Computing the Hilbert Class Polynomial Using p-adic Lifting

Juliana V. Belding

Department of Mathematics
Harvard University

S.T.A.G.E. at MIT
May 11, 2009
Outline

The class polynomial H_K of a quadratic imaginary field
Definitions and Notation
Computing $H_K(X)$

p-adic method for computing H_K
The Canonical Lift
The Supersingular Case: p inert in K

A p-adic algorithm to compute the canonical lift for p inert in K
The case of $j = 0, 1728$
The Legendre form of an elliptic curve
The p-adic analytic map ρ_α
Example of algorithm, $p = 7, D = -23$

Algorithms to compute $H_K(X)$
p-adic algorithm for p inert in K
Comparison of Algorithms
Complex Multiplication

- K, a quadratic imaginary field of discriminant $D < 0$.
- \mathcal{O}_K, the ring of integers of K
- E, an elliptic curve over \mathbb{C}
- $\text{End}(E)$, the ring of endomorphisms $E \to E$
- $j(E)$, the j-invariant of E (classifies E up to isomorphism)

Definition

If $\text{End}(E) \simeq \mathcal{O}_K$, then E has complex multiplication (CM) by \mathcal{O}_K.

Fact

$j(E)$ is an algebraic integer.
The class polynomial \(H_K \) of a quadratic imaginary field

\(p \)-adic method for computing \(H_K \)

A \(p \)-adic algorithm to compute the canonical lift for \(p \) inert in \(K \)

Algorithms to compute \(H_K(X) \)

Definitions and Notation

Computing \(H_K(X) \)

Algorithms to compute \(H_K(X) \)

Definitions and Notation

The Hilbert class polynomial of \(K \)

Goal: Compute the Hilbert class polynomial of \(K \), the polynomial \(H_K(X) \in \mathbb{Z}[X] \) whose roots are exactly the \(j \)-invariants of curves with CM by \(\mathcal{O}_K \).

- **Cryptography:** \(H_K(X) \) can be used to construct elliptic curves with a prescribed number of points over a finite field.

- **Explicit Class Field Theory:** \(H_K(X) \) is a minimal polynomial of the Hilbert class field of \(K \), the maximal abelian unramified extension of \(K \).
The Hilbert class field of K

- $I(\mathcal{O}_K)$, the group of ideals of \mathcal{O}_K
- $P(\mathcal{O}_K)$, the subgroup of principal ideals.
- $\text{Cl}(\mathcal{O}_K) = I(\mathcal{O}_K)/P(\mathcal{O}_K)$ is the class group of K
- $h_K = \#\text{Cl}(\mathcal{O}_K)$

Definition

The *Hilbert class field* $H_{\mathcal{O}_K}$ of K is the algebraic extension of K with $\text{Gal}(H_{\mathcal{O}_K}/K) \simeq \text{Cl}(\mathcal{O}_K)$ via the Artin map.

Fact

*There is a transitive and free action of $\text{Cl}(\mathcal{O}_K)$ on the set of j-invariants of curves with CM by \mathcal{O}_K.***
Example: $D = -23$

- $\mathcal{O}_K = \mathbb{Z}[\tau]$ where τ is a root of $X^2 - X + 6$
- $\text{Cl}(\mathcal{O}_K) = \langle a \rangle$ is order 3 where
 \[a = (3, 1 + 2\tau) \]

and

\[a^3 = (1 + 2\tau) \]

The action of a gives

\[E_1 = \mathbb{C}/a^2 \longrightarrow E_2 = \mathbb{C}/a \longrightarrow E_3 = \mathbb{C}/\mathcal{O}_K \longrightarrow \mathbb{C}/a^{-1} \approx E_1 \]

The j-invariant of each curve is a root of $H_{-23}(X)$:

\[X^3 + 3491750X^2 - 5151296875X + 12771880859375 \]
How “big” is H_K?

- Degree of $H_K(X)$ is $h_K = \tilde{O}(\sqrt{|D|})$
- Coefficients of $H_K(X)$ are integers $\leq C = \tilde{O}(\sqrt{|D|})$ decimal digits.
- So $\tilde{O}(|D|)$ to write down and store $H_K(X)$

General approach: Compute roots j_i to C digits accuracy and expand

$$h_K \prod_{i=1}^{h_K} (X - j_i)$$

Time to expand:

$$O(|D| \log |D|^{3+\epsilon})$$
Complex analytic algorithm

1. View each ideal as a lattice \(\mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \)

\[\mathcal{O}_K = \mathbb{Z} + \tau\mathbb{Z}, \quad a = 3\mathbb{Z} + (1 + 2\tau)\mathbb{Z}, \quad a^2 = 9\mathbb{Z} + (4 + 8\tau)\mathbb{Z} \]

2. Use the function \(j(z) : \mathcal{H} \rightarrow \mathbb{C} \) to compute \(j_i = j(\omega_1/\omega_2) : \)

\[
\begin{align*}
 j(\mathcal{O}_K) &= -3493225.6999699... \\
 j(a) &= 737.84998496668... - 1764.018938612i \\
 j(a^2) &= 737.84998496668... + 1764.018938612i
\end{align*}
\]

...to sufficient accuracy.
Complex analytic method, con’t.

3. Expand

\[h_K \prod_{i=1}^{h_K} (X - j_i) \]

and recognize coefficients as integers:

\[X^3 + 3491750X^2 - 5151296875X + 12771880859375 \]
Complex analytic method, con’t.

- Complex Analytic Method (Enge, 2006) has
 \[O(|D| \log |D|^{5+\epsilon}) \]
 This is deterministic but...
- **Drawback:** Round-off error when multiplying/adding in \(\mathbb{C} \)
- **Fact:** No round-off error when multiplying or adding \(p \)-adic integers...
- **Couveignes-Henocq (2002):** Compute roots \(p \)-adically.
p-adic Method

1. Compute a single root \tilde{j} of $H_K(X)$ to sufficient accuracy.
2. Compute the action of $\text{Cl}(\mathcal{O}_K)$ on \tilde{j}:

$$\tilde{j} \mapsto \tilde{j}^a$$

to obtain the other roots.
3. Expand

$$\prod_{a \in \text{Cl}(\mathcal{O}_K)} (X - \tilde{j}^a)$$

and recognize coefficients as integers.

Q: How to compute \tilde{j}?
Complex multiplication in characteristic p

- \mathfrak{p}, a prime above p in the field $H_{\mathcal{O}_K}$
- E, a curve with CM by \mathcal{O}_K and good reduction modulo \mathfrak{p}
- $E_\mathfrak{p}$, the reduction of E

Fact

Reduction modulo \mathfrak{p} induces an embedding

$$f : \text{End}(E) \simeq \mathcal{O}_K \hookrightarrow \text{End}(E_\mathfrak{p})$$
The class polynomial H_K of a quadratic imaginary field
p-adic method for computing H_K
A p-adic algorithm to compute the canonical lift for p inert in K
Algorithms to compute $H_K(X)$

The Canonical Lift
The Supersingular Case: p inert in K

The canonical lift of (E_p, f)

- E_p, a curve over $\overline{\mathbb{F}}_p$
- $f : \mathcal{O}_K \hookrightarrow \text{End}(E_p)$, an embedding

Definition
The *canonical lift* of (E_p, f) is the curve \tilde{E} defined over $H_{\mathcal{O}_K}$ such that
- $E_p \equiv \tilde{E} \mod p$
- $\text{End}(\tilde{E}) \hookrightarrow \text{End}(E_p)$ is precisely f.

By the *Deuring Lifting Theorem*, the curve \tilde{E} exists and is unique up to isomorphism.
Outline of p-adic method (Couv.-Hen.)

- \tilde{E}, the canonical lift of (E_p, f)
- D_j, open p-adic disc radius one in \mathbb{C}_p centered at \tilde{j}

1. Define a p-adic analytic map with \tilde{j} as a fixed point:
 For $(\alpha) \in Cl(\mathcal{O}_K)$,
 \[\rho_\alpha : D_{\tilde{j}} \rightarrow D_{\tilde{j}}\]
 depends on the action of $Cl(\mathcal{O}_K)$ on CM points.

2. Use Newton's method to compute the unique root of
 \[\rho_\alpha(X) - X\]
 in D_j to sufficient accuracy.
Two cases for p-adic method

Case 1: p splits principally in K
- The smallest such prime p is at least $|D|/4$
- Bröker (2006) Runtime: $O(|D| \log |D|^{6+\epsilon})$ (under GRH)

Case 2: p inert in K
- Smallest such prime p is $< O((\log |D|)^2)$ (under GRH)

Key: Computing action of $Cl(\mathcal{O}_K)$ modulo p and lifting to char 0
Case 1: p splits principally in K

- H_{O_K} embeds into \mathbb{Q}_p
- E_p is ordinary and defined over \mathbb{F}_p
- $\text{End}(E_p) \simeq O_K$
- f is an isomorphism: $f : \text{End}(E) \xrightarrow{\sim} \text{End}(E_p)$

There is a one-to-one correspondence: (up to \simeq of curves)

\[
\tilde{E}/\mathbb{Q}_p \leftrightarrow E_p/\mathbb{F}_p \\
\text{End}(\tilde{E}) \simeq O_K \quad \text{End}(E_p) \simeq O_K
\]
Case 2: p is inert in K

- $H_{\mathcal{O}_K}$ embeds into F, the degree 2 unramified extn. of \mathbb{Q}_p
- E_p is supersingular and defined over \mathbb{F}_p^2
- $\text{End}(E_p)$ is a maximal order in the quaternion algebra $\mathcal{A}_{p,\infty}$
- f is an embedding: $f : \text{End}(E) \hookrightarrow \text{End}(E_p)$

There is a one-to-one correspondence:

\[
\begin{align*}
\tilde{E}/F & \leftrightarrow E_p/\mathbb{F}_p^2 \\
\text{End}(\tilde{E}) & \simeq \mathcal{O}_K \\
f : \mathcal{O}_K & \hookrightarrow \text{End}(E_p)
\end{align*}
\]

up to isomorphism of curves and up to conjugation of embeddings by automorphisms.
Example: $p = 7$

- There is a unique class of supersingular curves E_p over \mathbb{F}_p^2:
 \[
y^2 = x^3 + x
 \]
 with $j(E_p) = 1728 = 6$.

- $A_{p, \infty} = \mathbb{Q}[i, j, k]$ with
 \[
i^2 = -1, j^2 = -7, ij = k, ij = -ji.
 \]

- $\text{End}(E_p) \cong \mathbb{Z}[i, (i + k)/2, (1 + j)/2]$

- $\text{Aut}(E_p) \cong \{ \pm 1, \pm i \}$

If p is inert in K, E with CM by \mathcal{O}_K reduces mod p to $\cong E_p$ and there is an embedding $\mathcal{O}_K \hookrightarrow \text{End}(E_p)$.
Example: $p = 7, D = -23$

- $\mathcal{O}_K = \mathbb{Z}[\tau]$ where τ is a root of $X^2 - X + 6$
- \mathcal{O}_K embeds into $\text{End}(E_p)$ in three ways

\[
\begin{align*}
f_1 : \quad \tau & \mapsto 1/2 - 3i/2 + j/2 - k/2 \\
f_2 : \quad \tau & \mapsto 1/2 - 3i/2 + j/2 + k/2 \\
f_3 : \quad \tau & \mapsto 1/2 + 2i - j/2
\end{align*}
\]

up to conjugation by units of $\text{End}(E_p)$.

- Each pair (E_p, f_i) corresponds uniquely to root of $H_{-23}(X)$:

\[
X^3 + 3491750X^2 - 5151296875X + 12771880859375
\]
Main difference in the supersingular case, I

In both cases,

- The map ρ_α uses the action of $Cl(\mathcal{O}_K)$ on pairs

 $$(E_p, f) \mapsto (E_p^\alpha, f^\alpha)$$

- The subgroup $E_p[a] := \bigcap_{\alpha \in a} \ker(\alpha)$ defines an isogeny

 $\varphi : E_p \longrightarrow E_p/E_p[a]$.

- $f^\alpha(\tau)$ is $\varphi \cdot \tau \cdot \varphi^{-1}$
Main difference in the supersingular case, I

Difficulty: Unwieldy to explicitly compute $f \mapsto f^a$

Solution: Compute the action in the quaternion algebra $\mathcal{A}_{p,\infty}$

- Determine right-isomorphism of left ideal classes of maximal order $R \simeq \text{End}(E_p)$:

 Eg: $p = 7$

 \[
 R^a \simeq Rx
 \]

 \[
 f^a(\tau) = x \cdot \tau \cdot x^{-1}
 \]

- “Translate" back to $\text{End}(E_p)$ using basis of small degrees endomorphisms
Main difference in the supersingular case, II

- The curves with $j = 0, 1728$ may be supersingular.
- **Difficulty:** \(\tilde{j} \) not sufficient to determine canonical lift of \((E_p, f)\) due to extra automorphisms.
- **Solution:** Use *Legendre form* of an elliptic curve:

\[
y^2 = x(x - 1)(x - \lambda).
\]
The issue for \(j = 0, 1728 \)

- \(\tilde{j} \), the \(j \)-invariant of the canonical lift of \((E_p, f)\)
- \(\tilde{E}_1 \), a canonical lift of \((E_p, f)\)
- \(\tilde{E}_2 \), another curve with \(j \)-invariant \(\tilde{j} \) reducing to \(E_p \)

\[
\begin{array}{ccc}
\tilde{E}_1 & \xrightarrow{h} & \tilde{E}_2 \\
\downarrow & & \downarrow \\
(E_p, f) & \xrightarrow{\tilde{h}} & (E_p, \tilde{h}f\tilde{h}^{-1})
\end{array}
\]

Note: \(\tilde{h} \) is an automorphism of \(E_p \).
The class polynomial H_K of a quadratic imaginary field
p-adic method for computing H_K
A p-adic algorithm to compute the canonical lift for p inert in K
Algorithms to compute $H_K(X)$

The case of $j = 0, 1728$
The Legendre form of an elliptic curve
The p-adic analytic map $ρ_α$
Example of algorithm, $p = 7, D = −23$

$j(E_p) = 0$ or 1728

- The automorphism \bar{h} may be non-trivial.
- Then $\bar{h}f\bar{h}^{-1}$ and f are not the same embeddings.
- \tilde{E}_2 is not a canonical lift of (E_p, f)
- **Upshot:** The j-invariant \tilde{j} not sufficient to determine a canonical lift of (E_p, f).

Note: If $p \not\equiv 1 \mod 12$, then curves over \mathbb{F}_p^2 with $j = 0$ and/or 1728 are supersingular.
Example: $p = 7, D = -23$

- $E_p : y^2 = x^3 + x$
- $f : \mathcal{O}_K \leftrightarrow \text{End}(E_p)$

\[\tilde{E}_1 : y^2 = x^3 + Ax + B \] \[\tilde{E}_2 : y^2 = x^3 + Ax - B \]

(x, y) \mapsto $(-x, iy)$

- Exactly one of \tilde{E}_1, \tilde{E}_2 is a canonical lift of (E_p, f).
- Determining which one is key to computing action, i.e. ρ_α

Solution: Work with an equation for E which removes the ambiguity of extra automorphisms.
The Legendre form of an elliptic curve

Definition

Let \mathbb{K} be any field not of characteristic two. For $\lambda \in \mathbb{K}$, with $\lambda \neq 0, 1$, the curve

$$L : y^2 = x(x - 1)(x - \lambda)$$

is an elliptic curve in **Legendre form**.

- $j(L) = 2^8 \frac{(\lambda^2 - \lambda + 1)^3}{\lambda^2(\lambda - 1)^2}$
- The two-torsion of L is $L[2] = \{(0,0), (1,0), (\lambda,0), P_\infty\}$
The Legendre form and two-torsion

- E, any curve over \mathbb{K}
- (P, Q), an ordered basis of $E[2]$

Let

$$\lambda = \frac{x(P + Q) - x(P)}{x(Q) - x(P)}.$$

There is a unique isomorphism (up to ± 1)

$$E \longrightarrow L : y^2 = x(x - 1)(x - \lambda)$$

sending (P, Q) to $(0, 0), (1, 0)$.
The modular function λ

- E, any curve over \mathbb{K}
- (P, Q), an ordered basis of $E[2]$

The moduli space $Y(2)$ consists of equivalence classes $[E, (P, Q)]$

The modular function λ is

$$\lambda : Y(2) \longrightarrow \mathbb{K}$$

$$[E, (P, Q)] \mapsto \lambda$$

where

$$\lambda = \frac{x(P + Q) - x(P)}{x(Q) - x(P)}.$$
The Legendre form

The map $\lambda \mapsto j$ is degree six.

- $N = \# \text{ distinct curves in Legendre form isomorphic to } E$
- $A = \# \text{Aut}(E)/\{\pm 1\}$

<table>
<thead>
<tr>
<th>$j(E)$</th>
<th>N</th>
<th>A</th>
<th>char K</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\neq 0, 1728$</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1728</td>
<td>3</td>
<td>2</td>
<td>$K \neq 3$</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>3</td>
<td>$K \neq 3$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>6</td>
<td>$K = 3$</td>
</tr>
</tbody>
</table>

For each equivalence class of embeddings $\mathcal{O}_K \hookrightarrow \text{End}(E_p)$, there are $N \cdot A = 6$ distinct pairs (L_p, f) with L_p isomorphic to E and f an embedding into $\text{End}(L_p)$.
The class polynomial H_K of a quadratic imaginary field p-adic method for computing H_K
A p-adic algorithm to compute the canonical lift for p inert in K
Algorithms to compute $H_K(X)$

The case of $j = 0, 1728$
The Legendre form of an elliptic curve
The p-adic analytic map ρ_α
Example of algorithm, $p = 7, D = -23$

Upshot:

There is a one-to-one correspondence:

\[
\tilde{L}/F \leftrightarrow L_p/F_p^2
\]

End(\tilde{L}) $\simeq \mathcal{O}_K$

$f : \mathcal{O}_K \hookrightarrow \text{End}(L_p)$

Definition

The \textit{canonical lift of} (L_p, f) \textit{is the curve} \tilde{L} \textit{reducing to} L_p \textit{with induced embedding} $f : \text{End}(\tilde{L}) \hookrightarrow \text{End}(L_p)$.

Note: The curve \tilde{L} is \textit{unique}.

Idea: Compute canonical lift $\tilde{\lambda}$ of (L_p, f), then compute \tilde{j}.

Action of $\text{Cl}_2(\mathcal{O}_K)$ on CM curves in Legendre form

- $l_2(\mathcal{O}_K)$, the group of ideals of \mathcal{O}_K prime to (2).
- $P_{2,1}(\mathcal{O}_K)$, principal ideals (α) with $\alpha \equiv 1 \mod 2\mathcal{O}_K$
- $\text{Cl}_2(\mathcal{O}_K) = l_2(\mathcal{O}_K)/P_{2,1}(\mathcal{O}_K)$

Definition

The *ray class field of K of conductor 2* is the unique abelian extension R with $\text{Gal}(R/K) \cong \text{Cl}_2(\mathcal{O}_K)$ via the Artin map.
The λ-invariant of a curve with CM by \mathcal{O}_K

Fact

The λ-invariant of a curve with CM by \mathcal{O}_K generates the ray class field R of conductor 2 over K:

$$R = K(\lambda).$$

Key: Use action of $Cl_2(\mathcal{O}_K)$ on the set of curves in Legendre form with CM by \mathcal{O}_K.

The case of $j = 0, 1728$

The Legendre form of an elliptic curve

The p-adic analytic map ρ_α

Example of algorithm, $p = 7, D = -23$
Action of $Cl_2(O_K)$ on CM curves in Legendre form

- α, an ideal of O_K prime to (2)
- L, curve over F with $\text{End}(L) \simeq O_K$

The subgroup

$$L[\alpha] := \bigcap_{\alpha \in \alpha} \ker(\alpha).$$

defines an isogeny

$$L \longrightarrow E = L/L[\alpha].$$
Action of $\text{Cl}_2(\mathcal{O}_K)$ on CM curves in Legendre form, con’t

Define L^α to be the curve with $\lambda = \lambda([E, (P, Q)])$.

\[
\begin{align*}
L & \xrightarrow{\alpha} E = L/L[\alpha] \xrightarrow{\sim} L^\alpha \\
((0, 0), (1, 0)) & \mapsto (P, Q) \mapsto ((0, 0), (1, 0))
\end{align*}
\]

Note: If $\alpha = (\alpha)$ is principal with $\alpha \equiv 1 \mod 2$, then α is an endomorphism of L which fixes the two-torsion. Thus

\[L^\alpha = L.\]
Action of $\text{Cl}_2(\mathcal{O}_K)$ modulo p

Let \tilde{L} be the canonical lift of (L_p, f).

$$
\begin{array}{cccc}
\sim & \quad \sim \\
\downarrow & \quad \downarrow & \quad \downarrow \\
(L_p, f) & E_p = L_p/L_p[f(\alpha)] & (\tilde{L})^a & (L_p^a, f^a)
\end{array}
$$

- The kernel of the isogeny of L_p is determined by f

$$
L_p[f(\alpha)] := \bigcap_{\alpha \in \mathfrak{a}} \ker f(\alpha).
$$

- $(\tilde{L})^a$ is the canonical lift of (L_p^a, f^a).
Lifting the action to non-CM curves

For any lift L/F of L_p, the kernel $L_p[f(a)]$ lifts uniquely

$$L \leftarrow \circlearrowright \ L[a]$$

$$L_p \leftarrow \circlearrowright \ L_p[f(a)]$$

This determines an isogeny

$$L \xrightarrow{\alpha} E = L/L[a] \xrightarrow{\sim} L^a$$

and we define

$$\rho_a(\lambda(L)) := \lambda(L^a).$$
The map ρ_α

If $\alpha = (\alpha)$ is in $P_{2,1}(\mathcal{O}_K)$ and \tilde{L} is a canonical lift of (L_p, f) then $\tilde{L}[\alpha]$ is the kernel of an endomorphism of \tilde{L} fixing $\tilde{L}[2]$:

$$
\begin{array}{c}
\tilde{L} \\
\downarrow \\
L_p
\end{array} \xrightarrow{\alpha} \begin{array}{c}
\tilde{L}/\tilde{L}[\alpha] \\
\downarrow \\
L_p/L_p[\alpha]
\end{array} \simeq \begin{array}{c}
\tilde{L} \\
L_p
\end{array}
$$

So

$$\rho_\alpha(\tilde{\lambda}) = \tilde{\lambda}.$$
The class polynomial H_K of a quadratic imaginary field
p-adic method for computing H_K
A p-adic algorithm to compute the canonical lift for p inert in K
Algorithms to compute $H_K(X)$

The case of $j = 0, 1728$
The Legendre form of an elliptic curve
The p-adic analytic map ρ_α
Example of algorithm, $p = 7, D = -23$

The map ρ_α

Upshot
Lifting the action of $Cl_2(\mathcal{O}_K)$ in characteristic p defines a map

$$\rho_\alpha : D_{\tilde{\lambda}} \longrightarrow D_{\tilde{\lambda}}$$

where

- $\alpha \in \mathcal{O}_K$ with $\alpha \equiv 1 \mod 2$ and norm prime to p
- $D_{\tilde{\lambda}}$, open p-adic disc radius one around $\tilde{\lambda}$ ($D_{\tilde{\lambda}} = D_{\lambda_p}$)
- $\tilde{\lambda}$ is a fixed point
The map ρ_{α}

Theorem

1. The map ρ_{α} is p-adic analytic in the disc $D_{\tilde{\lambda}}$. That is, there exist p-adic integers a_i such that

 $$\rho_{\alpha}(\lambda) - \tilde{\lambda} = \sum_{i \geq 1} a_i(\lambda - \tilde{\lambda})^i,$$

 for all $\lambda \in D_{\tilde{\lambda}}$.

2. The derivative of ρ_{α} at the point $\lambda = \tilde{\lambda}$ is $\alpha / \bar{\alpha}$.

So we can use Newton’s method...
Newton’s method

- Assume $\alpha/\bar{\alpha} - 1$ is a p-adic unit
- Choose $\lambda_0 \in D_{\tilde{\lambda}}$, a one digit approx. to $\tilde{\lambda}$

Let

$$\lambda_{k+1} = \lambda_k - \frac{\rho_\alpha(\lambda_k) - \lambda_k}{\alpha/\bar{\alpha} - 1}.$$

The sequence $\{\lambda_k\}$ converges quadratically to $\tilde{\lambda}$.

Note: λ_{k+1} is a 2^{k+1} digit approximation to $\tilde{\lambda}$.

The class polynomial H_K of a quadratic imaginary field

A p-adic method for computing H_K

A p-adic algorithm to compute the canonical lift for p inert in K

Algorithms to compute $H_K(X)$

The case of $j = 0, 1728$

The Legendre form of an elliptic curve

The p-adic analytic map ρ_α

Example of algorithm, $p = 7, D = -23$
Algorithm to compute $\tilde{\lambda}$

Input:
- L_p, a supersingular curve defined over \mathbb{F}_p^2
- $f : \mathcal{O}_K \hookrightarrow \text{End}(L_p)$, an embedding
- r such that 2^r is the desired accuracy for $\tilde{\lambda}$

Output: the 2^r digit approximation to $\tilde{\lambda}$

The j-invariant of the canonical lift of (L_p, f) is

$$\tilde{j} = 2^8 \frac{(\tilde{\lambda}^2 - \tilde{\lambda} + 1)^3}{\tilde{\lambda}^2 (\tilde{\lambda} - 1)^2}.$$

to 2^r digits accuracy.
Eg $p = 7$, $D = -23$

Input:
- $K = \mathbb{Q}(\sqrt{D})$
- $\mathcal{O}_K = \mathbb{Z}[\tau]$ where τ is a root of $X^2 - X + 6$
- L_p is the curve $y^2 = x(x - 1)(x - 2)$ with $\lambda = 2$
- $f : \mathcal{O}_K \hookrightarrow \text{End}(L_p)$ is $f(\tau) = 1/2 - 3i/2 + j/2 - k/2$

Output: the canonical lift $\tilde{\lambda}$ of (L_p, f) to 8 p-adic digits accuracy.
Step 0: Choosing α

- Choose α in \mathcal{O}_K with
 - $\alpha \equiv 1 \mod 2\mathcal{O}_K$
 - $\alpha/\bar{\alpha} - 1$ a p-adic unit
 - Norm of α prime to p
- Factor (α) into prime ideals.

For $D = -23$, choose $\alpha = (1 + 2\tau)$ where

$$(\alpha) = a^3 \text{ for } a = (3, 1 + 2\tau).$$
Step 1: Action of \((\alpha)\) in characteristic \(p\)

Compute the action of \((\alpha)\) factor by factor in characteristic \(p\):

\[
\begin{align*}
L_p & \xrightarrow{\alpha} L_p^a & L_p^{a^2} & \xrightarrow{\alpha} L_p^{(\alpha)} = L_p \\
 f & \xrightarrow{\alpha} f^a & f^{a^2} & \xrightarrow{\alpha} f^\alpha = f
\end{align*}
\]

We must compute the action on the embeddings as well. This gives a sequence of subgroups

\[
L_p[f(\alpha)], \quad L_p^a[f^a(\alpha)], \quad L_p^{a^2}[f^{a^2}(\alpha)]
\]

which we lift to characteristic zero to compute \(\rho_\alpha\).
Eg \(p = 7, D = -23 \): Action in characteristic \(p \)

Compute the action of \(\alpha \) factor by factor:

\[
L_p \xrightarrow{a} L_p^{a} \xrightarrow{a} L_p^{a^2} \xrightarrow{a} L_p^{(\alpha)} = L_p
\]

- \(L_p^{a} \) has \(\lambda = 6, f^a(\tau) = 1/2 - 3i/2 + j/2 + k/2 \)
- \(L_p^{a^2} \) has \(\lambda = 4, f^{a^2}(\tau) = 1/2 + 2i - j/2 \)

The kernels are given by the 3-torsion points with

\[
x = 5a + 5, \quad x = 5a + 3, \quad x = a + 5.
\]

where \(a^2 = -2 \) in \(\mathbb{F}_{p^2} \).
Step 2: Lifting the action to curves over F

- Given λ_k, a 2^k digit approximation to $\tilde{\lambda}$, let

 $$L_k : y^2 = x(x - 1)(x - \lambda_k).$$

- Lift the action of α

 $$L_k \xrightarrow{\alpha} L_k^\alpha \xrightarrow{\alpha} L_k^{\alpha^2} \xrightarrow{\alpha} L_k^{(\alpha)}$$

 to get $\rho_\alpha(\lambda_k) = \lambda(L_k^{(\alpha)})$.

- Compute

 $$\lambda_{k+1} = \lambda_k - \frac{\alpha(\lambda_k) - \lambda_k}{\alpha/\bar{\alpha} - 1}.$$

 This is $\tilde{\lambda}$ to 2^{k+1} p-adic digits accuracy.
Eg \(p = 7, D = -23 \): Lifting action to compute \(\rho_\alpha \)

- Choose \(\lambda_0 = 9 \) in \(D_\lambda \) and let \(L_0 \) be the curve
 \[
y^2 = x(x - 1)(x - 9).
 \]

- Lift the kernels one-by-one to get
 \[
 L_0 \xrightarrow{a} L_0^a \xrightarrow{a} L_0^{a^2} \xrightarrow{a} L_0^{(\alpha)}
 \]

- Compute
 \[
 \rho_\alpha(\lambda_0) = \lambda(L_0^{(\alpha)}) = -19 + O(7^2).
 \]

- Use Newton’s Method to get
 \[
 \lambda_1 = -14\tilde{a} - 5 + O(7^2)
 \]
Eg $p = 7, D = -23$: Newton’s method

Let $F = \mathbb{Q}_p(\tilde{a})$ where \tilde{a} is the lift of a.

<table>
<thead>
<tr>
<th>k</th>
<th>λ_k</th>
<th>$\rho_\alpha(\lambda_k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$9 + O(7^2)$</td>
<td>$-19 + O(7^2)$</td>
</tr>
<tr>
<td>1</td>
<td>$-14\tilde{a} - 5 + O(7^2)$</td>
<td>$-700\tilde{a} - 250 + O(7^4)$</td>
</tr>
<tr>
<td>2</td>
<td>$-308\tilde{a} + 975 + O(7^4)$</td>
<td>$-2759057\tilde{a} - 2169529 + O(7^8)$</td>
</tr>
</tbody>
</table>

We get 8 digit p-adic approximations to $\tilde{\lambda}$ and \tilde{j} resp.:

$$\lambda_3 = -1589770\tilde{a} + 2769328 + O(7^8)$$

$$j(\lambda_3) = -1520666\tilde{a} + 1286263 + O(7^8)$$
Algorithm to compute $H_K(X)$

2. Choose a curve L_p such that $\mathcal{O}_K \hookrightarrow \text{End}(L_p)$ via some f.
3. Compute the λ-invariant $\tilde{\lambda}$ of the canonical lift of (L_p, f) to sufficient accuracy using Algorithm 1.
4. For each $\alpha \in \text{Cl}(\mathcal{O}_K)$, compute the action on $\tilde{\lambda}$ using ρ_α:
 \[
 \tilde{\lambda} \mapsto \tilde{\lambda}^\alpha
 \]
5. Use j function to obtain the roots \tilde{j}^α.
6. Expand
 \[
 \prod_{\alpha \in \text{Cl}(\mathcal{O}_K)} (X - \tilde{j}^\alpha)
 \]
 and recognize coefficients as integers.
Algorithm to compute $H_K(X)$

Key computational steps to analyze/improve:

- Matching $\text{End}(E_p)$ with maximal order R (Cervino, $O(p^{5/2})$)
- Computing an embedding $\mathcal{O}_K \hookrightarrow R$ (norm $O(|D|)$)
- Computing $f \mapsto f^a$ (ideal class isomorphisms in R)
- Given $f(a)$, computing kernel polynomial (naive search)
- Hensel lift of kernel polynomial to $\mathbb{Q}_p^2[X]$ to precision 2^k
An algorithm to compute $H_K(X) \mod p$ for p inert in K

- The action $f \mapsto f^a$
 moves between different maximal orders of $\mathcal{A}_{p,\infty}$.

- Match each maximal order of $\mathcal{A}_{p,\infty}$ with a class of supersingular elliptic curves over \mathbb{F}_{p^2}.

- $\#$ embeddings into an order $=$ multiplicity of the j-invariant

- This gives

$$H_D(X) \mod p.$$

Used in the Chinese Remainder Theorem algorithm to compute $H_D(X)$
Current State of Methods

- Complex Analytic Method (Enge, 2006)
- Ordinary p-adic Method (Bröker, 2006)
- Chinese Remainder Theorem Method (BBEL, 2008)
- Improved CRT Method (Sutherland, 2009)
Comparison of Methods (under GRH)

- CAM (assuming no round-off error)
 \[O(|D| \log |D|^3 \log \log |D|^3) \]

- Ordinary \(p \)-adic Method (2008)
 \[O(|D| \log |D|^{6+\epsilon}) \]

- Inert \(p \)-adic Method (2008)
 \[O(|D| \log |D|^{??}) \]

 \[O(|D| \log |D|^{7+\epsilon}) \]

- Improved CRT Method (2009)
 \[O(|D| \log |D|^{5+\epsilon}) \]
The class polynomial H_K of a quadratic imaginary field

p-adic method for computing H_K

A p-adic algorithm to compute the canonical lift for p inert in K

Algorithms to compute $H_K(X)$

p-adic algorithm for p inert in K

Comparison of Algorithms

Thank you to...

▶ STAGE at MIT
▶ Dr. Larry Washington and Dr. Reinier Bröker