
THE ENERGY OF A SIMPLICIAL COMPLEX

OLIVER KNILL

Abstract. A finite abstract simplicial complex G defines a ma-
trix L, where L(x, y) = 1 if two simplicies x, y in G intersect and
where L(x, y) = 0 if they don’t. This matrix is always unimodular
so that the inverse g = L−1 has integer entries g(x, y). In analogy
to Laplacians on Euclidean spaces, these Green function entries
define a potential energy between two simplices x, y. We prove
that the total energy E(G) =

∑
x,y g(x, y) is equal to the Euler

characteristic χ(G) of G and that the number of positive minus
the number of negative eigenvalues of L is equal to χ(G).

1. The theorems

1.1. A finite set G of non-empty sets which is closed under the op-
eration of taking finite non-empty subsets is called a finite abstract
simplicial complex. The n elements in G are called simplices or
faces, the n × n matrix L satisfying L(x, y) = 1 if x and y inter-
sect and L(x, y) = 0 else is the connection matrix of G. De-
fine dim(x) = |x| − 1, where |x| is the cardinality of x. If ω(x) =
(−1)dim(x), then χ(G) =

∑
x∈G ω(x) is the Euler characteristic of

G. A multiplicative analog of χ(G) is the Fermi characteristic
φ(G) =

∏
x∈G ω(x) ∈ {−1, 1}.

1.2.

Theorem 1 (Unimodularity theorem [28] (2016)). det(L) = φ(G).

1.3. It follows from the Cramer formula in linear algebra that the
inverse matrix g = L−1 has integer entries g(x, y). We can think of
g(x, y) as the potential energy between the simplices x and y. The
number E(G) =

∑
x,y∈G g(x, y) is the total energy of G.

Theorem 2 (Energy theorem [30] (2017) ). E(G) = χ(G).

Date: July 7, 2019, [This document contains already announced results but is a
fresh write-up with sometimes more detailed proofs.]

1991 Mathematics Subject Classification. 05C10, 57M15, 68R10.
Key words and phrases. Geometry of simplicial complexes.

1



ENERGY THEOREM

1.4. Let p(G) be the number of positive eigenvalues of L and n(G)
the number of negative eigenvalues of L. Let b(G) denote the num-
ber of even dimensional simplices in G and f(G) the number of odd
dimensional simplices in G. If fk(G) is the number of elements in G
with cardinality k + 1, then (f0, f1, · · · , fd) is the f-vector of G and
χ(G) =

∑
k even fk −

∑
k odd fk = b(G)− f(G).

Theorem 3 (Hearing Euler characteristic [35], (2018)). We have b(G) =
p(G) and f(G) = n(G). Therefore, χ(G) = p(G)− n(G).

1.5. It follows from |det(L)| = 1 that tr(log(|L|)) = 0 so that

χ(G) =
2

iπ
tr(log(iL))

if the branch arg(log(z)) ∈ [0, 2π) is chosen. This writes χ(G) as a
logarithmic energy of a spectral set σ(iL) on the imaginary axes of
the complex plane again reinforcing that χ(G) is a type of energy.

1.6. Let W+(x) = {y ∈ G, x ⊂ y} denote the star of x. It is a set
of sets and not necessarily a simplicial complex but still has an Euler
characteristic. The Green function entries are explicitly known:

Theorem 4 (Green star formula [30] (2017)). The Green function en-
tries are g(x, y) = ω(x)ω(y)χ(W+(x) ∩W+(y)).

1.7. The potential energies are local, of bounded range, unlike in
Euclidean spaces where potentials are long range. Simplicial com-
plexes have a natural hyperbolic structure for which the star is the
unstable manifold of a gradient vector field of the dimension func-
tional. The stable manifold W−(x) = {y ∈ G, y ⊂ x} is the simpli-
cial complex generated by x and χ(W−(x) ∩ W−(y)) = L(x, y). As
ω(x) = χ(W−(x) ∩ W+(x)), both L and g have entries given as the
Euler characteristic of “homoclinic” or “heteroclinic points” of a hy-
perbolic dynamical system.

1.8. The disjoint union of complexes defines an additive monoid which
can be completed to become a group. The group operation G + H is
represented by the direct product of matrices L(G) ⊕ L(H). An ele-
ment in the group is naturally described by its connection Laplacian L
postulating L(−G) = −L(G). The Cartesian product of two simplicial
complexes is not a simplicial complex but it carries a natural exterior
derivative d defining a Hodge Laplacian H(G) = (d + d∗)2 which is
a direct sum of form-Laplacians Lk for which by Hodge, the nullity
of the kernel are the Betti numbers bk = ker(LK) and for which the
Künneth formula holds so that on the full ring G the Poincaré map
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p(G) = b0t+ b1t
2 + · · ·+ bdt

d is a ring homomorphism to polynomials.
The spectrum of the Hodge Laplacian is not compatible in general with
multiplication. It is however with the connection Laplacian:

Theorem 5 (Tensor algebra representation [33], (2017)). The map
G → L(G) is a representation of the ring G in a tensor algebra of
finite dimensional invertible matrices.

1.9. The connection Laplacian L(G) acts on the same Hilbert space
than H(G). The multiplication of complexes defines a strong prod-
uct for the corresponding connection graphs and the tensor product
of the connection Laplacians L(G). It follows that when adding two
simplicial complexes, the spectrum is the union of the spectra as for
“independent quantum mechanical processes”. When multiplying two
complexes, then the spectra of L multiply and are mathematically de-
scribed in the same way than multi-particle states appear in physics.

2. Examples

2.1. There are various ways to build simplicial complexes: any finite
set of finite non-empty sets A generates a complex G = {x ⊂ y | x 6=
∅, y ∈ A}. Given a complex G, the k-skeleton of G is the set of
subsets of G of dimension ≤ k. A finite simple graph (V,E) generates
the Whitney complex G = {x ⊂ V | ∀a, b ∈ x, (a, b) ∈ E}, where the
simplices are the vertex sets V (K) of complete subgraphs K of (V,E).
The Whitney complex is also known under the name clique complex.
Its dual is the independence complex, in which the simplices are
the independent sub-sets of V . An other example of a complex defined
on a graph is the graphic matroid G = {x ⊂ E | x generates a forest
in (V,E)}.

2.2. Example 1) The set of sets A = {(1, 2, 3), (2, 3, 4)} generates the
complexG = {(1), (2), (3), (4), (1, 4), (1, 3), (2, 3), (3, 4), (1, 2, 3), (2, 3, 4)}
which is the Whitney complex of the diamond graph. The f -vector is
(4, 5, 2), the Euler characteristic χ(G) = 4− 5 + 2 = 1, the Fermi char-
acteristic (−1)5 = −1 which agrees with the determinant of L and the
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determinant of g = L−1

g =



0 0 0 0 0 0 −1 0 0 1 0
0 0 1 0 0 −1 −1 0 −1 1 1

0 1 0 0 −1 0 −1 −1 0 1 1

0 0 0 0 0 0 −1 0 0 0 1
0 0 −1 0 0 1 1 0 0 −1 0

0 −1 0 0 1 0 1 0 0 −1 0

−1 −1 −1 −1 1 1 1 1 1 −1 −1
0 0 −1 0 0 0 1 0 1 0 −1
0 −1 0 0 0 0 1 1 0 0 −1
1 1 1 0 −1 −1 −1 0 0 1 0
0 1 1 1 0 0 −1 −1 −1 0 1


.

2.3. Example 2) Not every complex is a Whitney complex. The
complex generated by A = {{1, 2}, {2, 3}, {3, 1}} is

G = C3 = {{1}, {2}, {3}, {1, 2}, {2, 3}, {3, 1}}

which is the 1-skeleton complex C3 of of the triangle K3. While K3 is
the Whitney complex of a graph, the complex C3 is not. Its f -vector
is (3, 3) with Euler characteristic 3 − 3 = 0 and Fermi characteristic
(−1)3 = −1.

L =



1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1
1 1 0 1 1 1

1 0 1 1 1 1

0 1 1 1 1 1

 , g =



−1 −1 −1 1 1 0

−1 −1 −1 1 0 1
−1 −1 −1 0 1 1

1 1 0 −1 0 0

1 0 1 0 −1 0
0 1 1 0 0 −1

 .

We check det(L) = −1 and
∑

x,y∈G g(x, y) = 0.

Example 3) IfG = {{1, 2}, {1}, {2}}, H = {{1, 2}, {2, 3}, {1}, {2}, {3}}
then

L(G) =

 1 1 1
1 1 0
1 0 1

 , L(H) =


1 1 1 1 0
1 1 0 1 1
1 0 1 0 0
1 1 0 1 0
0 1 0 0 1

 ,

with det(L(G)) = −1 and det(L(H)) = 1. The eigenvalues of L(G) are{
1 +
√

2, 1, 1−
√

2
}

, the eigenvalues of L(H) are

σ(L(H)) =

{
1

2

(
3 +
√

13
)
,
1

2

(
1 +
√

5
)
, 1,

1

2

(
1−
√

5
)
,
1

2

(
3−
√

13
)}

.
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The product complex G × H as as a connection Laplacian the tensor
product of L(G) and L(H) which is

1 1 1 1 0 1 1 1 1 0 1 1 1 1 0
1 1 0 1 1 1 1 0 1 1 1 1 0 1 1

1 0 1 0 0 1 0 1 0 0 1 0 1 0 0
1 1 0 1 0 1 1 0 1 0 1 1 0 1 0

0 1 0 0 1 0 1 0 0 1 0 1 0 0 1

1 1 1 1 0 1 1 1 1 0 0 0 0 0 0
1 1 0 1 1 1 1 0 1 1 0 0 0 0 0

1 0 1 0 0 1 0 1 0 0 0 0 0 0 0

1 1 0 1 0 1 1 0 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 1 1 1 1 0

1 1 0 1 1 0 0 0 0 0 1 1 0 1 1
1 0 1 0 0 0 0 0 0 0 1 0 1 0 0

1 1 0 1 0 0 0 0 0 0 1 1 0 1 0

0 1 0 0 1 0 0 0 0 0 0 1 0 0 1


The tensor product of L(H) with L(G) is conjugated to it

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
1 1 0 1 1 0 1 1 0 1 1 0 0 0 0
1 0 1 1 0 1 1 0 1 1 0 1 0 0 0
1 1 1 1 1 1 0 0 0 1 1 1 1 1 1
1 1 0 1 1 0 0 0 0 1 1 0 1 1 0
1 0 1 1 0 1 0 0 0 1 0 1 1 0 1
1 1 1 0 0 0 1 1 1 0 0 0 0 0 0
1 1 0 0 0 0 1 1 0 0 0 0 0 0 0
1 0 1 0 0 0 1 0 1 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 1 1 1 0 0 0
1 1 0 1 1 0 0 0 0 1 1 0 0 0 0
1 0 1 1 0 1 0 0 0 1 0 1 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 1 1 1
0 0 0 1 1 0 0 0 0 0 0 0 1 1 0
0 0 0 1 0 1 0 0 0 0 0 0 1 0 1



.

The eigenvalues of the tensor product are the products λjµk, where
λj ∈ σ(L(G)) and µj ∈ σ(L(H)).

2.4. Example 4) Here is an example of a graphic matroid. If (V,E) =
({1, 2, 3, 4}, {(14), (12),(13), (23),(34)} = {a, b, c, d, e}) is the diamond
graph, then {(a, b, c), (a, b, d),(a, b, e), (a, c, d),(a, d, e), (b, c, e), (b, d, e),
(c, d, e)} is a list of spanning trees and G = {(a), (b), (c), (d), (e), (a, b),
(a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, d), (c, e), (d, e), (a, b, c),
(a, b, d), (a, b, e), (a, c, d), (a, d, e), (b, c, e), (b, d, e), (c, d, e)} is the graphic
matroid of the diamond graph. It has the f -vector (5, 10, 8) and Euler
characteristic G. The (23× 23)-matrix L has the inverse whose entries
add up to 3.
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2.5. Example 5) If G = {{1, 2}, {1}, {2}} is the set of non-empty
subsets of a two point set, then n = 3, b = 2, f = 1 and χ(G) = 2−1 =
1. The matrices L and g are

L =

 1 1 1
1 1 0
1 0 1

 , g =

 −1 1 1
1 0 −1
1 −1 0

 .

We see that n = 3, b = 2, f = 1 and χ(G) = 1, φ(G) = −1. We check∑
x,y g(x, y) = 1. The is also χ(G) = b − f . The Fermi characteristic

φ(G) = 1b(−1)f = (−1)f = −1 agrees with det(L) = −1.

2.6. Example 6) If G is the diamond graph complex generated by the
set A = {(1, 2, 3), (2, 3, 4)}, then the connection matrix and its inverse
are (using a = −1 for typographical reasons):

L =



1 0 0 0 1 1 0 0 0 1 0

0 1 0 0 1 0 1 1 0 1 1
0 0 1 0 0 1 1 0 1 1 1

0 0 0 1 0 0 0 1 1 0 1

1 1 0 0 1 1 1 1 0 1 1
1 0 1 0 1 1 1 0 1 1 1

0 1 1 0 1 1 1 1 1 1 1
0 1 0 1 1 0 1 1 1 1 1

0 0 1 1 0 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1


g =



0 0 0 0 0 0 a 0 0 1 0

0 0 1 0 0 a a 0 a 1 1
0 1 0 0 a 0 a a 0 1 1

0 0 0 0 0 0 a 0 0 0 1
0 0 a 0 0 1 1 0 0 a 0

0 a 0 0 1 0 1 0 0 a 0

a a a a 1 1 1 1 1 a a
0 0 a 0 0 0 1 0 1 0 a

0 a 0 0 0 0 1 1 0 0 a

1 1 1 0 a a a 0 0 1 0
0 1 1 1 0 0 a a a 0 1


The entries of g add up to 1 which is the Euler characteristic χ(G) of
G.

2.7. Example 7) The set A = {(1, 2), (2, 3), (3, 1)} generates a 1-
dimensional complex which is not the Whitney complex of a graph. It
is the smallest 1-dimensional sphere in the category of simplicial com-
plexes. We have n = 6, b = 3, f = 3 and χ(G) = 3 − 3 = 0. The
matrices are

L =


1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1
1 1 0 1 1 1
0 1 1 1 1 1
1 0 1 1 1 1

 , g =


−1 −1 −1 1 0 1
−1 −1 −1 1 1 0
−1 −1 −1 0 1 1
1 1 0 −1 0 0
0 1 1 0 −1 0
1 0 1 0 0 −1

 .

3. Poincaré-Hopf

3.1. Every simplicial complex G defines a finite simple graph G1 =
(V,E), where V consists of the sets of G and where two vertices in V
are connected by an edge if one is contained in the other as an element
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in G. The Whitney complex of this graph is called the Barycentric
refinement G1 of G. One can define the Barycentric refinement also
as the subset G1 of the power set 2G, where each simplex A ∈ G1 has
the property that if x, y ∈ A then either x ⊂ y or y ⊂ x, where the
subset relation refers to the elements x, y of G1 as subsets of G.

3.2. A function f : G → R defines a function on the vertex set of
the Barycentric refinement G1. Let S(x) denote the unit sphere of
x: it consists of all simplices y in G which are either strictly contained
in x or all simplices y which strictly contain x. The set of sets S(x)
is not a simplicial complex, but it defines a subgraph of G1, which
carries a Whitney complex which is a simplicial complex. The following
Poincaré-Hopf theorem applies for general graphs (V,E) and not only
for graphs G1 defined by simplicial complexes.

3.3. A function f : G → R is locally injective if f(x) 6= f(y) for
any in G1 connected pair x, y in G1. A locally injective function is also
called a coloring of G1 meaning that every set {f = c} is independent.
Define the index if (x) = 1−χ(S−f (x)), where S−f (x) is the sub-complex
of all y ∈ S(x) ⊂ G1 with y ⊂ x.

Lemma 1 (Poincaré-Hopf, [22] 2012). χ(G) =
∑

x if (x) for a locally
injective f .

Proof. The formula holds in general for any finite simple graph G =
(V,E) with locally injective function f defined on V . To prove it, use
induction with respect to the number n of vertices. Take a vertex
v ∈ G for which f is locally maximal. Let H be the subgraph with v
and connections taken away. Since χ is a valuation, we have χ(G) =
χ(H) + χ(B(x)) − χ(S(x)). Because χ(B(x)) = 1 and χ(S(x)) =
χ(S−f (x)) and by the induction assumption χ(H) =

∑
y if (y) we have

χ(G) =
∑

y 6=x if (y)+ if (x). We have used that that in a graph, for any

vertex v the unit ball B(v) has Euler characteristic 1. �

3.4. If G1 is the Barycentric refinement of a complex G, one can look
at the function f(x) = dim(x). It is a coloring with a minimal number
of colors as the chromatic number is equal to the clique number. The
set S−(x) is now a sphere complex as it is the boundary of the simplex
x. Its Euler characteristic is either 0 or 2.

3.5. In the case f(x) = dim(x), we have if (x) = ω(x) as it is the
genus of the sphere complex S−(x). Poincaré-Hopf now tells that
χ(G1) = χ(G). The fact that Euler characteristic is a combinatorial
invariant follows also from the explicit relation between the f -vectors
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of G and G1. The f -vector gets multiplied with the Barycentric refine-
ment operator A = i!S(j, i), where S(j, i) are the Stirling numbers
of the second kind. As the transpose AT has a unique eigenvec-
tor (1,−1, 1,−1, . . . ) with eigenvalue 1, the Euler characteristic is the
only valuation (linear functional on f -vectors) with the property that
it is invariant under Barycentric refinements. Poincaré-Hopf confirms
in particular that χ is invariant under refinement.

3.6. For a generalization in which the Euler characteristic is replaced
by the f -function fG(t) = 1 + f0t+ f1t

2 + · · · fdtd+1, see [38]. Given a
locally injective function g on the vertex set of a graph, then one has
fG(t) = 1 + t

∑
x∈V fSg(x)(t).

4. Gauss-Bonnet

4.1. If Ω is the set of locally injective functions on G and A a σ-algebra
on Ω and P a probability measure on the measure space (Ω,A) we have
a probability space (Ω,A, P ). The curvature defined by this proba-
bility space is defined as the expectation K(x) = E[if (x)]. It obviously
satisfies the Gauss-Bonnet formula as it is an average of Poincaré-Hopf
theorems:

Corollary 1 (Gauss-Bonnet). χ(G) =
∑

x∈GK(x).

Proof. As χ(G) =
∑

x if (x), we have χ(f) =
∑

x E[if (x)]. �

4.2. This is a cheap approach to Gauss-Bonnet and also holds for com-
pact Riemannian manifolds M . There are probability spaces which
produces Euler curvature used in the Gauss-Bonnet-Chern theorem.
One can for example Nash embed M isometrically in an ambient Eu-
clidean space E, then take the probability space of all linear functions
in E. They produce a probability space of functions on M . A possibly
different curvature is obtained by taking the normalized volume mea-
sure on M as P using the heat kernel functions Ω = {fy(x) = [e−τL0 ]xy}
where L0 is the Laplacian on scalars.

4.3. If Ω =
∏

x∈G[−1, 1] and P =
∏

x∈G dx/2 of if P is the uniform
counting measure on all c-colorings, where c is the chromatic number,
we get the Levitt curvature

K(x) =
∑
y,x⊂y

ω(y)

|y|
= 1− V0(x)

2
+
V1(x)

3
− V2(x)

4
. . . ,

where Vk(x) is the number of k-dimensional simplices in S(x). In the
2-dimensional case, the curvature is K(x) = 1 − V0/2 + V1/3 which is
K(x) = 1− deg(x)/6 in the case of a triangulation, a case known for a
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long time. The general case appeared in [41]. It was rediscovered in a
geometric setting in [20] where it was placed as a Gauss-Bonnet result.
The integral theoretic picture of seeing curvature as an expectation of
indices is adapted from integral geometry in the continuum [23, 26].

4.4. As for Poincaré-Hopf, also Gauss-Bonnet does not require the
graph to be the Barycentric refinement of a complex. It holds for any
finite simple graph. Both the index function if (x) as well as the cur-
vature function K(x) are defined on the vertices but unlike curvature,
the index is always integer-valued. Poincaré-Hopf is even more general:
let φ be a map from the set V1 of vertices in the Barycentric refinement
G1 to the set V of vertices in G. Now take the values ω(x) on V1 which
add up to Euler characteristic and place them to the vertex φ(x). If
φ(x) = {v ∈ x | f(v) < f(w),∀w ∈ x} then we get Poincaré-Hopf.
Taking a probability space of functions corresponds then to a proba-
bility space of transition maps, a Markov process. If we distribute the
value ω(x) equally to its zero-dimensional part, the Levitt version of
Gauss-Bonnet results.

5. Abstract finite CW complexes

5.1. A finite abstract CW complex is a geometric, combinatorial
object which like ∆-sets or simplicial sets generalizes simplicial com-
plexes. The definition does not tap into Euclidean structures like clas-
sical definition of CW -complexes. But it closely follows the definition
used in the continuum. The constructive definition uses a gradual
build-up which allows to make proofs easier. Any finite abstract sim-
plicial complex is a CW complex but CW complexes are more general.

5.2. The empty complex 0 = {} is declared to be a CW-complex and
to be a (−1)-sphere. This complex does not contain any cell. To make
an extension of a given a complex H, choose a sphere S within H and
add a cell x which has S as the boundary. Given a complex H with n
cells and a sub-complex K which is a d-sphere, we add a new (d+ 1)-
cell given as the join x = H + 1. The integer d+ 1 attached to the cell
is the dimension of the cell. The cells in S(x) are declared to be a
subset of x or contained in x. The maximal dimension of a cell x is
the dimension of the CW complex.

5.3. The unit sphere S(x) of a cell x is the union of all cells either
contained in x or all cells which contain x. A CW-complex G is called
contractible, 1 if there exists a cell x which has a contractible unit

1We identify here contractible and collapsible and would use the terminology
“homotopic to 1” for the wider equivalence relation.
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sphere S(x) so that G \ x is contractible. To start of the inductive
definition assume that the empty complex 0 = ∅ is a (−1)-dimensional
sphere declared to be not contractible and that the 1-point complex
1 = K1 is declared to be contractible. A CW-complex G of maximal
dimension d is a d-sphere if it is a d-complex for which removing any
single cell produces a contractible complex. A CW-complex G is a
d-complex, if all unit spheres S(x) are (d − 1)-spheres. We do not
require a CW complex to be a d-complex.

5.4. A connection Laplacian L for a given CW complex is defined in the
same way if we define two cells to intersect if they have a common sub-
cell. Assume the connection Laplacian L for G has been constructed,
the connection Laplacian L of the enlarged complex G + x is a (n +
1)× (n+ 1) matrix, where L(x, y) = L(y, x) = 1 if y∩ (S(x)∪{x}) 6= ∅
and 0 else. In the case of a simplicial complex, which corresponds to
the already given definition where L(x, y) = 1 if x and y intersect and
L(x, y) = 0 else.

5.5. The Barycentric refinement of a CW complex G is the Whit-
ney complex of a graph G1. The cells of G are the vertices of G1 and
two cells are connected, if one is contained in the other. The connec-
tion graph G′ of G is the graph with the same vertices than G1, but
where two cells are connected if they intersect. We can write L = 1+A,
where A is the adjacency matrix of G′ so that the determinant of L is
the Fredholm determinant of A.

5.6. When adding a cell to a complex, the Euler characteristic changes
by χ(H) → χ(G) = χ(H) + (1 − χ(S(x))). We show in the over
next section that the Fermi characteristic changes by ψ(H)→ ψ(G) =
ψ(H)(1− χ(S(x))).

6. Valuations

6.1. A valuationX on a simplicial complexG is a real-valued function
on the set of sub-complexes of G satisfying the valuation property
X(A ∪ B) + X(A ∩ B) = X(A) + X(B) for all sub-complexes A,B.
A complex is called complete if it is of the form G = 2A \ {∅} for
some finite set A. Every simplex x ∈ G naturally defines a complete
complex W−(x) = {y 6= ∅ | y ⊂ x}. There is an obvious bijection
between complete sub=complexes of G and subsets of G. There is a
difference however. Most notably, the empty complex 0 = ∅ is a com-
plex but not a set=simplex in a simplicial complex. Some authors add
the empty set ∅ to any simplicial complex which leads to the reduced
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Euler characteristic χ(G) − 1, where the void ∅ counts as a (−1)-
dimensional simplex. We prefer to avoid voids and see the empty-set as
a (−1)-dimensional sphere of Euler characteristic 0 and not a simplex
and 1− χ(G) as a genus.

Lemma 2. A valuation X which satisfies X(A) = 1 for every complete
sub-complex A of G must be equal to the Euler characteristic of G.

Proof. Since the Euler characteristic of a complete complex is 1 we only
have to show uniqueness. By the discrete Hadwiger theorem [19], any
valuation is of the form X(A) = X · f(A), where f(A) is the f-vector
of A and X is a vector. If G has maximal dimension d, then the space
of valuations has dimension d + 1. If X(A) = 1 for every complete

graph, this means X · ~f(Kk) = 1, for the f -vectors ~f(Kk) of Kk. But
since these vectors form a basis in the vector space Rd+1, we also have
uniqueness and X = χ. �

6.2. We have defined a valuation only for simplicial complexes so far.
For CW complexes, we can define a valuation to be a linear functional
X(G) =

∑
iXifi(G) on the f -vector (f0(G), f1(G), . . . , fd(G)) of the

complex, where fk(G) counts the number of k-dimensional cells in G.
The same definition applies for the Cartesian products of two simplicial
complexes or for signed complexes by declaring X(−G) = −X(G) after
extending the “disjoint union monoid” of simplicial complexes to a
group.

7. Paths

7.1. If A is the adjacency matrix of a graph Γ, the determinant det(A)
is a partition function or a “path integral”, in which the underlying
paths are fixed-point-free signed permutations of the vertices. The de-
terminant generates derangements π for which x→ π(x)→ π(π(x)) . . .
defines oriented paths. The Fredholm determinant ζ(Γ) = det(1 + A)
is a partition function for all oriented cyclic paths π in the graph as
x → π(x) can now also have pairs (a, b) ∈ E as transpositions and
vertices v ∈ V as fixed points. In short,

det(1 + A) =
∑
γ

(−1)|γ|

summing over all one-dimensional oriented cyclic paths γ of Γ and
where (−1)|γ| = sign(γ) = φ(γ), the signature of the corresponding
permutation, is also the Fermi number involving one-dimensional parts
of γ if γ seen as a 1-dimensional complex.

11



ENERGY THEOREM

7.2. The unimodularity theorem tells that if the graph Γ is the con-
nection graph G′ of a simplicial complex G and L is the connection
Laplacian of G, then

det(L) =
∑
γ⊂G

(−1)|γ| =
∏
x∈G

(−1)|x|−1 = φ(G) .

The energy theorem tells that the Euler characteristic is∑
x,y

L−1x,y =
∑
x∈G

(−1)|x|−1 = χ(G) .

Cramer’s determinant formula shows that the left hand side has a path
interpretation too. In other words, both the determinant of L as well
as the Euler characteristic of G have a path integral representation
summing over one-dimensional closed oriented loops of the complex.

7.3. If per(A) is the permanent of A, then per(A) is the number
derangements of the vertex set of the graph while per(1 + A) is
the number of all permutations of the vertex set.. For G = Kn

for example, per(1 + A(Kn)) generates the permutation sequence
1, 2, 6, 24, 120, 720, . . . while the permanent of the adjacency matrix
per(A(Kn)) generates the derangement sequence 0, 1, 2, 9, 44, 265, . . . .

7.4. Every path has comes with a sign, the signature of its permu-
tation. The unimodularity theorem assures that the number of even
paths and the number of odd paths in a connection graph differ by
1. The following lemma will be used later. It is a special case of
the muliplicative Poincaré-Hopf lemma. If G is a CW -complex and
Gx = G +H x is the extended complex, then, we can look at the new
connection graph G′x = G′ +H′ x.

Lemma 3 (Fredholm extension lemma). If H is a complete subcomplex
of G then ψ(G′ +H′ x) = 0.

Proof. If H is a complete subcomplex of G, then it defines a vertex h in
G′. If a path does not hit, then it can be paired with a path adding the
hx path of length 2. If a path does hit, then it has to to hit a neighbor
k which is also connected to x. We can now pair such a piece hk with
the extended path hxk and again get a cancellation. How look at all
paths which do hit h and do not hit hk etc. We see that the paths can
be partitioned into a finite set of paths where each can be paired with
an extended path with opposite sign. �

12
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7.5. Note that H is a subcomplex of G, not of G′. We build then
the complex Gx = G+H x which produces the connection graph G′x =
G′ +H′ x. The Fredholm extension lemma tells that the Euler char-
acteristic of H and not of H ′ matters. This is essential as χ(H) and
χ(H ′) differ in general. Comparing the Fredholm determinant of G′

and (G +H x)′ is not the right thing. The added vertex x over H at-
taches a new cell to the CW complex. Also on the level of graphs,
the extension lemma would fail as the join over H adds a lot more
simplices on the connection level. The Fredholm determinant of the
expanded cell complex Gx which on the connection graph level makes
a cone extension over H ′.

8. Proof of unimodularity

8.1. The key of the proof is a multiplicative Poincaré-Hopf result
for CW complexes which immediately proves the unimodularity theo-
rem. If a newly added cell x is odd-dimensional, then S(x) is an even-
dimensional sphere with Euler characteristic 2 and (1−χ(S(x))) = −1
switches the sign. If the newly added cell x is even-dimensional, then
S(x) is odd dimensional. In this case 1− χ(S(x)) = 1 and the sign of
the product stays the same. The following theorem, it is not assumed
that the glue A = S(x) is a sphere. It applies therefore for more general
complexes.

Proposition 1 (Multiplicative Poincaré Hopf). If x is a new cell at-
tached to a sub-complex A = S(x) of G, then ψ(G∪A {x}) = ψ(G)(1−
χ(A)).

Proof. (i) The map

Y : A→ (ψ(G ∪A x)− ψ(G))

is a valuation.
(ii) The valuation satisfies ψ(G∪A x) = 0 if A is a complete subgraph.
This follows from the extension lemma 13.3.
(iii) It follows from (ii) that Y (A) = −ψ(G) if A is a complete subgraph.
(iv) By Lemma 2, Y must be the Euler characteristic Y (A) = −χ(A).
But this is equivalent to the claim ψ(G∪A {x}) = ψ(G)(1−χ(A)). �

8.2. An algebraic argument would use the Laplace expansion of the
connection matrix of G∪A{x} with respect to the newly added column.
We will see that in the proof of Theorem (2). However, the analysis
of the minors requires a similar insight into the path expansion as in
Lemma 13.3.

13
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8.3. If more general objects H than spheres would be used in the
construction G→ G ∪H {x}, the interface H is a general sub-complex
of G, then the unimodularity theorem would fail in general as the Fermi
characteristic can become zero. For a CW complex the subcomplexes
H consists of spheres. This assures that 1−χ(S(x)) is always 1 or −1.

8.4. Every simplicial complex is a CW complex: first start with 0-
dimensional cells, the vertices, then add one-dimensional simplices x.
Every sphere S(x) of such a simplex x is a 0-dimensional sphere. After
having added all 1-dimensional simplex, each triangle is still a one-
dimensional complex C3, the 1-skeleton of K3 and a sphere. Now add
the two-dimensional simplices. This converts a one-dimensional cyclic
cell complex C3 into a two dimensional complex K3. We can build up
any simplicial complex recursively by starting with sets of cardinality
1, then adding sets of cardinality 2, then 3 etc. It then follows from
the Euler characteristic or Fermi characteristic changes that χ(G) =∑

x ω(x) and ψ(G) =
∏

x ω(x), where ω(x) = (−1)dim(x) = 1−χ(S−(x))
and S−(x) is the unit sphere of the cell x at the moment it has been
added to the CW-complex.

8.5. Discrete CW complexes are strictly more general than simplicial
complexes: for example add a cell x to C4. Its Barycentric refinement
is the Whitney complex of a wheel graph. It has only 9 = 8 + 1
cells, where the 8 cells came from the circular graph C4 generated by
{(1, 2), (2, 3), (3, 4), (4, 1)}. The wheel graphW4 obtained asW4 = C4+
1 the cone extension on the other hand has more cells: as a Whitney
complex, the wheel graph W4 has 5 vertices, 8 edges and 4 triangles
leading to a finite simplicial complex with 17 cells. Topologically the
two CW complexes are equivalent, but the first has 9 cells, the second
one has 17 cells. As in the continuum, discrete CW complexes have
both practical advantages as well as proof theoretical advantages.

8.6. Here is an other example. The two-dimensional cube K2 ×K2 is
not the Whitney complex of a graph. It can also not be written as a
simplicial complex. The Cartesian product of two simplicial complexes
is not a simplicial complex if both factors are positive dimensional. We
can see K2 ×K2 however as a CW-complex with 3 · 3 = 9 cells. The
Barycentric refinement of this element is the Whitney complex of a
graph G1 = (V,E), where V is the set of 9 cells and where (a, b) ∈ E,
if either a ⊂ b or b ⊂ a. Completely analog is the boundary of the
solid cube K2×K2×K2 which we call the ”cube” or hexaedron. It can
be realized by starting with the one-dimensional graph representing

14
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the cube and adding 6 cells. This gives a CW complex with six 2-
dimensional cells, twelve 1-dimensional faces and eight 0-dimensional
cells. It is only as a discrete CW complex that we regain the familiar
picture of the cube as a 2-dimensional sphere.

9. Joins

9.1. Let us first define the join for simplicial complexes. Given two
sets x, y ∈ G, let x+y be the disjoint union and x∪y the union. Given
two complexes G and H, then G+H = G∪H ∪{x∪y | x ∈ G, y ∈ H}
is a complex called the Zykov join. It is the discrete analogue of the
join in topology.

9.2. The complex G+ 1 is a cone extension of G. If P2 = {{1}, {2}}
denotes the zero-dimensional sphere, the complex G + P2 is the sus-
pension. The Zykov monoid has the class of spheres as a submonoid.
The complex P2 + P2 is the circle C4, the complex P2 + C4 = O is
the octahedron. The complex nP2 = P2 + P2 + · · · + P2 is a (n − 1)-
dimensional sphere. A complex is an additive Zykov prime, if it can
not be written as H +K, where H,K are complexes.

9.3. To define the join for CW complexes G0 →S0 G1 →S1 G2 →
· · · →Sn−1 Gn and H0 →T0 H1 →T1 H2 → · · · →Tn−1 Tn using spheres
Si, Ti. Now declare Tk + Sk to be the spheres of G+H, then build up
G+H by building Gk +Hl.

9.4. The following lemma holds for general CW complexes:

Lemma 4. If G is contractible and H is arbitrary, then G + H is
contractible.

Proof. Use induction with respect to the number of cells. Assume G =
K +A x, where A is contractible, then G + H = K + H +A+K x. By
induction, A+K is contractible and K +H is contractible. Therefore
G+H is contractible. �

9.5. For example, the cone extension G + 1 of any complex is con-
tractible. The just observed statement implies:

Corollary 2. Contractible complexes form a submonoid of all simpli-
cial complexes. An additive prime factor of a non-collapsible complex
is not-collapsible.

9.6. For example, C4 = S0 + S0, where S0 is the zero dimensional 2-
point complex which is the 0-dimensional sphere. C4 is not contractible
so that also S0 is not contractible.
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9.7. A d-ball is a punctured sphere, a d-sphere for which one vertex
has been taken away. By definition, a d-ball is contractible. By defini-
tion a d-ball is a d-complex with boundary which has a (d− 1)-sphere
as a boundary. For example, the cone extension G+ x of a sphere G is
a ball because making an other cone extension G+x+y is a suspension
G+ S0 which is a sphere so that G+ x = G+ S0 − y is a ball. Unlike
spheres, balls do not form a sub-monoid of the join complex. The ball
1 = K1 for example gives gives 1 + 1 = K2 which is not a 1-simplex
and not a ball.

9.8.

Lemma 5. If G and H are both spheres, then G + H is a sphere. If
G is a sphere and H is a ball, then G+H is a ball.

Proof. The proof is inductive. For G = H = 0, we have G + H = 0
and for G = 0, H we have G+H = H.
Write G = K +A x, where A is a smaller dimensional sphere and K is
a smaller dimensional ball. Now G + H = K + H +A+H x. We know
K + H is a ball by induction assumption and that A + H is a sphere
by induction assumption. �

10. Hyperbolicity

10.1. Given a simplicial complex A, its genus is defined as γ(A) = 1−
χ(A). The reason for the name is that if A is one-dimensional connected
complex then χ(A) = b0 − b1 = 1 − b1 is the Euler-Poincaré formula
relating the combinatorial and cohomological Euler characteristic then
b1 = γ(A) is the genus of the curve, the number of “holes”. The
analogy is less established in higher dimensions: for surfaces already,
where χ(A) = b0 − b1 + b2 = 2− b1 it is custom to define the genus as
1−χ(A)/2. That the notion is in general natural can be seen from the
following product formula

Lemma 6 (Product formula). γ(A+B) = γ(A)γ(B).

Proof. If f(t) = 1+
∑d

k=1 fkt
k+1 = 1+f0t+f1t

2+. . . is the generating
function for the f -vector (f0, f1, . . . ) of G, then χ(G) = −f(−1). It
satisfies therefore fA+B = fAfB. This implies χ(A+B) = χ(A)+χ(B)−
χ(A)χ(B) because χ(G) = 1− fG(−1). The genus γ(G) = 1− χ(G) is
multiplicative. �

10.2. It implies immediately for the complete graph Kn = n = 1 + 1 +
· · ·+ 1 that γ(n) = 1 and that a suspension G→ G+S0 changes the
sign of the genus.
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10.3. Let f be a locally injective function and S(x) the unit sphere
of x in the graph G1. It is a simplicial complex in which the vertices
are the simplices which are either contained in x or which are simplices
containing x. Let S−f (x) = {y ∈ S(x)|f(y) < f(x)} and S+

f (x) = {y ∈
S(x)|f(y) > f(x)}. All graphs S(x), S−f (x) and S+

f (x) stand for their
Whitney complexes.

Lemma 7 (Hyperbolic structure). For the function f = dim on a
simplicial complex G, we have S(x) = S−f (x) + S+

f (x)

Proof. This is stated as Lemma (1) in [32]. Every simplex y in S(x)
is either a simplex in S−f (x) or a simplex in S+

f (x). The function f

satisfies f(y−) < f(y) if y− ⊂ y and f(y+) > f(y) if y+ ⊃ y. �

10.4. For a general function f we don’t have S(x) = S−f (x) + S+
f (x)

as the elements in the stable part S−f (x) are not necessarily connected
to the unstable part. They might not even be connected at all in S(x).

10.5. Example. If G = W4 is the wheel graph with 4 spikes and f(x)
is alternatively 1 or −1 on the boundary S4 and 0 on the central point
0, then S(0) = C4 and S+(x) is a 0-dimensional sphere and S+(0) an
other zero-dimensional sphere. The sphere S(x) is the sum of the two
spheres.

10.6. Example. IfG = {{1}, {2}, {3}, {4}, {5}, {6},{1, 3}, {1, 4}, {1, 5},
{1, 6}, {2, 5}, {3, 6}, {4, 5},{1, 3, 6}, {1, 4, 5}} and x = {1, 3}. The set
of vertices connected to x are {{1}, {3}, {1, 3, 6}}. This is not a sim-
plicial complex but the graph with these vertices and connecting two
if one is contained in the other is what is the sphere S(x) in G1. We
have S−f (x) = {{1}, {3}} and S+

f (x) = {{1, 3, 6}}. Now 1− χ(S(x)) =

1−1 = 0 and 1−χ(S−(x)) = 1−2 = −1 and s−χ(S+(x)) = 1−1 = 0.

10.7. For any x ∈ G, define the index i(x) = 1 − χ(S(x)). For any
locally injective function, the index if (x) of f and the index i−f (x) of
−f are linked by

Corollary 3 (Dual index). if (x)i−f (x) = i(x).

Proof. This is a reformulation as i−f (x) = 1 − χ(S+
f (x)) and if (x) =

1− χ(S−f (x)). �

10.8. It follows for f = dim that

k(x) = ω(x)(1− χ(S(x)))

is a curvature:
17
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Corollary 4 (Sphere Gauss-Bonnet).
∑

x k(x) = χ(G).

Proof. The sum
∑

x k(x) is equal to the sum
∑

x ω(x)(1 − χ(S(x)))
which is

∑
x if (x) where f(x) = −dim(x). The result follows now from

Poincaré-Hopf. �

11. McKean-Singer formula

11.1. The trace of a matrix L on the finite dimensional Hilbert space
of all functions G → R is defined as tr(L) =

∑
x L(x, x). The super

trace is defined as

str(L) =
∑
x

ω(x)L(x, x) .

11.2. If g is the inverse of L, then its diagonal entries are the genus of
S(x).

Lemma 8 (Green’s function formula). g(x, x) = (1− χ(S(x))).

Proof. By the Cramer formula, g(x, x) is ψ(G \ x)/ψ(G) but by the
multiplicative Poincaré-Hopf theorem, this is 1− χ(S(x)), where S(x)
is the unit sphere in G1. �

11.3. The sum
V (x) =

∑
y∈G

g(x, y)

is the total potential energy of x. We have now:

Corollary 5 (Mc-Kean Singer). str(L−1) = χ(G).

Proof. This is a reformulation of the sphere Gauss-Bonnet formula (4)
which told

χ(G) =
∑
x

ω(x)(1− χ(S(x))) =
∑
x

k(x) ,

which used that k(x) = if (x) for f = −dim. �

11.4. This is the analog of the McKean-Singer formula [43]

str(e−tH) = χ(G) ,

which holds for the Hodge Laplacian H = (d + d∗)2 of G [24]. The
discrete case for the Hodge Laplacian follows closely the continuum
proof given in [8]. Here, for the connection Laplacian, we have str(Lk) =
χ(G) for k = −1, 0, 1, where the cases k = 0, 1 are the definition of
Euler characteristic. For |k| ≥ 2, there is no such identity any more in
general.

Corollary 6. For any simplicial complex
∑

x ω(x)χ(S(x)) = 0.
18
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Proof. This follows directly from χ(G) =
∑

x ω(x)(1 − χ(S(x))) =∑
x ω(x). �

12. Proof of the Energy theorem

12.1. Denote by B(x) = BG′(x) the unit ball of x in the connection
graph G′. We can write the connection vertex degree d(x) = dG′(x)
of a vertex x in terms of stable spheres S+(y) = {z ∈ S(y) | z ⊂ y} in
G1.

Lemma 9 (Unit Ball lemma). d(x) =
∑

y∈B(x) χ(S+(y)).

Proof. From the multiplicative property of the genus under the joint
operation S+(x) + S−(x) = S(x), we have∑

y∈B(x)

(1− χ(S+(y))) =
∑
y∈B(x)

ω(y)(1− χ(S(y))) .

Now use Gauss-Bonnet on the right hand side which tells that it is equal
to χ(B(x)) = 1. The left hand side is

∑
y∈B(x) 1 -

∑
y∈B(x) χ(S+(y))

which is

1 + d(x)−
∑
y∈B(x)

χ(S+(y)) = 1 .

�

12.2. Example: if G = K3 is the triangle graph and x is the central
vertex of G1 which has dimension 2, then d(x) = 6 and every χ(S+(y))
in B(x) except x itself has χ(S+(y)) = 1. In a general complex G,
If x is a facet in G (a face of maximal dimension), then χ(S+(x)) =
0, χ(S+(y)) = 1 for all neighbors.

12.3. When looking at Theorem (2), it suggests to lump the potential
energies g(x, y) together and see it as a curvature. This indeed works.
The potential V (x) =

∑
y g(x, y) at the simplex x is the sphere cur-

vature

Lemma 10 (Potential is curvature). V (x) =
∑

y g(x, y) = ω(x)g(x, x) =

k(x)

Proof. The claim∑
y

g(x, y) = (−1)dim(x)g(x, x) = k(x)

can be restated in vector form as

g1 = k ,
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where 1 is the vector 1(x) = 1. As g = (1 + A)−1, this is equivalent to

Lk = (1 + A)k = 1 .

We show now this. Because k(x) = 1−χ(S+(y)) and A is the adjacency
matrix of G′, this means

Lk = (1 + A)(1− χ(S+(y))) = 1 + dG′(x)−
∑

y∈BG′(x)(x)

χ(S+(y)) .

Using Lemma (9) this is equal to 1. �

13. Proof of Theorem (2)

13.1. The proof is inductive in the number n of cells in G. It is again
easier to prove the result in the more general class of CW complexes.
Let L be the connection matrix of G and K the connection matrix
of G + x. Define K(t)(y, z) = K(y, z) if z is different from x and
K(t)(y, x) = tK(y, x) if y 6= x and similarly K(t)(x, y) = tK(x, y) if
y 6= x:

K(t) =



L11 L12 . . . L1n tL1,x

L21 L22 . . . . tL2,x

. . . . . . tL3,x

. . . . . . .

. . . . . . .

. . . . . . .
Ln1 . . . . Lnn tLn,x
tLx1 tLx2 . . . . . . . . . tLxn 1


.

Then K(0) = L ⊕ 1 and K(1) = K. The matrix K(0) has the eigen-
values of L and an additional eigenvalue 0.

13.2. Let L[y, x] denote the minor of L in which row y and column x
were deleted.

Lemma 11. det(L[y, x]) is ω(y) if y is a subset of x and x is facet, a
maximal element.

Proof. The Green-Star formula implies

g(x, y) = ω(x)ω(y)χ(W+(x) ∩W+(y)) .

Now χ(W+(x) ∩W+(y)) = χ(W+(x)) because of inclusion and this is
equal to ω(x) due to maximality. �

This immediately implies
∑

y⊂x det(L[y, x]) = χ(S(x)) if x is a facet, a
set in X which is not contained in a larger subset.
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13.3. The following proposition is a version of the multiplicative Poincaré-
Hopf result . It will relate ψ(G +A x) with ψ(G), where A is the glue
sphere at which x has been attached.

Proposition 2. det(K(t)) = (1− t2χ(A))det(L).

Proof. A Laplace expansion with respect to the last column (which by
definition belongs to a maximal cell) gives

det(K(t)) = det(L)− t2
∑
y⊂x

det(L)ω(y) .

Now use the previous lemma det(L[y, x]) = ω(y) to get∑
y⊂x

det(L)ω(y) = det(L)χ(A) .

�

13.4. As in a CW complex, χ(A) is either 0 or 2, the lemma implies
that in the later case, at t = 1/

√
2 the determinant is zero, with a

single root meaning that a single eigenvalue crosses 0. In the former
case χ(A) = 0, the determinant K(t) stays constant meaning that no
eigenvalue can cross 0.

14. The strong ring

14.1. Theorem (1) and Theorem (2) can be generalized to a ring gener-
ated by simplicial complexes in which the disjoint union is the addition
and the Cartesian product is defined as a CW complex. The notion
of “Cartesian product” is pivotal for any geometry. The fact that the
Cartesian product of simplicial complexes (as sets) is not a simplicial
complex has as a consequence that the connected simplicial complexes
are the primes in a ring in which additive primes - the connected el-
ements - have a unique prime factorization. The product enjoys both
spectral compatibility for the Hodge Laplacian as well as connection
Laplacian. Both for the Hodge Laplacian as well as the connection
Laplacian the spectrum adds. For the connection Laplacian, the spec-
trum multiplies.

14.2. With the disjoint union of simplicial complexes as addition, the
set of simplicial complexes is an additive monoid for which the empty
complex is the zero element. One can extend it to a group, the free
Abelian group generated by connected complexes. The set theoretical
Cartesian product G = A × B of two simplicial complexes is not
a simplicial complex any more. It can be given the structure of a
discrete CW complex and still defines two graphs G1, the Barycentric
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refinement of G and G′, the connection graph of G. Both graphs have
the sets in A×B as vertices. In G1 = A×B, two sets x, y are connected,
if x ⊂ y or y ⊂ x. In G′, two different sets x, y are connected if x∩ y is
not-empty. The refined Cartesian product A×1 B = (A×s B)1 is
now a complex which satisfies all the properties of the continuum like
Künneth. It is not associative however as (A×K1)×K1 is the second
Barycentric refinement of A while A× (K1×K1) = A×K1 is the first
Barycentric refinement.

14.3. The disjoint union and the Cartesian product defines the ring G
generated by simplicial complexes. The multiplicative unit is 1 = K1

and the empty complex ∅ is the 0-element. We call it the strong
ring because the corresponding connection graphs get multiplied with
the strong Sabidussi multiplication for graphs which is dual to
the multiplication in the Zykov-Sabidussi ring. See [33, 37]. The ring
elements can also be represented by graphs, the Barycentric refinement
graph G1 in which two elements are connected if one is contained in
the other or the connection graph G′ in which two elements are
connected if they intersect.

14.4. Every element G = G1 × · · · × Gn of the ring has a connection
Laplacian L(G). Just define L(G) =

∑
i L(G1 × · · · × Gn) as a tensor

product of (L(G1) ⊗ L(G1) · · · ⊗ L(G1)) ⊗ (L(G2) · · · ⊗ L(G2)) · · · ⊗
(L(Gn) ⊗ L(Gn) · · · ⊗ L(Gn)). The strong product of two finite
simple graphs G = (V,E) and H = (W,F ) is the graph G×�H =
(V ×W, {((a, b), (c, d)) a = c, (b, d) ∈ F}∪{((a, b), (c, d)) b = d, (a, c) ∈
E} ∪ {((a, b), (c, d)) (a, c) ∈ Eand(b, d) ∈ F}). It is an associative
product introduced by Sabidussi [48]. See [16, 13].

14.5. This shows that the Zykov-Sabidussi ring with join as addition
and large multiplication is implemented as a strong ring of connec-
tion graphs and algebraically has a representation in a tensor ring of
connection matrices.

Lemma 12. (G×H)′ = G′�H ′

Proof. In both cases, we deal with a graph with vertex set V ×W , where
V = G is the set of simplices in G and W = H the set of simplices in
H. Two elements in G×H intersect if they either agree on one side or
if they are connected on both sides. This is exactly what the Sabidussi
multiplication does. �
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14.6. The energy theorem extends from abstract simplicial complexes
to elements in the strong ring G. First of all, we have to see that for
any G ∈ G, the Laplacian L is unimodular g = L−1(x, y) and satis-
fies χ(G) =

∑
x,y g(x, y). As the proof of the unimodularity theorem

worked more generally for discrete CW complexes, the proof goes over.
Also for CW complexes, every unit sphere can be decomposed into
a stable and unstable part as a join. The Gauss Bonnet formula for
the curvature 1−χ(S−(x)) is the definition of Euler characteristic, for
K+(x) = 1 − χ(S+(x)). The formula g(x, x) = 1 − χ(S(x)) extends
in the same way. Also

∑
y g(x, y) = g(x, x) generalizes and the energy

theorem follows.

Corollary 7. The energy functional is a ring homomorphism from G
to Z.

14.7. The Cartesian product of cell complexes produces a strong prod-
uct for the connection graphs and a tensor product for the connection
matrices:

Proposition 3. If G and H are two simplicial complexes with connec-
tion matrix L(G) and L(H). Then L(G×H) = L(G)⊗ L(H).

Proof. If x1, . . . xn are the cells in G and y1, . . . , ym are the cells in H,
we have basis elements e1, . . . , en and f1, . . . fm the basis elements in
the Hilbert space of H. Now build the basis e1 ⊗ f1, . . . , e1 ⊗ fm, e2 ⊗
f1, . . . , e2 ⊗ fm, fm ⊗ f1, . . . , en ⊗ fm for the tensor product of the
two Hilbert spaces. In that basis, the connection matrix is the ten-
sor product of the L(G), L(H). In the first row, we have the blocks
L(G)11[L(H)], . . . , L(G)1n[L(H)]. �

14.8. As stated in Theorem 5, it follows that the strong ring has a
representation in a tensor algebra of matrices. Every element G in
the ring is given a connection matrix L. The addition in the ring is
the direct sum ⊕ of matrices. The multiplication in the ring produces
the tensor product of matrices. The strong ring generated by simplicial
complexes therefore has a representation in a tensor algebra.

15. Green function entries

15.1. The star W+(x) of a simplex x ∈ G is defined as W+(x) =
{y ∈ G | x ⊂ y}. It contains also x. We think of it as the un-
stable manifold passing through x. Unlike the core simplicial com-
plex W−(x) = {y ∈ G | y ⊂ x}, the star is not a simplicial com-
plex in general. The core of x is the symplicial complex generated
by the simplex x. We can write L(x, y) = χ(W−(x) ∩ W−(y)) and
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ω(x) = χ(W−(x) ∩W+(x)) as W− ∩W+ = {x} is a set of sets with
only one element x which again is not a simplicial complex in general.

15.2. The Green functions, the entries of the inverse matrix g = L−1

have a similar formula. It generalizes the formula g(x, y) = ω(y) if y is
a subset of x.

15.3. The proof of the Green Star formula uses a simple lemma about
complete complexes. We use the notation x ∼ z if x and y intersect.

Lemma 13. If G is a complete complex with maximal simplex u and
x ∈ G, then ∑

z∈G,z∼x

ω(x)ω(z)ω(u) = δx,u .

Proof. If x = u, then the statement re-reads
∑

z,z∼x ω(x)ω(z) = ω(u)

which is trivial as ω(x) = ω(u) and
∑

z∈G ω(z) = 1 for a complete
complex.
if x 6= u, then this restarts as

∑
z∼x ω(z) = 0. This follows from∑

z ω(z) = 1 and
∑

z∩x=∅ ω(z) = 1. �

15.4. This implies for example that
∑

x,z∈G,x∼z ω(x)ω(z)ω(u) = 1 which

is a restatement that the Wu characteristic of G defined by ω(G) =∑
x∼y ω(x)ω(y) agrees with ω(u), if u is the maximal simplex in G. For

more on Wu characteristic, see [27, 34].

Proof. The Green star formula is equivalent to the following statements
about stars. From matrix multiplication Lg = 1 we have∑

z

L(x, z)ω(z)χ(W+(z) ∩W+(y)) = 0

if x 6= y and ∑
z

L(x, z)ω(z)χ(W+(z) ∩W+(x)) = ω(x) .

Using the notation z ∼ x if x ∩ z intersect. The first relation means
for x 6= y ∑

z∼x

ω(z)χ(W+(z) ∩W+(y)) = 0

and the second means∑
z∼x

ω(z)χ(W+(z) ∩W+(x)) = ω(x) .

We can rewrite the second statement as∑
u,x⊂u

∑
z⊂u,z∼x

ω(z)ω(x)ω(u) = 1 .
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By the above lemma, all terms with x 6= u do produce 0 and the
identity reduces to ∑

z⊂x

ω(z) = 1 .

Similarly, the first statement is for x 6= y∑
u,x⊂u

∑
z⊂u,z∼y

ω(z)ω(x)ω(u) = 0 .

This follows again from the above lemma, as u = y is prevented from
the assumption y 6= x and the lemma implies that for u 6= x∑

z⊂u,z∼y

ω(z) = 0 .

�

15.5. The diagonal entries of g are are genus of the unit spheres:

Corollary 8. g(x, x) = χ(W+(x)) = 1− χ(S(x)).

15.6. If we think of f(x) = dim(x) as a scalar function on the sim-
plicial complex G, then Poincaré-Hopf shows that every point x is a
critical point with index ω(x) and that f naturally is a Morse function.
The simplicial complex W−(x) is in this picture stable manifold of
the gradient flow and the star W+(x) the unstable manifold. The
sets W+(x)∩W+(y) and W−(x)∩W−(y) are then heteroclinic con-
nection points and W+(x) ∩ W−(x) are homoclinic connection
points. We see that the matrix entries of L and g are all given by Euler
characteristic values of homoclinic or heteroclinic connection sets. The
picture indicates that every finite abstract simplicial complex defines a
hyperbolic structure whose homoclinic and heteroclinic manifolds build
the connections.

15.7. Since χ(W−(x)) = 1 for all x and ω(x) = χ(W 0(x)), an elegant
symmetric description is

L(x, y) = χ(W−(x))χ(W−(y))χ(W−(x) ∩W−(y)) .

g(x, y) = χ(W 0(x))χ(W 0(y))χ(W+(x) ∩W+(y)) .

16. Footnotes

16.1. The results in this paper have appeared in previous research
notes. This is an attempt for a self-contained publishable write-up.
Theorem (1) was announced in the spring of 2016 and appeared first
in [28]. An important final step happened in November 2016 with the
multiplicative Poincaré-Hopf result. Theorem (2) is in [32], where the
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set of diagonal elements is outed as a combinatorial invariant as well
as [29], where the functional tr(L − g) is discussed. The arithmetic
is discussed in [31, 33]. The unimodularity theorem Theorem (1) has
been proven differently without the use of CW complexes in [44].

16.2. The name “energy” suggests itself from the fact that for any
Laplacian L, the entry g(x, y) = Vx(y) is the potential energy at y
if a mass has been placed at x so that the sum over all g(x, y) can be
seen as the total potential theoretical energy of G. For the Laplacian
L = −∆/(4π) on R3, the value Vy(x) = g(x, y) = |x − y|−1 is the
Newton potential of a mass point at y and

∫ ∫
|x− y|−1 dµ(x)dµ(y)

is the total energy of a measure µ. If µ is a mass density then
this is the classical total potential theoretic energy of the mass
configuration. In the case of a simplicial complex, we could look also
at the energy E(µ) =

∑
x

∑
y g(x, y)dµ(x)dµ(y) of a measure µ given

by a measure vector µ(x)x∈G with µ(x) ≥ 0. In our case, we look at
the uniform measure giving every simplex the same weight 1.

16.3. The definition of a CW-complex could be generalized by using
“homotopic to K1” instead of contractible. But this would complicate
proofs. Examples, where contractibility does not agree with “homo-
topic to K1” is the dunce hat or the Bing house. It has a relation
with shellability, the property that G is pure of some dimension d and
that there is an ordering x1, · · · , xn of maximal d-simplices such that
the complex generated by x1, . . . xk intersected with the complex gener-
ated by xk+1 is a (d−1)-dimensional shellable complex. An elegant gen-
eralization which avoids discrete homotopy is to build CW-complexes
in which one replaces spheres by Dehn-Sommerville complexes,
complexes for which the f -function fG(t) = 1 + f0t+ f1t

2 + · · ·+ fdt
d+1

has the property that f(t − 1/2) is even for even d and odd for odd
d. There is a class of Whitney complexes defined recursively as graph
sets X−1 = {0}, Xd = {G | χ(G) = 1 + (−1)d and S(x) ∈ Xd−1}
which are all Dehn-Sommerville as a consequence of Gauss-Bonnet
fG(t) = 1 +

∑
x FS(x)(t), where FG(t) is the anti-derivative of fG(t).

The energy theorem generalizes to this class of CW complexes because
the multiplicative Poincaré-Hopf theorem works there.

16.4. The development of the notion of a manifold [49] is closely re-
lated to combinatorial structures built by Van Kampen, H. Weyl [52]
(page 10) or J.H.C. Whitehead, who also happend to introduce CW
complexes. The story of CW complexes starts with Ehresmann (1933)
and is linked to algebraic developments [9]. The papers of Whitehead
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[53] from 1939 to 1941 established that CW complexes have nice homo-
topy properties. The definition of discrete CW complexes was done to
prove unimodularity [28]. It depends on the combinatorial definition of
what a ”sphere” is. Already van Kampen did such constructs in 1929.
A subclass of CW complexes is the strong ring generated by simpli-
cial complexes [33]. The strong ring is isomorphic to a subring of the
Sabidussi ring [48] and can be seen as a subring of a general algebraic
Stanley-Reisner ring construction [51]. The strong ring is a category of
objects where Gauss-Bonnet, Brouwer-Lefshetz fixed point theory [25],
Euler-Poincare, arithmetic compatibility with the spectrum and that
the energy theorem works and that energy is a ring homomorphism on
the strong ring.

16.5. Abstract simplicial complexes and graphs have been close to
each other already in the context of graph coloring and topological
graph theory as in [12]. Many mathematicians, in particular Poincaré,
Birkhoff or Whitney worked both in discrete settings as well as using
continuum topology. Graphs are still less used in topology, maybe
because “the origins of graph theory are humble, even frivolous” to
quote [45]. An other reason is that graphs often are treated as 1-
dimensional simplicial complexes and are not equipped with more
powerful simplicial complexes like the clique complex. Ivashchenko [17]
translated Whitehead’s homotopy notion into concrete procedures in
graph theory. It has been simplified in [6] which is the version we use
and which is crucial for defining ”sphere” combinatorially.

16.6. Combinatorial definitions and characterizations of spheres were
looked for already in [52]. One can define a “sphere” using Morse theory
as classically spheres are spaces on which the minimal number of critical
points of a Morse function is two. These things are mostly equivalent
[39]. The Morse approach is used in Forman’s discrete Morse theory [10]
and based on the classical Reeb sphere theorem characterizing spheres
as manifolds for which the minimal number of critical points is 2. An
important property of spheres are Dehn-Sommerville relations which
imply f(x−1/2) being either even or odd allowing to look at geometries
where the Dehn-Sommerville spaces replace spheres. It is natural as
both Dehn-Sommerville spaces as well as spheres are invariant under
the join operation. See [36].

16.7. The first definition of abstract simplicial complexes was given
in 1907 by Dehn and Heegaard (see [5]). First attempts to define dis-
crete manifolds go back to Tietze in 1908. More work was done by
Brouwer, Steinitz, Veblen, Weyl and Kneser. The first textbook in
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which abstract simplicial complexes were used heavily and stressed is
[1], a book first published in 1947. Alexandroff calls a simplicial com-
plex an “unrestricted skeleton complex” and an arbitrary set of finite
sets is called there a skeleton complex. The notion of simplicial
complex is still mostly used in Euclidean settings like in [14], but ab-
stract simplicial complexes have entered modern topology textbooks
like [50, 42] of [40]. Its use was amplified with the emergence of sim-
plicial sets, which generalize simplicial complexes. In [42], also the
join of two simpicial complexes is defined. The analogue definition for
graphs origins from Zykov [54]. Many examples simplicial complexes
in graphs are covered in [18]. It uses a notion of abstract simplicial
complex in which empty sets (the ”void”) is present. (This is for ex-
ample used in [51]). This leads to reduced f-vectors (f−1, f0, . . . )
with f−1 = 1 and reduced Euler characteristic χ(G) − 1 used in
enumerative combinatorics [51].

16.8. Notions of shellability which are related to homotopy came
only later. Bruggesser and Mani [4] in 1971 gave the first recursive
combinatorial definition. They cite Rudin’s paper [47] who calls a tri-
angulation of a space shellable if there exists an ordering of the maximal
simplices such that during the build up, the complexes G0, G1, . . . are
all homeomorphic to G. Rudin cites D.E. Sanderson, a paper from 1957
who calls a d-manifold with boundary shellable if there is an ordered
cellular decomposition into d-cells with disjoint interior such that Xk

intersected with the boundary Gk−1 is homeomorphic to a (d− 1)-cell.
Also this definition makes uses of homeomorphism and so Euclidean
embeddings. Sanderson actually works with what we today call the PL
manifolds and shows that for any triangulation, there is as a shellable
subdivision. The Sanderson paper cites a paper of R.H. Bing from
1951 who looks at a ”partitioning” into mutually exclusive open sets
in Euclidean space whose sum is dense. If Gk is an ordered sequence of
these sets, then Gk intersected with Xk+1 is a connected set. The Bing
house can be thickened and triangulated to be unshellable even so the
thickened house is a 3-ball.

16.9. Green’s functions are ubiquitous in mathematical physics. When-
ever there is an operator H serving as a Laplacian, then g(x, y) are the
matrix entries of the inverse of H. The entries g(x, x) usually do not
exist, like for −∆/(4π) on R3, where g(x, y) = |x − y|−1 is the New-
ton potential. One looks therefore at the inverse gλ(x, y) of H − λ,
where λ ∈ C is a parameter. Now, λ → gλ(x, y) is analytic outside
the spectrum of H. The diagonal Green’s function λ → gλ(x, x) is a
Herglotz function if H was self-adjoint. While for real λ, this might not
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exist, one can look at limits like the Krein Spectral shift ξ(x, λ) =
limε→0 arg(gλ+iε(x, x)) which exist for almost all λ [11]. If operator val-
ued random variables are used, the limit of the expectation of gλ+iε of-
ten exists almost everywhere and encodes the derivative of a Lyapunov
exponent and its conjugate, the density of states. In one-dimensional
Schrödinger setups, one has gλ(x, x) = 1/(m+(x, λ)−m−(x, λ)), where
m± are Oseledec spaces. The unboundedness of g is reflected in non-
uniform hyperbolicity of the cocycle dynamics, for which stable and
unstable directions can get arbitrarily close. In the current discrete
setting, where for λ = 0 things stay bounded, we don’t have techni-
cal difficulties and Green’s functions given by topological “curvatures”
g(x, x) are bounded. We are in a uniformly hyperbolic situation.

16.10. Classically, if we have a hyperbolic fixed point x of a trans-
formation or a hyperbolic equilibrium point of a flow on a n-dimensional
Riemannian manifold M , then a theorem of Grobman-Hartman-
Sternberg assures the existence of stable and unstable manifoldsW±(x)
passing through x. If we take a small geodesic sphere S(x) around x,
then S±(x) = S(x)∩W±(x) are (k− 1)− and (d− k− 1)-dimensional
spheres and also classically S(x) = S+(x)+S−(x), where + is the join.
We can see the decomposition of a sphere S(x) into a join of of a stable
and unstable part as such a hyperbolic structure for the gradient flow
of the dimension functional f(x) = dim(x) on G. Every x ∈ G is a
critical point. If we look at the Morse cohomology on the Barycentric
refinement of this complex, we get the original simplicial cohomology.
The fact that simplicial cohomology does not change under Barycentric
refinement can be seen as a simple example where Morse and simpli-
cial cohomology agree in a discrete setting. We must stress however
that this equivalence holds in the discrete for any simplicial complex
G. There is no discrete manifold structure required.

16.11. The total energy
∑

x,y g(x, y) is the discrete analogue of clas-
sical energies in potential theory. In dimension d > 2, the Newton
potential in Rd is g(x, y) = |x − y|2−d. The prototype is the scalar
Laplacian L = −∆/(4π) in R3. The Gauss law Lf = ρ reproduces via
the divergence theorem the Newton law, the inverse square law of grav-
ity or electro statics. Gauss noticed that g(x, y) = 1/|x−y|, explaining
gravity. But the Gauss discovery allows also to define Newton’s law on
any space equipped with a Laplacian. The two dimensions, the Lapla-
cian −∆/(2π) on R2 gives the Green’s function g(x, y) = − log |x− y|
and −

∫ ∫
log |x − y| dµ(x)dµ(y) is the logarithmic energy which can

also be finite for singular measures like measures located on Julia sets.
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For discrete measures µ, one can disregard selfinteraction and get the
logarithm of van der Monde determinant. The one-dimensional case
−∆/2 = d2/2dx2 with g(x, y) = |x− y| is used in statistics. Its energy
I(µ) =

∫
R

∫
R |x − y|dµ(x)dµ(y) is the Gini energy or Gini coeffi-

cient. It plays a role in statistics, where µ is the law of a random
variable. Discrete Green functions in graph theory were studied in [7]
and appear naturally in any Markov setting. Let us mention that for
the Hodge Laplacian H = (d+d∗)2, whose inverse h on the ortho com-
plement of harmonic functions is defined (which is called the pseudo
inverse), we have no interpretation of the total energy

∑
x,y h(x, y) yet.

There might be no natural one.

16.12. Discrete curvatures have first appeared in graph coloring con-
texts [3] but only in a two-dimensional setup. See [15]. The discrete
Gauss-Bonnet theorem is different from Gauss-Bonnet theorems for
polyhedra where excess angles matter (see e.g. [46]). An attempt to
produce a discrete second order curvature worked in the simplest Hopf
Umlaufsatz situation [21]. After working on this more [22, 20] and inte-
gral theoretic results [23, 26] (where the later are discrete analogues of
Banchoff theorems [2]) the situation is transparent: any deterministic
or random diffusion process can be used to disperse the original cur-
vatures ω(x) on simplices to the zero dimensional part. If done in the
most symmetric way to the nearest zero dimensional point one gets the
Levitt curvature K(x) [41]. If done along the gradient of a function f
one gets Poincaré-Hopf. An example was f = −dim, where the curva-
ture is k(x) = ω(x)(1− χ(S(x))) we have seen here. If the diffusion is
done on the right scale together with adapted Barycentric refinements,
one expects to get the Euler curvature in a Riemannian manifold limit.

16.13. The energy theorem is part of a story in arithmetic: there is a
ring Q of finite simple graphs which after taking graph complements
becomes a ring Q. Now, if we look at the strong ring generated by sim-
plicial complexes, the corresponding connection graphs define a subring
Q on which Euler characteristic is by the energy theorem given as a
sum of matrix inverse elements. The ring Q has a representation in
a matrix tensor ring. Every element in Q is represented by a matrix,
the connection Laplacian of its graph complement. We can so attach
a spectrum σ(G) of a ring element in Q. Under addition, the spectra
add, under multiplication, the spectra multiply. The same happens
with Euler characteristic. The upshot is that every generalized ratio-
nal number, an element x in Q defines a particle system to which we
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can attach an Euler characteristic χ(x) which is a total potential en-
ergy of the complex x and also attach a matrix L(x) whose spectrum
is compatible with the ring operation.

16.14. There are many open questions. We would like to know about
energy moments like

∑
x,y g(x, y)3 for example. It appears often to be

an integer multiple of the energy
∑

x,y g(x, y). While we know g(x, x) =

1−χ(S(x)) and that the set of these diagonal entries are a combinatorial
invariant in the sense that the set is stable already after one Barycentric
refinement of a complex we don’t have an interpretation for k-moments∑

x,y g(x, y)k of the energy yet. Especially interesting looks the variance∑
x,y(g(x, y) −m)2/n2, where m = χ(G)/n2 is the expectation of the

matrix entries of g. It is a measure for the energy fluctuation in the
complex. Having developed parametrized versions of Gauss-Bonnet
[36] and Poincaré-Hopf [38] more recently, there is also a parametrized
version of the energy theorem in which the Euler characteristic f0 −
f1 + f2 − . . . is replaced with f -functions f(t) = 1 − f0t + f1t

2 − · · · .
The energy theorem then tells that the sum of the matrix entries of
the inverse g is the f function of G.

16.15. An inverse spectral problem is to hear the Euler characteristic
of G from the spectrum σ(H). We use H = (d+d∗)2 = dd∗+d∗d, where
d : Λk → Λk+1 is the exterior derivative, where Λk is the fk-dimensional
space of discrete k-forms, functions on k-dimensional oriented simplices
of G. The matrices H and L are both n×n matrices if G has n elements.
If G is one-dimensional, then L − L−1 is similar to H [35]. This even
holds for products of one-dimensional spaces. One can even hear the
Betti numbers of a Barycentric refined G from H or L as b0 is the
number of eigenvalues 1 and b1 is the number of eigenvalues −1 of L.
In dimension 2 or higher, one can not hear the Betti numbers bk of G
from the spectrum σ(L) of L in general but it is conceivable that this
could be true for Barycentric refinements.
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