplices x on which f changes sign. Remember that G is a d-graph if every unit
sphere S(x) is a (d− 1)-sphere. A discrete Sard theorem is:

Theorem: For a d-graph, every level surface is a (d− 1)-graph.

If G is a finite abstract simplicial complex, then f : G → R defines a function on the
Barycentric refinement G1 and the level surface is defined like that. This result has
practical value as we can define discrete versions of classical surfaces.

15.2. Given a finite set of functions f1, . . . , fk on the vertex sets of successive Barycen-
tric refinements G1, . . . , Gk of a simplicial complex, we can now look at the (d−k)-graph
{f = c} = {f1 = c1, . . . , fk = ck}. Unlike in the continuum case, where the result only
holds for almost all c, this holds for all c disjoint from the range.

Theorem: Given fj : Gj → R, j ≤ k, then {f = c} is a (d−k)-complex.

16. Jordan-Schoenflies

16.1. A complex H is embedded in an other complex G, if the vertex set of H1 in G1

generates the complexH1. The complexH = {{1, 2}, {2, 3}} inG = {{1, 2, 3}, {1, 2}, {2, 3}, {1, 3}}
for example is not embedded as it generates the entire complex. The Barycentric re-
finement H1 however as a complex is embedded in the complex G1.
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16.2. The notion of d-sphere has been defined combinatorially as a d-complex which
when punctured becomes contractible. A d-ball is a d-complex with boundary for
which the boundary is a d− 1 sphere. By definition, a punctured d-sphere is a d-ball.

Theorem: A d− 1-sphere embedded in a d sphere separates G into two
complementary components A,B, which are both d-balls.

16.3. The case d = 2 is the Jordan-Brouwer separation theorem. The discrete version
follows also from the piecewise linear version. In the Jordan curve case, the original
proof already first dealt with the polygonal case.

16.4. The classical Jordan-Brouwer theorem tells that a d − 1 sphere embedded in
a d-sphere G separates G into two complementary components A,B. It needs some
regularity to assure that the two components are balls. Alexander gave an example of
a topological embedding of S2 into S3 for which one of the domains A is not simply
connected.

17. Bonnet and Synge

17.1. The definition of positive curvature complexes is analog to the continuum.
We aim for entirely combinatorial proofs of the results in the continuum.

17.2. Let G be a d-complex so that every unit sphere is a (d− 1) sphere. A geodesic
2-surface is a subcomplex if the embedded graph does not contain a 3-simplex. G has
positive sectional curvature if every geodesic embedded wheel graph W (x) has interior
curvature ≥ 5/6. The geomag lemma is that any wheel graph in a positive curvature
G can be extended to an embedded 2-sphere.

17.3. An elementary analog of the Bonnet theorem is:

Theorem: A positive curvature complex has diameter ≤ 4.

17.4. The simplest analog of Synge theorem is

Theorem: A positive curvature complex is simply connected.

17.5. The reason for both statements is the geomag lemma stating that any closed
geodesic curve can be extended to a 2-complex which is a sphere and so simply con-
nected. The strict curvature assumption as we can not realize a projective plane yet
with so few cells. With weaker assumptions getting closer to the continuum, the work
is harder:

17.6. Define more generally the sectional curvature to be ≥ κ if there exists M
such that the total interior curvature of any geodesic embedded 2-disk with M interior
points is ≥ δ ·M and such that every geodesic embedded wheel graph W (x) has non-
negative interior curvature. A complex has positive curvature if there exists κ > 0
such that G has sectional curvature ≥ κ. The maximal κ which is possible is then the
”sectional curvature bound”.
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17.7. An embedded 2-surface of positive sectional curvature κ must then have surface
area ≤ 2/κ. The classical theorem of Bonnet assures that a Riemannian manifold of

positive sectional curvature is compact and satisfies an upper diameter bound π/
√
k.

An analog bound C/
√
k should work in the discrete.

17.8. Having a notion of sectional curvature allows to define Ricci curvature of an
edge e as the average over all sectional curvatures over all wheel graphs passing through
e. The scalar curvature at a vertex x is the average Ricci curvatures over all edges
e containing x. The Hilbert functional is then the total scalar curvature.

18. An inverse spectral result

18.1. Let p(G) denote the number of positive eigenvalues of the connection Laplacian
L and let n(G) the number of negative eigenvalues of L. One can hear the Euler
characteristic of G because of

Theorem: For all G ∈ G we have χ(G) = p(G)− n(G).

18.2. The proof checks this by deforming L when adding a new cell. This result implies
that Euler characteristic is a logarithmic potential energy of the origin with respect to
the spectrum of iL.

Theorem: χ(G) = tr(log(iL))(2π/i).

18.3. The proof shows also that after a CW ordering of the sets in a finite abstract
simplicial complex, one can assign to every simplex a specific eigenvalue and so eigen-
vector of L. Each set in G has become a wave, a quantum mechanical object.

19. The Green star formula

19.1. Given a simplex x ∈ G, the stable manifold of the dimension functional dim(x)
is W−(x) = {y ∈ G | y ⊂ x}. The unstable manifold W+(x) = {y ∈ G | x ⊂ y} is
known as the star of x. Unlike W−(x) which is always a simplicial complex, the star
W+(x) is in general not a sub complex of G.

Theorem: g(x, y) = ω(x)ω(x)χ(W+(x) ∩W+(y)).

19.2. In comparison, we have W−(x) ∩ W+(x) = ω(x) and L(x, y) = χ(W−(x) ∩
W−(y)). The to L similar matrix M(x, y) = ω(x)ω(x)χ(W−(x) ∩ W−(y)) satisfies∑

x

∑
yM(x, y) = ω(G), the Wu characteristic.

20. Wu characteristic

20.1. The Euler characteristic χ(G) = ω1(G) =
∑

x∈G ω(x) of G is the sim-
plest of a sequence of combinatorial invariants ωk(G). The second one, ω(G) =∑

x,y,L(x,y)=1 ω(x)ω(y), is the Wu characteristic of G. The valuation χ is an ex-
ample of a linear valuation, while ω is a quadratic valuation. The Wu characteristic
also defines an intersection number ω(A,B) between sub-complexes.
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20.2. All multi-linear valuations feature Gauss-Bonnet and Poincaré-Hopf theorems,
where the curvature of Gauss-Bonnet is an index averaging. For example, with K(v) =∑

v∈x,x∼y ω(x)ω(y)/(|x|+ 1) The Gauss-Bonnet theorem for Wu characteristic is

Theorem: ω(G) =
∑

vK(v).

21. The boundary formula

21.1. We think of the internal energy E(G) = χ(G)− ω(G) as a sum of potential
energy and kinetic energy. A d-complex is a simplicial complex G for which every
S(x) is a (d− 1)-sphere. A d-complex with boundary is a complex S(x) is either a
(d− 1)-sphere or a (d− 1)-ball for every x ∈ G.

21.2. The d-complexes are discrete d-manifolds and d-complexes with boundary is
a discrete version of a d-manifold with boundary. We denote by δG the boundary
of G. It is the (d− 1)-complex consisting of boundary points. By definition, δδG = 0,
the empty complex. The reason is that the boundary of a complex is closed, has no
boundary. We can reformulate the formula given below as

Theorem: If G is a d-complex with boundary then E(G) = χ(δ(G)).

21.3. If G is a d-ball, then δG is a (d − 1)-sphere and E(G) = 1 + (−1)d−1, by the
polished Euler gem formula.

22. Zeta function

22.1. For a one-dimensional complex G, there is a spectral symmetry which will
lead to a functional equation for the zeta function.

Theorem: If dim(G) = 1, then σ(L2) = σ(L−2).

22.2. If H is a Laplacian operator with non-negative spectrum like the Hodge oper-
ator H or connection operator L, one can look at its zeta function

ζH(s) =
∑
λ 6=0

λ−s ,

where the sum is over all non-zero eigenvalues of H or L2. In the connection case, we
take L2 to have all eigenvalues positive.

22.3. The case of the connection Laplacian is especially interesting because one does
not have to exclude any zero eigenvalue. The connection zeta function of G is
defined as ζ(s) =

∑
λ λ
−s, where the sum is over all eigenvalues λ of L2. It is an entire

function in s.

Theorem: If dim(G) = 1, then ζ(s) = ζ(−s).
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22.4. When doing Barycentric refinement steps, the zeta function converges to an
explicit function.

ζ(it) =

∫ 1

0

2 cos
(
2t log

(√
4v2 + 1 + 2v

))
π
√

1− v
√
v

dv .

It is a hypergeometric series ζ(2s) = π 4F3

(
1
4
, 3
4
,−s, s; 1

2
, 1
2
, 1;−4

)
.

23. The Hydrogen formula

23.1. Given a simplicial complex G, let Λk(G) denote the set of real valued functions
on k-dimensional simplices. It is a vk-dimensional vector space. Define the vk × vk+1

matrices dk(x, y) = 1 if x ⊂ y and dk(x, y) = 0 else. It is the sign-less incidence
matrix. It can be extended to a n × n matrix d so that d = d0 + d1 + · · · + dr and
D = d+ d∗ and H = (d+ d∗)2, the sign-less Dirac and sign-less Hodge operator.
In the one-dimensional case, we have H = d∗d+ dd∗. The Hydrogen relations are

Theorem: If dim(G) = 1, then L− L−1 = H.

23.2. The relation allows to relate the spectra of L and H. It allows to estimate the
spectral radius or give explicit formulas for the spectrum of the connection Laplacian
in the circular case. The relation was also needed to get the explicit dyadic zeta
function.

23.3. Let S(x) denote the unit sphere of a simplex x ∈ G. While S(x) is at
first a subset of G, it generates a sub-complex in G1. As g(x, x) = 1 − χ(S(x)) =
χ(W+(x)), we have a functional

∑
x χ(S(x)) of Dehn-Sommerville type. With f(t) =

1 +
∑∞

k=1 vk−1t
k = 1 + v0t + v1t

2 + v2t
3 + · · · , the Euler characteristic of G1 can be

written as χ(G) = f(0)−f(−1). The following result holds for any simplicial complex:

Theorem: tr(L− L−1) =
∑

x χ(S(x)) = f ′(0)− f ′(−1).

23.4. Compare that the Levitt curvature at a point x was F (0)−F (−1) =
∫ 0

−1 f(t) dt,
where F is the anti-derivative of the generating function of S(x).

24. Hopf Umlaufsatz

24.1. The discrete analogue of a region in the complex plane is a hexagonal com-
plex which is defined as a 2-complex which is flat in the interior. To consider flat
2-complexes might look special at first but the importance of the complex plane in the
continuum justifies to look at this case particularly well. In the continuum, we have
the Frobenius classification of normed division algebras R,C,H,O selecting out C
as the only commutative complete normed division algebra. In the continuum, special
packing properties select out dimensions like 2,4,8,24: the hexagonal lattice is the
densest in two dimensions.

11
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24.2. If d(x) is the vertex degree, then the Levitt curvature is K(x) = (6 − d)/6 = 0
in the interior and K(x) = (4 − d)/6 at the boundary. The vertex degrees at the
boundary can be 1 < d < 6 because d = 1 would mean a one dimensional hair sticking
out and d = 6 would mean that the point is an interior point. The boundary curvature
corresponds to the signed curvature of a boundary curve.

24.3. Let b0(G) denote the number of connected components of the region and b1(G)
the genus, the number of holes. Informally, it is the number of bounded connected
components of the complement of G in the flat infinite hexagonal plane. The number
b1(G) can also be defined algebraically as the nullity of the Hodge Laplacian block
H1(G). A consequence of Gauss-Bonnet and Euler-Poincaré is the Hopf Umlaufsatz

Theorem: For a planar region
∑

x∈δGK(x) = b0(G)− b1(G).

24.4. Let |Sr(x)| denote the number of edges in the sphere Sr(p). The Puiseux
curvature of a boundary point is defined as

K(x) = (2|S1(x)| − |S2(x)|)/12 .

It is a second order curvature measuring the discrepancy from linear growth of the
wave fronts emanating from x.

24.5. With the Puiseux curvature, the Hopf Umlaufsatz needs more regularity from
the region. A region is called smooth if it satisfies the following additional conditions:
(i) G equal to its closure meaning that if d(x, y) = 1 in the ambient hexagonal plane
then (x, y) is a simplex and (ii): any two interior points with a common boundary
point either have distance 1 or are both adjacent to a third interior point.

Theorem: For a smooth planar region
∑

x∈δGK2(x) = b0(G)− b1(G).

25. Brouwer-Lefschetz

25.1. The exterior derivative d for G defines the Dirac operator D = d + d∗ of
d. The Hodge Laplacian H = D2 splits into a direct sum H0 ⊕H1 · · · ⊕Hd. The null
space of Hk is isomorphic to the k’th cohomology group Hk(G) = ker(dk)/im(dk−1).
Its dimension bk is the k’th Betti number. The Euler-Poincaré relation assures that
the combinatorial and cohomological Euler characteristics are the same:

Theorem: χ(G) =
∑

k(−1)kbk.

25.2. An endomorphism T of G is a map from G to G which preserves the order
structure. It is an automorphism if it is bijective. An endomorphism T induces a linear
map on cohomology Hk(G). The super trace of this map is the Lefschetz number
χ(T,G) of T . Given a fixed point x ∈ G of T , its Brouwer index is defined as
iT (x) = ω(x)sign(T |x). Now

Theorem: χ(T,G) =
∑

x=T (x) iT (x).

12
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25.3. A special case is T = 1, where χ(1, G) = χ(G) and iT (x) = ω(x). The Brouwer-
Lefschetz fixed point theorem is then the Euler-Poincaré theorem.

26. McKean-Singer

26.1. The super trace str(A) of a n× n matrix defined for a complex with n sets is
defined as

∑
x∈G ω(x)L(x, x). By definition, we have str(1) = str(L). For the Hodge

operator H = D2 = (d+ d∗)2 we have the McKean-Singer formula:

Theorem: str(exp(−tH)) = χ(G) for all t.

26.2. The reason is that str(Hk) = 0 for k > 0, implying str(exp(tH)) = str(1) =
χ(G). The McKean-Singer identity is important as it allows to give almost immedi-
ate heat deformation proofs of the Lefschetz formulas in any framework in which
the identity holds. We proposed in [130] to define a discrete version of a differential
complex as McKean-Singer enables Atiyah-Singer or Atiyah-Bott like extensions of
Gauss-Bonnet or Lefschetz. They are caricatures of the heavy theorems in the contin-
uum.

26.3. The Hodge operator H = (d + d∗)2 and the connection operator L live on the
same finite dimensional Hilbert space. There is no cohomology associated to L. But
for the connection operator L, there is still a localized version of McKean-Singer:

Theorem: str(Lk) = χ(G) for k = −1, 0, 1.

27. Barycentric limit

27.1. The matrix L with eigenvalues λ0 ≤ λ2 ≤ · · · ≤ λn−1 defines the spectral
function F (x) = λ[nx] on [0, 1), where [t] is the floor function giving the largest
integer smaller or equal than t. The inverse function k(x) = F−1(x) is called the
integrated density of states of L and µ = k′ is the density of states. The
sequence Gk of Barycentric refinements of G defines a sequence of operators Lk and so
a sequence of spectral functions Fn(x). Let Gr denote the set of complexes of dimension
r. The following spectral universality is a central limit theorem:

Theorem: ∃F = F (r) such that Fn(G)→L1 F for all G ∈ Gr.

27.2. For r = 1, we know F (x) = 4 sin2(πx/2). The function is important as it
conjugates the Ulam map z → 4x(1 − x) to a linear function T (F (x)) = F (2x).
The measure µ maximizes metric entropy of the Ulam map and is equal to the
topological entropy which is log(2) for T .

27.3. We think of Gn → Gn+1 as a renormalization step like adding and normaliz-
ing two independent random variables. The result can be seen as a central limit
theorem.

13
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28. The join monoid

28.1. The join G⊕H of two complexes G,H is the complex G∪H∪{x∪y, x ∈ H, y ∈
G}. For graphs it is known as the Zykov sum. Given graphs G = (V,E), H = (W,F )
then the sum is (V ∪W,E∪F ∪{(a, b) | a ∈ V, b ∈ W}). If G denotes the complement
graph and + the disjoint union, then G⊕H = G+H.

28.2. The join of two simplicial complexes G,H is defined as the complex generated
by G⊕H = G ∪H ∪ {x ∪ y | x ∈ G, y ∈ H}. Let fG(t) = 1 + v0t + v1t

2 + . . . denote
the generating function of G: then we have the multiplication formula:

Theorem: fG⊕H(t) = fG(t)fH(t).

28.3. This gives 1− χ(G) = fG(−1). The dimension function on G not only defines a
coloring on G1, it also defines a hyperbolic splitting of the unit spheres. Let S−(x) =
{y ∈ S(x), dim(y) < dim(x)} and S+(x) = {y ∈ S(x), dim(y) > dim(x)}. We call
them the stable sphere and unstable sphere.

Theorem: S(x) = S−(x)⊕ S+(x).

28.4. It follows that g(x, x) = 1−χ(S(x)) = (1−χ(S−(x)))(1−χ(S+(x))) = ω(x)(1−
χ(S+(x))). This implies that str(L−1) =

∑
x(1−χ(S+(x))) = χ(G) because this is the

sum over the Poincaré-Hopf indices of the function −dim.

28.5. The join monoid is isomorphic to the additive monoid of disjoint union. The
zero element is 0, the −1 sphere. One can show by induction that if H is contractible
and K arbitrary then H +K is contractible. This implies:

Theorem: The join G of two spheres H +K is a sphere.

28.6. For example, the join of two zero dimensional spheres P2 is the circle C4. The
join of two circles a three sphere. It is not the dimension but the clique number
dim(G) + 1 which is additive. The clique number of the −1 sphere 0 is 0.

29. Hopf-Rynov

29.1. An Eulerian d-complex is defined as a simplicial complex for which the graph
G1 has the property that every unit sphere S(y) admits a natural fixed point free invo-
lution φy to that every S(x) is a 2 : 1 cover of a discrete projective space. Barycentric
refinements G1 have the minimal chromatic number d + 1 are Eulerian and have this
property always in dimension 2. The existence of an involution not only allows to
define projective spaces associated to each unit ball S(y), it also allows to define to
continue an one dimensional arc (x, y) to (x, y, φy(x)) and so define a global geodesic
flow.

Theorem: An Eulerian d-complex admits a natural globally defined ge-
odesic flow.

14
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29.2. Characterizing geodesics by distance minimization fails. As the tangent space is
in cardinality smaller than the graph, one can not connect any two points by a geodesic.
One needs to go to the wave equation which is a Schrödinger equation in the discrete
to achieve a unique flow with that property. For general complexes, the star graph
with 4 vertices shows the difficulty to continue a geodesic through the singularity.

30. The strong ring

30.1. The addition A+B of two complexes is the disjoint union. The empty complex
0 is the zero element. The Cartesian product G ×H is not a simplicial complex
any more. We can look at the ring R generated by simplicial complexes. It has the
one point complex 1 = K1 as one element. Connected elements are the additive
primes, simplicial complexes are multiplicative primes. The Hodge operator H
and the connection operator L can both be extended to the ring R.

Theorem: σ(H(A×B)) = σ(H(A)) + σ(H(B)),

The set addition on the right hand side is {λ+ µ} which consists of n2 elements if G
has n elements.

30.2. Furthermore, because L(A × B) is the matrix tensor product of L(A) and
L(B)

Theorem: σ(L(A×B)) = σ(L(A)) · σ(L(B))

The set multiplication on the right hand side is {λ ·µ} which consists of n2 elements
if G has n elements.

31. Kuenneth formula

31.1. The Betti numbers of a signed complex bk(G) are now signed with bk(−G) =
−bk(G). The maps assigning to G its Poincaré polynomial pG(t) =

∑
k=0 bk(G)tk or

Euler polynomial eG(t) =
∑

k=0 vk(G)tk are ring homomorphisms from R to Z[t].
Also G→ χ(G) = p(−1) = e(−1) ∈ Z is a ring homomorphism.

Theorem: eG and pG are ring homomorphisms R → Z[t].

31.2. The Kuenneth formula for cohomology groups Hk(G) is explicit via Hodge:
a basis for Hk(A × B) is obtained from a basis of the factors. The product in R
produces the strong product for the connection graphs. These relations generalize to
Wu characteristic. R is a subring of the full Stanley-Reisner ring S, a subring of a
quotient ring of the polynomial ring Z[x1, x2, . . . ]. An object G ∈ R can be visualized
by ts Barycentric refinement G1 and its connection graph G′.

31.3. Theorems like Gauss-Bonnet, Poincaré-Hopf or Brouwer-Lefschetz for Euler and
Wu characteristic extend to the strong ring. The isomorphism G→ G′ to a subring of
the strong Sabidussi ring shows that the multiplicative primes in R are the simplicial
complexes and that connected elements in R have a unique prime factorization.

15
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31.4. The Sabidussi ring is dual to the Zykov ring. The Zykov join was the addition
which is a sphere-preserving operation. The Barycentric limit theorem implies that the
connection Laplacian remains invertible in the limit.

32. Dimension

32.1. The inductive dimension of a graph is defined inductively as dim(G) = 1 +∑
v∈V dim(S(x))/|V |. For a general complex G we can define dim(G) = dim(G1),

as G1 is now the Whitney complex of a graph. We have dim(G) ≤ maxdim(G) =
maxx∈G(|x| − 1), where the right hand side is the maximal dimension.

Theorem: dim(A×B) = dim(A) + dim(B).

32.2. Under Barycentric refinements, the inductive dimension can only increase.

Theorem: dim(G1) ≥ dim(G)

32.3. The reason is that higher dimensional complexes have more off-springs than
smaller dimensional ones.

32.4. This implies a inequality which resembles the corresponding inequality for Haus-
dorff dimension in the continuum:

Theorem: dim((A×B)1) ≥ dim(A) + dim(B).

33. Random complexes

33.1. Given a probability space of complexes, one can study the expectations of ran-
dom variables. The simplest probability space is the Erdös-Rényi space E(n, p) of
random graphs equipped with the Whitney complex. Define the polynomials dn(p) of
degree

(
n
2

)
as

dn+1(p) = 1 +
n∑
k=0

(
n

k

)
pk(1− p)n−kdk(p) ,

where d0 = −1. We can now estimate the inductive dimension.

Theorem: EG(n,p)[dim]) = dn(p).

33.2. As the Euler characteristic is one of the most important functionals, we want to
estimate its expectation:

Theorem:

EG(n,p)[χ] =
n∑
k=1

(−1)k+1

(
n

k

)
p(

k
2) .

33.3. We don’t yet know the expectation value of the Wu characteristic on E(n, p).
16
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34. Lusternik-Schnirelmann

34.1. A complex G is contractible if there exists x ∈ G such that both the unit
sphere S(x) as well as the complex G \ x are contractible. A complex is homotopic
to K=1 if there there exists a complex H such that H is contractible to both G
and K. The dunce hat is an example of a complex homotopic to 1 which is not
contractible. The minimal number of contractible subcomplexes of G covering G is
called the Lusternik-Schnirelman category of G.

34.2. A x ∈ G is called a critical point of a function f if S−f (x) is not contractible.
The minimal number of critical points which a function f on G can have is denoted by
cri(G).

34.3. There is a graded multiplication Hk(G) × H l(G) → Hk+l(G) called the cup
product. If m − 1 is the maximal number of p > 0-forms f1, . . . , fm−1 for which
f1 ∪ · · · ∪ fm−1 is not zero, then m is called the cup length of G.

34.4. The following result, established with Josellis in 2012 is completely analog to
the continuum.

Theorem: cup(G) ≤ cat(G) ≤ cri(G).

34.5. For any critical point xi, we can form the maximal complex Gi which does not
contain an other critical point. Each Ui is contractible and cover G. This proves
cat(G) ≤ cri(G). If cat(G) = n, let {Uk }nk=1 be a Lusternik-Schnirelmann cover.
Given a collection of kj ≥ 1-forms fj with f1 ∧ f2 · · · ∧ . . . fn 6= 0. Using coboundaries
we can achieve that for any simplex yk ∈ Uk, we can change f in the same cohomology
class f so that f(yk) = 0. Because Uk are contractible in G, we can render f zero in Uk.
This shows that we can choose fk in the relative cohomology groups Hk(G,Uk) meaning
that we can find representatives kj forms fj which are zero on each pkj simplices in the
in G contractible sets Uk. But now, taking these representatives, we see f1∧· · ·∧fn = 0.
This shows cup(G) ≤ n.

35. Morse inequality

35.1. A locally injective scalar function f on the vertex set of a d-graph is called a
Morse function, if S−f (x) is a sphere for every x. The Morse index is m(x) =

1 + dim(S−f (x)). The Poincaré-Hopf index is (−1)m(x). For example, if d = 2, and

S−f (x) is 0-dimensional, then m(x) = 1 and if (x) = −1. A function f on an abstract
simplicial d-complex G is a Morse function if it is a Morse function on the graph G1.

Theorem: Every d-complex admits a Morse function.

35.2. We can build up G as a discrete CW -complex. The number at which a
simplex x has been added is a Morse function as S(x) and S−(x) are both spheres. Also
the function dim(x) is a Morse function. For d-complexes, the stars of two simplices
intersect in a simplex so that:

Theorem: For a d-complex, the Green function takes values 1,−1, 0.
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We have g(x, y) = ω(x)ω(y)χ(W+(x) ∩ W+(y)). We have W+(x) ∩ W+(y) = (1 −
S+(x))(1 − χ(S+(x)) which is in {−1, 1} if there is an intersection and 0 if not. Let
bk(G) denote the k’th Betti number. Let ck(G) denote the number of critical points of
index k. Here are the weak Morse inequalities:

Theorem: bk(G) ≤ ck(G).

We even have the strong Morse inequalities

Theorem: (−1)p
∑p

k=0(−1)k(ck − bk) ≥ 0

By Euler-Poincaré, this is zero for the entire sum. It appears as if the Witten defor-
mation proof (see e.g. [39]) works in the discrete too.

36. Isospectral deformation

36.1. If d is the exterior derivative, the operator D = d+d∗ is the Dirac operator of
G. The Dirac operator D admits an isospectral Lax deformations D′ = [B,D] =
BD −DB, where B = d − d∗ + γib, if D = d + d∗ + b. The parameter γ is a tuning
parameter. For γ = 0 the deformation stays real. For γ 6= 0, it is allowed to become
complex. The Dirac operator D(t) defines for every t an elliptic complex D : E → F
meaning that we have a splitting D(t) : E → F such that McKean-Singer relation
holds.

Theorem: The Lax system for the Dirac operator is integrable.

36.2. The spectrum of D(t) stays constant. Actually, L = D(t)2 stays constant.

36.3. We have a deformation of the complex for which all classical geometry like the
wave equation stays the same because L does not change. It is only the underlying d
which changes. The Connes formula sup|Df |∞=1 |f(x) − f(y)| allows to re-interpret
the isospectral deformation as a deformation of the metric. And as curvature is defined
by a measure on locally injective function, any deformation of this measure (for example
by isospectral deformation of d), gives a deformation of the curvature.

37. Trees and Forests

37.1. Given a finite simple graph G, a rooted spanning tree is a subgraph H of
G which is a tree with the same vertex set together with a base point x. A rooted
spanning forest is a subgraph H of G which is a forest with the same vertex set
together with a base point x. Let K be the Kirchhoff Laplacian of the graph and
Det(K) the pseudo determinant, the product of the non-zero eigenvalues of K. It
is exp(−ζ ′(0)) for the spectral zeta function ζ(s) =

∑
λ 6=0 λ

−s of K.

37.2. The tree number of a graph G is the number of rooted spanning tree in G.
The forest number of a graph is the number of rooted spanning forests. The first
part of the following theorem is the Kirchhoff matrix tree theorem. The second
part of the theorem is the Chebotarev-Shamis forest theorem.

Theorem: Det(K) is the tree number. det(K + 1) is the forest number.
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37.3. By Baker-Norine theory, the tree number is also the order of the Picard group
which appears in the context of discrete Riemann-Roch.

37.4. If F,G are arbitrary n×m matrices. Write p(x) = p0(−x)m+p1(−x)m−1 + · · ·+
pk(−x)m−k + · · ·+ pm for the characteristic polynomial of the m×m matrix F TG
with p0 = 1. The generalized Cauchy-Binet theorem is

Theorem: pk(F
TG) =

∑
|P |=k det(FP ) det(GP )

The sum is taken over k-minors P with the understanding that if |P | = 0, then
det(FP ) = 1. Generalized Cauchy-Binet implies the polynomial identity det(1 +
zF TG) =

∑
P z
|P | det(FP ) det(GP ) in which the sum is over all minors AP including

the empty one |P | = 0 for which det(FP ) det(GP ) = 1.

38. Wave equation

38.1. Because the Hodge Laplacian is a square L = D2 = (d+d∗)2, the wave equation
utt = Lu has an explicit d’Alembert solution. Let D−1 be the pseudo inverse of D.
It is defined as

∑
k,λk 6=0 uku

T
k /λk, where Duk = λkuk with an orthonormal eigenbasis

{uk} of D. The matrices uku
T
k are orthogonal projections onto the lines spanned

by uk.

Theorem: u(t) = cos(Dt)u(0) + i sin(Dt)D−1u′(0)

38.2. With the complex wave ψ(t) = u(t) − iDu′(0), we can write the solution of
the real wave equation of u as a solution of the Schrödinger equation.

Theorem: ψ(t) = eiDtψ(0).

38.3. Just use the Euler identity eiDt = cos(Dt) + i sin(Dt) and plug in ψ(t) = u(t)−
iDu′(0) to see that the relation holds.

39. Euler-Poincaré

39.1. Let Λp(G) be the functions from Gp = {x ∈ G | dim(x) = k } to R which are
anti-symmetric. The exterior derivatives

dpf(x0, x1, . . . , xp) =
∑
j

(−1)jf(x0, . . . , x̂j, . . . , xp)

define linear map d : Λ(G) → Λ(G), where Λ(G) is the Hilbert space of dimension
n = |G|. Since d2 = 0, the cohomology groups Hp(G) = ker(dp)/im(dp−1) are
defined. Their dimensions are the Betti numbers bp(G). The matrix H = (d + d∗)2

decomposes into blocks Hk(G). We have the Hodge relations:

Theorem: dim(ker(Hk)) = dim(Hk).
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39.2. Define the Poincaré polynomial pG(t) =
∑

k=0 bk(G)tk. The cohomological
Euler characteristic is pG(−1) = b0(G)− b1(G) + b2(G)− · · · . If the f -vector of G
is (v0, v1, v2, . . . ), then the Euler polynomial is eG(t) =

∑
k=0 vk(G)tk. By definition,

we have dG(−1) = χ(G). The Euler-Poincaré theorem tells that the combinatorial
and cohomological Euler characteristic agree.

Theorem: χ(G) = eG(−1) = pG(−1).

40. Interaction cohomology

40.1. Let Λp
2(G) be the functions from Gp = {(x, y) | x∩ y 6= ∅, dim(x) + dim(y) = p}

which are anti-symmetric. Like Stokes theorem df(x) = f(δx) for simplicial coho-
mology, we define the exterior derivative df((x, y)) = f(δx, y) + (−1)dim(x)f(x, δy)
with the understanding that f(δx, y) = 0 if δx∩ y = ∅ or f(x, δy) = 0 if x∩ δy = ∅. It
defines a linear map d : Λ2(G)→ Λ2(G), where Λ2(G) has as dimension the number of
intersecting simplices (x, y) in G. Again, we can define the Dirac operator D = d+d∗

and the Hodge operator H = D2 and decompose the later into blocks Hk. As before:

Theorem: dim(ker(Hk)) = dim(Hk).

40.2. The quadratic Poincaré polynomial pG(t) =
∑

k=0 bk(G)tk and quadratic
Euler polynomial eG(t) =

∑
k=0 vk(G)tk are defined in the same way. By definition,

we have dG(−1) = χ(G). The Euler-Poincaré theorem tells that the combinatorial
and cohomological Wu characteristic agree.

Theorem: ω(G) = eG(−1) = pG(−1).

41. Stokes theorem

41.1. Examples of orientation oblivious measurements are valuations F like F (A) =
vk(A) measuring the k dimensional volume of a subcomplex A of G or χ(A) giving the
Euler characteristic of a subcomplex. The length of a subcomplex A for example
is v1(A). In the continuum, such quantities are accessible via integral geometry,
like Crofton type formulas. In the discrete one refers to it also as geometric
probability theory.

41.2. If valuations are done after an orientation has been chosen on the elements of G,
we get a calculus which features a fundamental theorem. Given an arbitrary choice
of orientation of the sets in G, the boundary δA of a subcomplex is in general no more
a subcomplex, it becomes a chain. Given a form F ∈ Λ, we can still compute F (δA).
If G is orientable d-complex and A is a k-subcomplex with boundary δA, then δA
is a complex. Stokes theorem tells that for any k-subcomplex A with boundary δA,
and any k-form F

Theorem: dF (A) = F (δA).
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41.3. For k = 1, we talk about the fundamental theorem of line integrals, for
k = 2 we have Stokes theorem and k = 3 goes under the name divergence theorem.
The derivative d0 : Λ0 → Λ1 is the gradient, the derivative d1 : Λ1 → Λ2 is the curl
and d2 : Λ2 → Λ3 is the divergence (often just identified with the dual d∗0 : Λ1 → Λ0, as
2-forms and 1-forms in three dimensions are dual to each other). This Stokes theorem
holds both for the familiar simplicial calculus related to Euler characteristic χ(G)
as well as the connection calculus related to the Wu characteristics ωk(G).

42. Quadratic Lefschetz fixed point

42.1. Given an automorphism T , define the quadratic Lefschetz number χT (G),
the super trace of the induced map on cohomology.

Theorem: χT (G) =
∑

x∼y,(x,y)=(T (x),T (y)) iT (x, y)

42.2. We can especially look at the case when G is a ball. This is cohomologically
non-trivial.

Theorem: An endomormorphism of a ball G has a fixed (x, y), x∩y 6= ∅.

43. Eulerian spheres

43.1. Let Gd be the class of d-graphs, Sd the class of d-spheres, Bd the class of d-
balls, and Ck the class of graphs with chromatic number k. Note that all Barycentric
refinements of a complex are Eulerian. We call the class Sd∩Cd+1 the class of Eulerian
spheres and Bd ∩Cd+1 the class of Eulerian disks. The 0-sphere 2 = 1 + 1 is Eulerian.
Eulerian 1-spheres are cyclic graphs with an even number of vertices.

Theorem: Every unit sphere of an Eulerian sphere is Eulerian.

43.2. The dual graph Ĝ of a d-sphere G is the graph in which the d-simplices are
the vertices and where two simplices are connected, if one is contained in the other.
A graph (V,E) is bipartite if V = (A ∪ B with disjoint A,B such E = {(a, b) | a ∈
A, b ∈ B}. Every Barycentric refinement of a complex is a bipartite graph as we can
take A = {x ∈ G dim(x) even} and B = {x ∈ G dim(x) odd}.

Theorem: For G ∈ Sd, then Ĝ is bipartite if and only if G is Eulerian.

44. Riemann-Hurwitz

44.1. The automorphism group Aut(G) of a simplicial complex is the group of
all automorphisms of G. An endomorphism T is a simplicial map G → G. If
an endomorphism T is restricted to the attractor

⋂
k T

k(G) is an automorphism. An
automorphism T of G induces automorphisms on Barycentric refinements and so graph
automorphisms. The equivalence classes G2/A are complexes again.

Theorem: If A ⊂ Aut(G), then G1/A is a simplicial complex.
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44.2. We need a refinements. The automorphism T (a) = b, T (b) = a on G =
{{a, b}, {a}, {b}} has no complexes G/A,G1/A but G1/A is a circle. The circle is
a 2:1 cover of the interval, ramified at the two boundary points of the interval.

44.3. We can see G1 as a branched cover G1/A, ramified over some points. If G
was a d-graph, then G1/A is a discrete orbifold. If there are no ramification points,
then the cover G→ G/A is a fibre bundle with structure group A.

44.4. Given an automorphism T , define the ramification index e(x) = 1−
∑

T 6=1,T (x)=x ω(x)
of X. The following remark was obtained with Tom Tucker. It is a discrete Riemann-
Hurwitz result:

Theorem: χ(G) = |A|χ(G/A)−
∑

x∈G(e(x)− 1)

44.5. For every subset Gk of indices of fixed dimension k, we have by the Burnside
lemma

∑
T∈A

∑
x∈Gk,T (x)=x 1 = |A||Gk|. The super sum gives

∑
T∈A

∑
x,T (x)=x ω(x) =

|A|χ(H). This gives
∑

T 6=1

∑
x∈G ω(x) +

∑
x∈G ω(x) = |A|χ(H).

44.6. Let χ(G, T ) denote the Lefschetz number of T . From the Lefschetz fixed point
formula we get

Theorem: χ(G/A) = 1
|A|
∑

T∈A L(G, T )

45. Riemann-Roch

45.1. A divisor X is an integer-valued function on G. The simplex Laplacian
L is defined as L(x, y) = ω(x)ω(y)H0(x, y), where H0 is the Kirchhoff Laplacian of
the simplex graph (Hasse diagram) in which G is the vertex set and two x, y are
connected if one is contained in the other and the dimensions differ by 1. The simplex
graph is one-dimensional as it has no triangles. A divisor X is called principal if
X = Lf for some integer valued function f . Write (f) = Lf . We think of a divisor
as a geometric object and define its Euler characteristic χ(G) =

∑
x ω(x)X(x). A

divisor is essential if ω(x)X(x) ≥ 0 for all x. The linear system |X| of X is the set
of f for which X + (f) is essential. Its dimension l(X) is the maximal k ≥ 0 such
that for every m < k and every Y of χ(Y ) = m, the divisor X − Y is essential. With
the canonical divisor K(x) = 0, the simplest Riemann-Roch theorem is

Theorem: l(X)− l(K −X) = χ(X).

45.2. This is Baker-Norine theory, slightly adapted to change the perspective: clas-
sically a divisors appear one a curve (Riemann surface or 1-dimensional graph) G
and deg(X) + χ(G) = χ(X). One usually centers at the geometric underlying ob-
ject which gives the canonical divisor K = −2 (as a function) which is in the case
when G is one-dimensional is linearly equivalent to the negated curvature function
K(v) = −2 + deg(v) on the vertices of G. In the discrete we can put an other coordi-
nate system and reflect at 0 rather than the geometric object. This is not possible in
the continuum. Riemann-Roch tells that the signed distance to the surface χ(G) = 0
is χ(G).
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45.3. Reflecting at 0 rather than at usual canonical divisor representing the curve G
allows to have a Riemann-Roch for arbitrary dimensions. Generalizing Baker-Norine
naively to higher dimensional simplicial complexes does not work, as the curvature κ
of χ(G) has only in the one-dimensional case the property that K = −2κ is a divisor.
Classically l(X) and l(K−X) have cohomological interpretations. Also here, Riemann-
Roch appears like a fancy Euler-Poincaré formula for a now signed cohomology, but
it is deeper than Euler-Poincaré as the surface ker(χ) is bumpy: it contains both
generic divisors as well as special divisors.

45.4. The image of L is a linear subspace of the set ker(G) = {χ(G) = 0}. The
quotient ker(χ)/im(L) is the Picard group or divisor class group. The equivalence
classes of divisors can be represented by rooted spanning trees in the simplex graph.
This defines a group structure on rooted spanning trees. That there is a bijective
identification between divisor classes and spanning trees is the subject of:

Theorem: The Picard group is isomorphic to the tree group.

References

45.5. For the history of topology[42, 81] and graph theory [162, 81, 59] and discrete
geometry [22]. See [68, 192, 178] for notations in algebraic topology, [67, 17, 23] for
graph theory.

45.6. Abstract simplicial complexes appeared in 1907 by Dehn and Heegaard [27,
159]. In [4] they appeared under the name unrestricted skeleton complex. In
[205], J.H.C. Whitehead calls them symbolic complexes. For references on simplicial
complexes, see [83, 195, 196].

45.7. The category of simplicial complexes is as an axiom system a complexity min-
imum in the landscape of mathematical constructs. Adding more conditions leads to
constructs like buildings (which are simplicial complexes covered by apartments) or
matroids (which is a variant of simplicial complex in which the empty set is included),
removing conditions leads to larger axiom systems. Already the definition of a partially
ordered set requires more input as it defines a binary relation and the specification
of reflexivity, antisymmetry and transitivity.

45.8. The importance of the Dehn-Heegard definition can not be over estimated as
it frees from the concept of Euclidean space and defining simplicial complexes in Eu-
clidean spaces which is more complicated as it requires to specify conditions on inter-
sections. From the computer science point of view, one has to store a data structure
with Euclidean vectors and given such a data structure requires quite a bit of work to
double check that it is a valid simplicial complex. Even in modern time of 3d printing,
there can be frustrations in realizing a complex because the actual data have degenerate
points [191, 144] meaning often they are actually not simplicial complexes.
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45.9. Sometimes, in the definition of simplicial sets G the vertex set V with condition
{x} ∈ G added, but that is redundant as the set of points V =

⋃
x∈G x is defined

by G itself. To appreciate the elegance of the construct of Dehn and Heegaard, one
might want to compare with the proposal of Euclid stating that a point is which has
no part. The later is an extremely vague definition which would include “elementary
particles”, a notion which is relative as things which “have no part” have often turned
out to be made of smaller parts.

45.10. Some of the results generalize to ∆ sets, partially ordered sets or simplicial
sets (all constructs which generalize simplicial complexes). In physics, locally finite
posets are called causal sets. Some connection calculus however does not generalize.
The unimodularity theorem for example does not hold for simplicial sets, at least for
the approaches we tried so far. It does extend to the strong ring.

45.11. Homotopy theory as developed by [205] uses elementary expansions and con-
tractions. Homotoptic complexes are said to have the same “nucleus”. [205] uses
“collapsible” for “homotopic to a point”. See also [204]. The notions appearing for
simplices described by graph theory, see [80, 79, 29].

45.12. Dimension theory has a long history [37]. The inductive definition of graphs
appeared first in [96]. We studied the average in [93].

45.13. Random graphs were first studied in [45]. The average Euler characteristic
appears in [93].

45.14. The idea of seeing geometric quantities as expectations is central in integral
geometry. The first time, that curvature was seen as an expectation of indices is
Banchoff [9, 10]. Random methods in geometry is part of integral geometry as pioneered
by Crofton and Blaschke [21, 161]. We have used in in [116, 100] and [99]. Having
curvature given as an expectation allows to deform it. Given a unitary flow Ut on
functions for example produces a deformation of the curvature.

45.15. Discrete curvature traces back to a combinatorial curvature considered by
Heesch [16] in the context of graph coloring and extended in [58]. The formula
K(p) = 1 − V1(p)/6 and for graphs on the sphere appears also in [170, 171], where
it is also pointed out that

∑
pK(p) = 2 is Gauss-Bonnet formula. Discrete cur-

vature was used in [72] and unpublished work of Ishida from 1990. Higushi uses
K(p) = 1 −

∑
y∈S(p)(1/2 − 1/d(y)), where d(y) are the cardinalities of the neigh-

boring face degrees in the sphere S(p). In [199], the combinatorial curvature
K(p) = 1−d(p)/2 +

∑
q 1/n(q) for polyhedral graphs is considered, where n(y) are the

side-numbers of the polygons q adjacent to p. For two dimensional graphs, where all
faces are triangles, these curvatures simplify to dj = 3 so that K = 1 − |S|/6, where
|S| is the cardinality of the sphere S(p). In [96] second order curvatures were used.

45.16. The Levitt curvature in arbitrary dimension appears in [150]. We rediscov-
ered it in [94] after tackling dimension by dimension separately, not aware of Levitt.
We got into the topic while working on [96]. Chern’s proof is [31] followed [5, 47].

45.17. See [175, 39] for modern proofs of Gauss-Bonnet-Chern. Historical remarks are
in [32].
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45.18. The Erdös Rényi probability space were introduced in [45]. The formulas for
the average dimension and Euler characteristic has been found in [93]. The recursive
dimension was first used in [96]. We looked at more functionals in [113].

45.19. The discrete Hadwiger Theorem appears in [88]. The continuous version
is [64]. For integral geometry and geometric probability, see [180]. The theory of
valuations on distributive lattices has been pioneered by Klee [89] and Rota [177] who
proved that there is a unique valuation such that X(x) = 1 for any join-irreducible
element. See also [54].

45.20. Wu characteristic appeared in [202] and was discussed in [60]. We worked
on it in [126] and announced cohomology in [141] and [142]. For the connection
cohomology belonging to Wu characteristic, see [136].

45.21. For discrete Poincaré-Hopf see [98] and an attempt to popularize it in [102] or
Mathematica demonstrations [95, 97]. It got pushed a bit more in [99]. For the classical
Poincaré-Hopf, see [194]. For the classical case, Poincaré covered the 2-dimensional
case in chapter VIII of [168] It got extended by Hopf in arbitrary dimensions [75]. It is
pivotal in the proof of Gauss-Bonnet theorems for smooth Riemannian manifolds (i.e.
[63, 193, 73, 69, 43, 15]).

45.22. Discrete McKean-Singer was covered in [101]. The best proof in the continuum
is [39]. The classical result is [154]. In [130], the suggestion appeared to define elliptic
discrete complexes using McKean-Singer.

45.23. The Zykov sum (join) was introduced in [208] to graph theory. The strong
ring was covered in [132, 135]. The extension of the monoid to a group is what
is familiar when constructing integers from natural numbers or fractions from integers
and known as the Grothendieck group completion. We first found a multiplication
making the Zykov group to a ring by trial and error, then later saw that this ring is
dual to the Sabidussi multiplication [179]. See [66, 188, 190].

45.24. The Brouwer-Lefschetz theorem is [103]. It generalizes the 1-dimensional case
[164]. The classical result is [149]. See also [76].

45.25. The classical Kuenneth formula is [146]. The graph version [123], uses the
Barycentric refinement (A × B)1 of the Cartesian product A × B. In the strong ring
things are almost immediate via Hodge.

45.26. About the history of discrete notions of manifolds, see [186]. The Evako defini-
tion of a sphere as a cell complex for which every unit sphere is a n−1 sphere and such
that removing one point makes it contractible was predated by approaches of Vietoris
or van Kampen. The later would have accepted homology spheres as unit spheres.

45.27. The classical Sard theorem is [181]. The discrete version appears in [124]. It
lead us to look at geometric coloring questions.
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45.28. Our proof in the discrete is [122]. For the Jordan-Brouwer separation theorem,
see [84, 25] or [200, 2, 91, 65, 40, 176, 166]. The Mazur-Morse-Brown theorem [153,
157, 26] assures that the complementary domains A,B are homeomorphic to Euclidean
unit balls if the embedding of H is locally flat. The Alexander sphere is [3]. The
Schoenflies theme is introduced in [183, 184, 185]. Various discrete versions were studied
[30, 70, 46, 198, 201, 152, 197]. Discrete versions are also interesting for constructive
proofs [13].

45.29. For the spectral universality, see [120, 125]. It uses a result of Lidskii-Last [189]
which assures if ||µ − λ||1 ≤

∑n
i,j=1 |A − B|ij for any two symmetric n × n matrices

A,B with eigenvalues α1 ≤ α2 ≤ · · · ≤ αn.

45.30. The discrete exterior derivative goes back to Betti and Poincaré and was already
anticipated by Kirchhoff. As pointed out in [103], the discrete Hodge point is [44]. It
appeared also in [77]. The discrete Dirac operator was stressed in [105].

45.31. The unimodularity theorem |det(L)| = 1 was discovered in February 2016,
announced in [143] and proven in [127]. An other proof was given in [158].

45.32. We have looked at the arithmetic of unit spheres in [134], especially in the
context of the diagonal Green function entries. The other Green function entries are
covered in [139].

45.33. The result χ(G) = p(G) − n(G) was proven in [133, 139]. The functional
equation for the spectral zeta function of the connection Laplacian was proven in [137].
Earlier work in the Hodge Zeta case is [140]. The zeta function is called Dyadic because
the Barycentric limit is in an ergodic setup a von Neumann-Kakutani system [92],
which has the Prüfer group as the spectrum. The system is a group translation on the
dyadic group of integers and also known as the adding machine.

45.34. The Hydrogen relation H = L − L−1 for one-dimensional complexes was
studied in [129, 131] and [138].

45.35. An earlier talk [114] summarizes things also. [106] is an earlier snapshot about
the linear algebra part. [117, 102] summarize the calculus.

45.36. The matrix tree theorem is [86]. It is based on the Cauchy-Binet theorem
[28, 18]. A generalization [112] gives the coefficients of the characteristic polynomial.
The Chebotarev-Shamis theorem is [167, 172]. See also [104], where we initially
were not aware of the work of Chebotarev and Shamis.

45.37. We used multi-linear algebra [57] for the proof of the generalized Cauchy-Binet.
The closest proof of the classical theorem is in [78]. The classical theorem deals with
the determinant of F TG which is one coefficient of the characteristic polynomial p We
first generalized it to the pseudo determinant which is the product of the non-zero
eigenvalues and the first non-zero coefficient of p. A new proof of the generalized
Cauchy-Binet formula avoiding multi-linear algebra is given in [74].
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45.38. The Lax deformation of exterior derivatives was introduced in [109, 108] and
was motivated by Witten deformation [206, 39]. Lax systems were introduced first
to [148]. Commutation relations of that form have appeared earlier when describing
free tops L′ = [B,L], where B = I−1L is the angular velocity and L the angular
velocity in so(n), which are geodesics in SO(n) [6].

45.39. The Connes formula [34] is elementary but crucial in the process of generalizing
Riemannian geometry to non-commutative geometry.

45.40. After finding a multiplication completing the Zykov addition to a ring in [132],
we realized it is the dual to the Sabidussi ring. In [135], we looked at the ring generated
by the Cartesian product. It is a subring and consists of discrete CW complexes. Unlike
for simplicial sets, the classical theorems like Gauss-Bonnet and energy theorem go over.

45.41. Riemann-Roch for graphs is [7]. See also [8]. We worked on Riemann-Hurwitz
in [145]. The usual approach for Riemann-Hurwitz in graph theory is to see them as
discrete analogues of algebraic curves or Riemann surfaces see [155].

45.42. [203] first looked for a combinatorial definition of spheres. Forman [51] defined
spheres through the Reeb as objects admitting 2 critical points. See also [52]. More
on discrete Morse theory in [53, 55].

45.43. We used data fitting to get first heuristically the Stirling formula then proved
it. It is however considered ”well known” [24]. It appears also in [195, 151, 71].

45.44. The history of polytopes is a “delicate task” [41]. The Euler polyhedron
formula (Euler’s gem) was discussed in [174]. The early proofs of Schläfli and Staudt
had still gaps according to [27]. The difficulty is also explained in [147, 61].

45.45. The story of polyhedra is told in [174, 36]. Historically, it was developed in
[182], [187], [169]. Coxeter [36] defines a polytop as a convex body with polygonal faces.
[62] also works with convex polytopes in Rn where the dimension is the dimension of
the affine span.

45.46. The perils of a general definition of a polytop were known since Poincaré (see [1,
174, 33, 147]). Polytop definitions are given in [182, 36, 62, 82]. Topologists started with
new definitions [4, 50, 35, 192], and define first a simplicial complex and then polyhedra
as topological spaces which admit a triangularization by a simplicial complex.

45.47. Dehn-Sommerville relations have traditionally been formulated for convex poly-
topes and then been generalized to situations where unit spheres can be realized as
convex polytopes. See [90, 163, 160, 151, 24, 71, 87] or [14].

45.48. We started to think about graph coloring during the project [119]. The reports
[115] and [121] explored this a bit more. It is related to Fisk theory [49, 48].

45.49. Some special graphs appearing when counting was considered in [128]. When
writing this, we were not aware that the cell complex introduced already in [19] which
goes much further than what we did. Other classes of complexes called orbital net-
works [107, 110, 111] were studied first with Montasser Ghachem.
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45.50. For the Alexander duality, see [20]. Originally established by Alexander in 1922,
it was formulated by Kalai and Stanley in combinatorial topology. We formulated it
with cohomology rather than homology and cohomology. As such it is an identity
where we have numbers on both sides.

45.51. Unlike in Regge calculus [173, 38, 56, 156], the definitions of Ricci and Hilbert
action mentioned are combinatorial and do not depend on an embedding. There are
other notions of curvature which are intrinsic and do not depend on an embedding into
an ambient space: [165, 207, 85].

Questions

46. Inverse spectral questions

46.1. We have seen that the spectrum of L does not determine the Betti numbers in
general but that for a Barycentric refinement of G, the Betti numbers b0, b1 can be
read of from the spectrum as the number of eigenvalues 1 and −1.

Question: Does the spectrum of L determine bk for k ≥ 2.

Question: Does the spectrum of L determine the Wu characteristic ω(G)?

47. Barycentric limit

We have seen that the limiting spectral measure can be computed in the case d = 1.
It is a smooth measure. In higher dimensions, we see spectral gaps. These gaps have
first been seen in the BeKeNePaPeTe paper [11].

Question: Prove spectral gaps in limiting spectral measure for d ≥ 2.

48. Coloring

48.1. The four color theorem is equivalent to the statement that all 2-spheres are
4-colorable.

Question: Are all d-spheres (d+ 2)-colorable?

This would imply that all d-spheres either have chromatic number d + 1 or d + 2. A
generalized Heawood statement is that we have minimal chromatic number d+ 1 if
and only if every d − 2 dimensional simplex in G has even degree. Every Barycentric
refinement of a sphere is minimally colorable.

Question: Are all 2-graphs 5 colorable?

There are 2-complexes different from spheres which need 5 colors. One of the simplest
is the projective plane. Note that for positive genus g, the coloring question of d-
complexes is completely different than than the coloring question for embedded graphs.
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On the 2-torus, one can embed K7 which needs 7 colors but K7 is a 6 dimensional
complex.

49. Connection Cohomology

49.1. While we know that connection cohomology is not a homotopy invariant, we
have not yet proven that it is a topological invariant. A notion of homeomorphism
appears in [118]. Alternatively, one could use “discrete homoemorphic” in the sense
that geometric realizations are homeomorphic to ask

Question: Is connection cohomology a topological invariant?

49.2. We would like to find more examples of triangulations of non-homeomorphic
d-manifolds with different connection cohomology which can not be distinguished by
other means:

Question: Can one distinguish homology spheres with Wu cohomol-
ogy?

49.3. Something we have only started to look at is to extend Alexander duality to the
Wu characteristic:

Question: Is there a duality for connection cohomology?

49.4. As connection cohomology is not a homotopy invariant, the naive generalization
does not work.

50. Random complexes

50.1. The probability spaces E(n, p) of graphs define natural random spaces of sim-
plicial complexes as we can take the Whitney complex of a graph. While we have a
formula for the expectation of Euler characteristic, this is not yet available for Wu
characteristic numbers ωk.

Question: What is the expected value of ωk on E(n, p)?

50.2. We would also like to know the expectations of the Betti numbers:

Question: What is the expectation of bk(G) on E(n, p)?

51. Geodesic flow

51.1. Having a global geodesic flow on d-complexes asks for dynamical properties like
ergodicity. We know that (generalizing Tutte and Whitney) that every d-sphere is a
Hamiltonian graph in the sense that it admits a Hamiltonian cycle. The existence of
geodesic flow is related to the fact that every unit sphere is Eulerian, admitting an
Eulerian cycle but that is easier as the Eulerian path existence is decided by local
properties alone. As we deal with finite complexes, every geodesic path is closed.
Ergodicity means that the path visits every edge exactly once. This prompts the
ergodicity question:
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Question: Is there a d-complex with a geodesic Hamiltonian cycle?

51.2. For d-graphs with boundary the geodesic flow can be continued naturally using
the billiard reflection condition which naturally exists for d-complexes. The geo-
desic flow is then a billiard. Again one can ask for the existence of a Hamiltonian path
in the interior. Note that a billiard trajectory on the boundary is simply a geodesic
on the boundary (which is a closed (d − 1) complex. Lets simply call a region with
boundary ergodic if there exists a Hamiltonian path in the interior (the graph without
boundary edges)

Question: Is there an ergodic d-complex with boundary?

52. Zeta function

52.1. While various equivalent expressions exist for the connection zeta function in
the Barycentric limit of a one-dimensional complex, we don’t yet have found a reference
about where the roots of ζ are:

Question: The limiting zeta function ζ has roots on the imaginary axes.
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Jordan-Brouwer, 26
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Kirchhoff, 26
Kirchhoff Laplacian, 18
Kirchhoff matrix tree theorem, 18
Klee, 25
Kuenneth formula, 15, 25

Laplacian
Simplex, 22

Laplacian Kirchhoff, 18
Lax deformation, 18, 27

Lax system, 18
Lefschetz fixed point theorem, 12
Lefschetz formula , Wu characteristic21
Lefschetz number, 12, 22
Level surface, 7
Levitt curvature, 2, 5, 11, 24
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Limiting zeta function, 11
Linear system, 22
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Logarithmic energy, 9
Logarithmic potential, 9

Manifold
Riemannian, 2

Matrix tree, 26
Matrix tree theorem, 18
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Maximal Dimension, 1
Maximal dimension, 16
McKean-Singer, 13, 25
McKean-Singer formula
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Metric entropy, 13
Monoid
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Morse function, 17
Morse index, 17
Morse inequalities

Strong, 18
Multi-linear valuation, 10
Multiplicative primes, 15

Negated curvature, 22
Non-commutative geometry, 27
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Orbifold, 22
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sphere, 5

Poincaré polynomial, 15, 20
Poincaré polynomial , quadratic20, Wu

characteristic20
33



AMAZING WORLD OF SIMPLICIAL COMPLEXES

Poincaré-Hopf, 1
Poincare-Hopf index, 17
Point, 24
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Polynomial
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Platonic, 5
Positive curvature, 8
Potential energy, 4
Prüfer group, 26
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Puiseux curvature, 12
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Reeb theorem, 5
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Refinement operator, 2
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Riemann Roch, 22
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Riemann-Roch, 27
Riemannian manifold, 2
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Schroedinger equation, 19
Sectional curvature, 8
Set addition, 15
Set multiplication, 15
Sign-less incidence matrix, 11
Signed Betti numbers, 15

Signed complex, 15
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Simplicial complex, 1
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Stokes theorem, 20
Strong Morse inequalities, 18
Strong ring, 15, 25, 27
Sub complex, 5
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Wave equation, 19
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[61] B. Grünbaum. Are your polyhedra the same as my polyhedra? In Discrete and computational

geometry, volume 25 of Algorithms Combin., pages 461–488. Springer, Berlin, 2003.
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linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem., 72:497–508, 1847.
[87] D. Klain. Dehn-Sommerville relations for triangulated manifolds.

http://faculty.uml.edu/dklain/ds.pdf, 2002.
[88] D.A. Klain and G-C. Rota. Introduction to geometric probability. Lezioni Lincee. Accademia

nazionale dei lincei, 1997.
[89] V. Klee. The Euler characteristic in combinatorial geometry. The American Mathematical

Monthly, 70(2):pp. 119–127, 1963.

38



OLIVER KNILL

[90] V. Klee. A combinatorial analogue of Poincaré’s duality theorem. Canadian J. Math., 16:517–
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