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Benedict H. Gross

In 1974, John Tate published ”The arithmetic of elliptic curves” in

Inventiones. In this paper [Ta], he surveyed the work that had been

done on elliptic curves over finite fields and local fields and sketched the

proof of the Mordell-Weil theorem for elliptic curves over Q. He ended

with several outstanding conjectures on elliptic curves over number

fields, for which a considerable amount of theoretical and experimental

evidence had already been accumulated.

Let E be an elliptic curve over a number field k, defined by a non-

singular cubic equation in the projective plane over k. The solutions

to this equation form an abelian group E(k). This group is finitely

generated, by the Mordell-Weil theorem, but it is difficult in practice

to determine its rank. Tate’s first conjecture was in the direction of

making this determination effective.

1) The Tate-Shafarevitch group X(E/k), of principal homogeneous

spaces for E over k which are trivial at all completions kv, is finite.

The rest of the conjectures were all related to the L-function L(E/k, s),

which is defined by a convergent Euler product in the half-plane Re(s) >

3/2. The product is taken over the non-zero prime ideals P of the ring

of integers A of k, and the local term at P is determined by the number

of points of E over the finite residue field A/P . The predictions related

to the L-function were the following:
1
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2) The local terms in the Euler product determine the elliptic curve

E, up to isogeny over k.

3) The function L(E/k, s) has an analytic continuation to the entire

s-plane, and satisfies a functional equation relating its value at s to its

value at 2 − s.

4) The order of the analytic function L(E/k, s) at s = 1 is equal to

the rank of the finitely generated abelian group E(k), and the leading

term in its Taylor expansion at s = 1 is given by certain local and

global arithmetic invariants of the curve E.

Since the publication of Tate’s paper, substantial progress has been

made on all four problems. Conjecture 2) was completely resolved in

1983 by Gerd Faltings [F], who proved a more general result for abelian

varieties. Conjecture 3) was established for all elliptic curves over Q in

2001 [BCDT], generalizing work done by Andrew Wiles and Richard

Taylor in 1995 [TW,W], which settled the semi-stable case. Conjectures

1) and 4) are now known to be true for elliptic curves over Q whose

L-function vanishes to order zero or one at the point s = 1. This is

a consequence of a limit formula that Don Zagier and I found in 1983

[GZ] and a cohomological method which Victor Kolyvagin introduced

in 1986 [K].

In this paper, I will survey the progress that has been made on these

questions. I will also describe the recent results of Richard Taylor on

the conjecture of Sato-Tate, as well as some problems which remain

open.
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1. The L-function

We begin with the definition of the L-function, for an elliptic curve

E defined over a number field k. Let A be the ring of integers of k, and

let P be a non-zero prime ideal of A. If it is possible to find a model

for E:

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

with coefficients ai in A and discriminant ∆ = ∆(a1, a2, . . . , a6) non-

zero (mod P ), we say E has good reduction (mod P ). In this case, let

NP denote the order of the finite group E(A/P ), and write

NP = NP + 1 − aP ,

where NP is the order of the finite field A/P .

It is known that

a2
P ≤ 4.NP

or equivalently, that the discriminant of the quadratic polynomial x2−

aP x + NP is ≤ 0.

If for every model of E over A we have ∆ ≡ 0 (mod P ), we say

E has bad reduction (mod P ). In this case, we define aP = 1,−1, 0

depending on the type of bad reduction: nodal with rational tangents,

nodal with irrational tangents, or cuspidal.

The L-function is defined by the Euler product

L(E/k, s) =
∏

bad P

(1 − aP NP−s)−1
∏

good P

(1 − aP NP−s + NP 1−2s)−1.

Expanded out, this gives a Dirichlet series
∑

n≥1 bn/n
s with integral

coefficients bn, which converges (and is non-zero) in the half-plane
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Re (s) > 3/2. If one includes the Euler factors at the infinite places of

k, one gets the complete L-function

Λ(E/k, s) = (2π−sΓ(s))d · L(E/k, s)

where d ≥ 1 is the degree of k over Q. The precise form of conjecture

3) is the statement that:

3*) Λ(E/k, s) extends to an analytic function on the entire complex

plane, and satisfies the functional equation

Λ(E/k, s) = ±N1−s · Λ(E/k, 2 − s).

Informally, this states that the number of points (mod P ) is not a

arbitary function of P . In 3*), N is a positive integer, divisible only

by rational primes that ramify in k, or lie below primes of k where E

has bad reduction. This was proved for k = Q in [BCDT]; in this case

the integer N is the conductor of E over Q.

2. Modular forms

The key idea in the proof of 3*) for k = Q is to relate L(E/Q, s)

to the L-function L(f, s) of a holomorphic modular form. This insight

goes back to Taniyama, and was developed and refined by Shimura and

Weil. The precise formulation is already in Tate’s paper: If L(E/Q, s) =
∑

n≥1 bn/n
s, then the function

f(τ) =
∑

n≥1

bne
2πinτ

is the Fourier expansion of a modular form of weight 2 for the subgroup

Γ0(N) of SL2(Z), which is a new form and an eigenform for the Hecke
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algebra. This implies that the Mellin transform of f :

Λ(E/Q, s) =

∫ ∞

0

f(iy)ys dy

y

has an analytic continuation, and satisfies the functional equation Λ(E/Q, s) =

±N1−sΛ(E/Q, 2 − s) with sign equal to the negative of the eigenvalue

of the Fricke involution wN on f [BSD].

We will sketch the proof that f(τ) is modular, following Taylor and

Wiles, after introducing the ℓ-adic homology groups TℓE. Their meth-

ods have been extended to prove the functional equation of the L-series

of some elliptic curves over totally real fields. However, for a general

elliptic curve E over an imaginary quadratic field k, the L-function

L(E/k, s) is still not known to have an analytic continuation or satisfy

a functional equation. The hope is to show that this is equal to the

L-function of an automorphic form f on GL2(k), but the methods of

Taylor and Wiles which use the arithmetic of modular curves and their

Hecke algebras, do not generalize to this case.

3. The ℓ-adic homology group

Let E be defined over the number field k, let k̄ denote an algebraic

closure of k and let E[n] denote the n-torsion subgroup of E(k̄). Then

E[n] ≃ (Z/nZ)2 has an action of Γ = Gal(k̄/k), preserving the group

structure. Fix a prime ℓ, and define

TℓE = lim
←−
k

E[ℓk],
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where the transition map E[ℓk+1] → E[ℓk] is multiplication by ℓ. Then

TℓE ≃ Z2
ℓ plays the role of the first ℓ-adic homology group of E, and

has a Zℓ-linear action of Γ.

It is known that the Galois action on TℓE is unramified at all good

primes P ⊂ A which are not of residual characteristic ℓ. At such a

prime, a Frobenius element FP in Γ, which on the residue field acts by

α 7→ αNP , has characteristic polynomial

x2 − αPx + NP on TℓE.

These Frobenius classes are dense in Γ, so the knowledge of the L-

function L(E/k, s) as an Euler product determines the characteristic

polynomials of all γ ∈ Γ on TℓE. This information turns out to deter-

mine the Zℓ[Γ] module TℓE, up to isogeny.

Tate conjectured that the L-function determined the elliptic curve

E up to isogeny over k. A more precise version of 2) is that the map

of Zℓ-modules:

Homk(E,E ′) ⊗ Zℓ → HomΓ(TℓE, TℓE
′)

is an isomorphism, for any two elliptic curves E and E ′ over k. This

was proved (for abelian varieties) by Faltings [F]. A key idea introduced

in the proof was the notion of the height of an elliptic curve (or a

principally polarized abelian variety) with respect to the Hodge line

bundle on the moduli space.
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4. Modular Galois representations

We can read the Euler product defining the L-function L(E/Q, s) =
∑

an/n
s from the ℓ-adic homology TℓE. Indeed, the local term at

the prime p is given by the characteristic polynomial x2 − apx + p of

the Frobenius element Fp. Hence, to show Λ(E/Q, s) is the Mellin

transform of a modular form, it suffices to show that the Galois rep-

resentation TℓE is modular. By this we mean that there is a modular

form f of weight 2 on Γ0(N), which is an eigenform for the Hecke al-

gebra, whose integral eigenvalues ap for the Hecke operators Tp give

the characteristic polynomials of the Frobenius elements Fp on TℓE as

above, for all primes p not dividing Nℓ.

The reduction of TℓE (mod ℓ) is the Galois representation on E[ℓ],

which is a vector space of dimension 2 over Z/ℓZ. We say E[ℓ] is

modular if there is an eigenform f , with integral eigenvalues ap, such

that the characteristic polynomial of Fp is congruent (mod ℓ) to x2 −

apx + p.

If TℓE is modular, then E[ℓ] is clearly modular. Wiles and Taylor

established the converse, for primes ℓ ≥ 3, using techniques Mazur had

developed for the study of deformations of Galois representations. At

the time, little was known then about the modularity of the represen-

tations E[ℓ]. But when ℓ = 3, so Aut(E[3]) = GL2(3) is a solvable

group, the modularity had been established by Langlands, using class

field theory and the theory of cyclic base change. From this, Wiles and
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Taylor were able to conclude that T3E was modular and hence prove

the analytic continuation and functional equation of L(E/Q, s).

5. The Mordell-Weil theorem

Let E be an elliptic curve over the number field k. The theorem in

the title of this section states that the abelian group E(k) is finitely

generated. The proof has two parts. The first is cohomological, and

shows that the quotient group E(k)/mE(k) is finite for any m ≥ 1. In

fact, one has an exact sequence

0 → E(k)/mE(k) → Sel(E/k,m) → X(E/k)[m] → 0

where Sel(E/k,m) is a finite subgroup of the Galois cohomology group

H1(Γ, E[m](k̄)) defined by local conditions. The proof that the Selmer

group Sel(E/k,m) is finite requires all the classical results of number

theory: that the class group Pic(A) of the ring of integers A of k is

finite and that the unit group A∗ is finitely generated.

In the second part of the proof, one uses the positive definite sym-

metric bilinear form

〈, 〉 E(k) × E(k) → R

associated to the canonical height. The canonical height

h(P ) = 〈P, P 〉

is the unique, real-valued, quadratic function on E(k) such that the

difference h(P )− log (
∏

v max(|x(P )|v, 1)) remains bounded as P runs

through E(k). Then h(P ) ≥ 0, with equality if and only if P is a
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torsion point in E(k). If {P1, ..., PN} represent the cosets of mE(k) for

m ≥ 2 and H = max{h([Pi)}, then E(k) is shown to be generated by

the finite number of points P with h(P ) ≤ H.

The non-effectivity of this proof in determining the rank of E(k)

is that we have no control over the cokernel of the map E(k) →

Sel(E/k,m). The conjecture that X(E/k) is finite, so contains no

infinitely divisible non-zero elements, is an attempt to rectify this. So

far however, all proofs of the finiteness of X(E/k) have depended on

knowing the rank in advance.

6. The conjecture of Birch and Swinnerton-Dyer

We return to the study of the L-function of E over k, and give a

more precise statement of conjecture 4).

Let n ≥ 0 be the rank of E(k), and let ZP1 + ZP2 + · · · + ZPn be

a free subgroup of finite index t in E(k). We use the positive definite

height pairing 〈, 〉 on E(k) to define the positive real number

R(E/k) = det (〈Pi, Pj〉)/t2.

Then R(E/k) is an invariant of E(k), which is independent of the basis,

or of the free subgroup chosen.

Let ω be a non-zero invariant differential on E(k). Using the canoni-

cal local valuation ||v at each place v of k, and a local decomposition of

Haar measure of k, dx = ⊗dxv on the adeles A of k giving the quotient

group A/k volume 1, we may define for each place v a measure |ω|v on

the group E(kv).
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For each infinite place v of k, we define

cv(ω) =

∫

E(kv)

|ω|v.

For each finite place v = vP of k, we define

cv(ω) = cP (ω) =

∫

E(kv)

|ω|v · L(E/kv, 1).

Here L(E/kv, 1) is the valve at s = 1 of the P -th term in the Euler

product for L(E/k, s).

When E has good reduction (mod P ), we have

L(E/kv, 1) = (1 − aP NP−1 + NP−1)−1 = NP/#E(A/P ).

If furthermore, we assume that
{

∫

AP

dxP = 1

ω is integral at P and ω 6≡ 0 (modP )

then cP (ω) = 1. Since this is true for almost all primes P , the product
∏

cv(ω) over all valuations is well-defined. It is independent of the

choice of ω, by the product formula.

The refined version of 4) is the conjecture of Birch and Swinnerton-

Dyer:

lim
s→1

L(E/k, s)/(s − 1)n =
∏

cv(ω) · R(E/k) · #X(E/k).

If ω is a global Néron differential, then

∏

cv(ω) =
∏

v infinite

cv(ω) ·
∏

P
with bad reduction

(E(kP ) : E0(kP )) · |D|−1/2,

where D is the discriminant of k over Q.

For example, assume that E(k) has rank n = 1, and let P be a point

of infinite order. Let t be the index of the subgroup ZP in E(k). Then
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the conjecture of Birch and Swinnerton-Dyer predicts that

L(E/k, 1) = 0

L′(E/k, 1) =
∏

cv(ω) · 〈P, P 〉 · #X(E/k)/t2.

7. Heegner points on the curve X0(N)

The combination of the results of Faltings and Taylor-Wiles suggest

the following attach on the conjecture of Birch and Swinnerton-Dyer,

when k = Q.

Let f =
∑

n≥1 anqn be the eigenform of weight 2 on Γ0(N) associated

to the L-function

L(E/Q, s) =
∑

n≥1

ann−s.

Then

ωf = f(q)
dq

q
= 2πif(τ) dτ

is a regular differential on the modular curve X0(N) over Q Indeed,

the non-cuspidal complex points of the curve X0(N) have the form

H/Γ0(N), where H is the upper half-plane, and one can check that

the differential ωf on H is invariant under Γ0(N). Shimura showed

that ωf had only two independent complex periods, so corresponded

to an elliptic curve factor E∗ of the Jacobian of X0(N). Moreover,

L(E∗/Q, s) = L(f, s) = L(E/Q, s), so by Faltings’ isogeny theorem,

E∗ is isogenous to E over Q.

It follows that there is a dominant morphism of algebraic curves over

Q

ϕ : X0(N) → E
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taking the cusp i∞ of X0(N) to the origin of E. If we insist that ϕ

be of minimal degree, it is well-defined up to sign. This suggests using

arithmetic information on the curve X0(N) to study the arithmetic of

the curve E — an idea first investigated by Bryan Birch.

A point x on the curve X0(N) has a modular description — it cor-

responds to a pair of elliptic curves (ǫ −→
f

ǫ′) related by an isogeny

f whose kernel is cyclic of order N . This allows us to construct, via

the theory of complex multiplication, a collection of points — called

Heegner points — on X0(N) over number fields of small degree.

Let k be an imaginary quadratic field where all primes p dividing

N are split. Let A be the ring of integers of k and let n ⊂ A be

an ideal with n · n = (N), gcd(n, n) = 1. Then the complex elliptic

curves ǫ = C/A and ǫ′ = C/n−1 are related by an isogeny f with kernel

(n−1/A) cyclic of order N . The corresponding point x = (ǫ −→
f

ǫ′) on

X0(N) is defined over H, the Hilbert class field of k.

Let P = TrH/k(ϕ(x)) in E(K), where the trace is taken by adding the

conjugates of ϕ(x) in E(H). Birch asked the question of when P had

infinite order, and conjectured that it was related to the non-vanishing

of the first derivative of L(E/k, s) at s = 1. Zagier and I answered this

in 1983, by proving the following limit formula. Let ω be the invariant

differential on E over Q with ϕ∗(ω) = ωf . Then

L(E/k, 1) = 0

L′(E/k, 1) =

∫

E(C)

|ω| · |D|−1/2 · 〈P, P 〉.

This implies that P has infinite order if and only if L′(E/k, 1) 6= 0.
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8. Heegner points and the Selmer group

We continue with the notation of the previous section, and assume

that P has infinite order in E(k). Write ω0 = cω, where ω0 is a Nevon

differential on E over Q. It is known that c is an integer. For each

prime p dividing N , let mp be the order of (E(Qp) : E0(Qp)).

If we compare the limit formula with the conjecture of Birch and

Swinnerton-Dyer for E over k, we are led to predict that

(1) the group E(k) has rank n = 1, so contains the subgroup ZP

with finite index t

(2) the group X(E/k) is finite, of order (t/c · Πmp)
2.

Victor Kolyvagin was able to prove 1) and most of 2) in 1986, by study-

ing the relationship between Heegner points and the Selmer groups of

E over k.

An example of what Kolyvagin established is the following [G]. Let ℓ

be an odd prime where the Galois action on E[ℓ] has image GL2(Z/ℓZ)

and which does not divide the point P in the finitely generated group

E(k). Then Sel(E/k, ℓ) has dimension 1 over Z/ℓZ. Since this contains

the subgroup E(k)/ℓE(k) where P is nontrivial, this implies that

(1) the rank of E(k) is equal to 1,

(2) the group of ℓ-torsion X(E/k)[ℓ] is zero.

Both are consistent with the predictions above, as the hypotheses on ℓ

imply that ℓ does not divide t.

These hypotheses hold for almost all primes ℓ, when E does not

have complex multiplication. With more work at the remaining primes,
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Kolyvagin was able to establish the finiteness of X(E/k), under the hy-

pothesis that L′(E/k, 1) 6= 0. Combining this with some non-vanishing

results, this yields the finiteness of X(E/Q) for all elliptic curves E

over Q whose L-function vanishes to order ≤ 1 at s = 1.

9. On the distribution of Frobenius classes

Another question on the L-function where there has been recent

progress is the distribution of Frobenius conjugacy classes, as the prime

P varies. Assume that E over k has good reduction at P , and recall

that the characteristic polynomial of Frob(P ) on the ℓ-adic homology

TℓE is equal to

x2 − aPx + NP.

Let tP = aP /(NP )1/2 in R. By the inequality a2
P ≤ 4NP we have

−2 ≤ tP ≤ 2. In other words, the polynomial

x2 − tP x + 1

is the characteristic polynomial of a conjugacy class {γP} in the com-

pact group SU2. Richard Taylor [T] has recently proved the Sato-Tate

conjecture — that these classes are equidistributed with respect to the

push forward of Haar measure under the map SU2 → SU2/conjugacy =

[−2, 2], at least when k is totally real and E has a prime of multiplica-

tive reduction.

Another result on distribution was obtained by Noam Elkies [E] in

his thesis. Assuming that k has a real completion, the value aP = 0

occurs for infinitely many primes P .
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10. Speculations on curves of higher rank

Some of the main questions remaining open concern curves of rank

n ≥ 2. Assume, for simplicity, that the curve E is defined over Q.

We still do not know if the rank of the group E(Q) can be arbitrarily

large, although examples of all ranks n ≤ 24 have been found on the

computer. Elkies recently found a curve over Q whose rank is at least

28.

Another open question is the variation of the rank in families of

curves with the same j-invariant. If E is defined by the equation

y2 = f(x),

and d is a fundamental discriminant, let E(d) be the curve defined by

the equation

dy2 = f(x).

Then E(d) becomes isomorphic to E over the quadratic extension k =

Q(
√

d), but is not isomorphic to E over Q. In particular, the ranks of

E(d)(Q) and E(Q) may differ,

Let F (x) be the number of fundamental discriminants d with |d| ≤ x,

where the rank n(d) of E(d)(Q) is at least 2. Theoretical results of

Katz and Sarnak lead one to guess that F (x) grows like a constant

times x3/4(log x)a. Since the number of discriminant d with |d| ≤ x

grows like a constant times x, this suggests that curves of rank n ≥ 2

are rare.
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