
MATH 233B, FLATNESS AND SMOOTHNESS.

The discussion of smooth morphisms is one place were Hartshorne doesn’t do a
very good job. Here’s a summary of this week’s material. I’ll also insert some (op-
tional) exercises that I recommend that you have do in order to better understand
the material.

1. A refresher on flatness

1.1. Let A be a commutative ring. Recall that an A-module M is flat if and only
if the functor M ⊗

A
− is exact.

Exercise 1.1.1. (1) Show that a module is flat if and only if its localization at any
prime is flat.
(2) Show that M is flat if and only if Tor1(M,A/I) = 0 for any ideal I ⊂ A.

Exercise 1.1.2. Assume that A is Noetherian.
(1) Show that a module M is flat if and only if Tor1(M,A/p) = 0 for any prime p.
(2) Show that a module M is flat if and only if Tori(M,kp) = 0 for any prime p
and i ∈ N.
(3) Assume in addition that M is f.g. over A. Show that in (2) it’s enough to check
only the maximal ideals and Tor1.
(4) Show that the f.g. assumption above is necessary.

1.2. Flat morphisms.

Definition 1.2.1. We say that a morphism f : X → Y is flat if, locally on X, the
structure sheaf OX is flat as an OY -module.

Definition 1.2.2. We say that a morphism f : X → Y is flat at x, if the local
ring OX,x is flat over OY,f(x).

Easy exercise 1.2.3. A morphism is flat if and only if it is flat at any point.

More generally, we can define the notion of Y -flatness (resp., Y -flatness at a
point x), a.k.a. flatness with respect to f (resp., flatness with respect to f at a
point x) for F ∈ QCoh(X).

Definition 1.2.4. A map is faithfully flat if it is flat and surjective.

Exercise 1.2.5.
(1) Show that a map f if faithfully flat if and only if the functor f∗ is exact and
conservative.
(2) Deduce that the notion of faithful flatness is stable under base change.
(3) Show that a flat map is open.
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1.3. Here are some basic facts about flatness in the Noetherian situation:

Exercise 1.3.1. Assume that Y is Noetherian, and F ∈ QCoh(X).
(1) Show that F is Y -flat if and only if, TorOY

i (F, ky) vanishes (as a q.c. sheaf on
X) for all y ∈ Y and i ∈ N.
(2) Give a (stupid) counterexample of how the above fails if we only check the closed
points.
(3*) Assume that both X and Y of finite type over a field, and assume that F is
coherent on X. Show that in this case, it’s enough to check only the closed points
and Tor1.

Here’s an important generic flatness theorem:

Proposition 1.3.2. Let f : X → Y be a morphism of finite type with Y integral
and Noetherian. Let F be a coherent sheaf of X. Then there exists a non-empty

open subscheme
◦
Y ⊂ Y , such that F|

f−1(
◦
Y )

is Y -flat.

For the proof, google ”generic flatness fantechi” and go to the first link (Gothendieck’s
FGA is explained).

Here is a relationship between the notions of flatness and flatness at a point:

Exercise 1.3.3. Let f : X → Y be a morphism of finite type with Y Noetherian.
Let F be a coherent sheaf on X. Let y ∈ Y be a point such that for every x ∈ X with
f(x) = y, the sheaf F is Y -flat at x. Show that y admits a Zariski neighborhood
over which F is flat.

(This is a non-trivial exercise, and the proof that I know uses generic flatness.)

1.4. Here is a basic fact about the interaction between the notions of flatness and
dimension.

If X is a Noetherian scheme and x ∈ X is a point, we denote by dim(X)x the
”dimension of X at x”, i.e., the dimension of the Noetherian local ring OX,x.

Proposition 1.4.1. Let f : X → Y be a morphism between Noetherian schemes.
Let x ∈ X be a point and y = f(x) its image in Y . Let Xy be the fiber of X over
y, i.e., X ×

Y
ky.

(1) We have the inequality: dim(Xy)x + dim(Y )y ≥ dim(X)x.
(2) If f is flat at x, then the above inequality is an equality.
(3) If Y is regular at y and X is CM at x, then the assertion of (2) is ”if and only
if”.

1.5. Let X → Y be a faithfully flat map with both X and Y locally Noetherian.
Let’s see how some favorable properties of X imply those for Y .

Proposition 1.5.1. If X is (i) reduced, (ii) integral, (iii) regular, (iv) Rn, (v) Sn,
(vi) locally factorial, then the same is true for Y .

Proof. The proof of (i) and (ii) is easy, while (iii) was done in class. To prove (iv)
let’s localize Y at a point y of height m ≤ n. Consider the scheme Xy, and let x
be one of its generic points. By Proposition 1.4.1, dim(X)x = dim(Y )y, so X is
regular at x by assumption. Hence, Y is regular at y by (iv).
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Point (v) was done in class, but let’s repeat it nonetheless. The assertion is
local, so we can assume that both X and Y are affine. Property Sn means that for
F ∈ Coh(Y ) with codim(suppY (F)) ≥ n, we have Extk(F,OY ) = 0 for k ≤ n−1. By
faithful flatness, it’s enough to show that f∗(Extk

OY
(F,OY )) = 0, while the latter,

by flatness and the fact that F is coherent, is isomorphic to Extk
OX

(f∗(F),OX). By
Proposition 1.4.1, codim(suppX(f∗(F))) = codim(suppY (F)), so the latter group
vanishes since X was Sn.

Let’s prove (vi). Let j :
◦
Y ↪→ Y be an open subset whose complement is of

codim ≥ 2. Let L be a line bundle over
◦
Y . We need to show that it admits

an extension to a line bundle on the entire Y . We claim that j∗(L) does the
job. Indeed, since f is faithfully flat, it’s enough to show that f∗(j∗(L)) is a line
bundle on X. Since f is flat, by the trivial case of the projection formula, we have:

f∗(j∗(L)) ' j̃∗(f∗(L)), where j̃ :
◦
X ↪→ X, where

◦
X := f−1(

◦
Y ). However, by

Proposition 1.4.1, codim(X −
◦
X) = codim(Y −

◦
Y ), so we know that f∗(L) admits

an extension to a line bundle L′ on X. Since X is normal, we also know that this
extension must coincide with j̃∗(f∗(L)). �

2. Smoothness over a field

2.1. Before we proceed, let’s give a refresher on the behavior of dimension for
schemes of finite type over a field.

Here are two important facts:

Proposition 2.1.1. Let X be a scheme of finite type over a field k. Then:

(i) If X irreducible, then dim(X)x1 = dim(X)x2 for any two closed points x1, x2 ∈
X.

(ii) If X is integral, then dim(X) equals tr.deg.(K(X)/k), where K(X) is the field
of fractions of X.

2.2. Let first k be an algebraically closed field, and X a scheme of finite type over
k.

Definition 2.2.1. We say that X is smooth of dimension n if it is regular as a
scheme and has dimension n.

Lemma 2.2.2. Assume that every irreducible component of X is of dimension ≥ n.
Then the following conditions are equivalent:

(i) X is smooth of dimension n.

(ii) Ω1
X/k is a locally free sheaf of dim n.

The proof follows the fact that for any closed point x ∈ X, the natural map

mx/m
2
x → (Ω1

X/k)x

is an isomorphism. �
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2.3. A digression on the latter map:

Exercise 2.3.1. Let A be a local ring over a field k, such that kA, the residue field
of A is a finite extension of k.
(i) Construct the natural map m/m2 → (Ω1

A/k)⊗
A
kA.

(ii) Give an example of how this map fails to be an isomorphism even when A is
regular.
(iii) Prove (by induction) that if kA/k is perfect, then for any n the projection
A/mn → kA admits a unique section (i.e., this makes A/mn into a kA-algebra).
(iv) Deduce that if kA/k is perfect, then the map in (i) is an isomorphism.

2.4. Let k be an arbitrary field. Let X be a scheme of finite type over X.

Definition 2.4.1. We say that X is smooth of dimension n over k if X ×
k
k is

smooth of dimension n over k.

From Lemma 2.2.2 we obtain:

Corollary 2.4.2. A scheme X is smooth of dimension n over k if and only if each
of its irreducible components has dimension ≥ n, and ΩX/k is locally free of rank
n.

As we saw in class, an imperfect field extension k′/k provides an example of a
scheme over k, which is regular, but not smooth.

Exercise 2.4.3. Let X be a scheme over k.
(i) Show that any scheme smooth over a field is regular.
(ii) Let k′/k be a separable field extension. Show that if X is regular, then so is
X ′ := X ×

k
k′.

(iii) Show that over a perfect field, a scheme is smooth if and only if it’s regular.

2.5. Let’s recall the following assertion about regular local rings:

Proposition 2.5.1. Let A′ → A be a surjection of local rings with A′ regular of
dimension m. Then the following conditions are equivalent:
(a) A is regular of dimension n.
(b) The ideal ker(A′ → A) can be generated by m− n elements f1, ..., fm−n, whose
images in m′/m′2 are linearly independent.

Proof. Exercise. �

We shall now discuss an analog of this assertion when ”regular” is replaced by
”smooth”.

Theorem 2.5.2. Let X be a scheme of finite type over k. Then the following
conditions are equivalent:
(a) X is smooth over k.
(b) For any closed embedding X ↪→ X ′ with with a sheaf of ideals I and X ′ smooth,
the sequence

I/I2 → ΩX′/k|X → ΩX/k → 0
is a short exact sequence of vector bundles.
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Proof. The impication (b) ⇒ (a) follows from Lemma 2.4.2. For the implication in
the other direction, we can base change to k. In the latter case we deduce it from
Proposition 2.5.1 using the following lemma:

Lemma 2.5.3. Let α : F → E be a map of coherent sheaves on a locally Noetherian
scheme X, where E is locally free. Assume that for every x ∈ X, the map Fx → Ex

is injective. Then: (i) the map α is injective, (ii) F is locally free, (iii) coker(α)
is locally free. Moreover, the above condition is sufficient to check for closed points
only.

�

Note the difference in the conditions of Proposition 2.5.1 and Theorem 2.5.2: for
a closed point x ∈ X, the former requires that we can generate

Ix := ker(OX′,x → OX,x)

by elements f1, ..., fn−m such that their images f1, ..., fm−n in m′/m′2 are linearly
independent. The latter requires that their further images dfi(x) ∈ (ΩX′/x)x be
linearly independent.

2.6. Generic smoothness.

Definition 2.6.1. We say that X is generically smooth of dimension n over k if

X contains a dense Zariski open
◦
X, which is smooth of dimension n over k.

Lemma 2.6.2. Let X be an irreducible scheme of finite type over k.
(1) The generic rank of ΩX/k is ≥ dim(X).
(2) The equality in (1) holds if and only if X is generically smooth.

The proof follows from Lemma 2.2.2 by base change. �

Definition 2.6.3. A finitely generated field extension K/k is said to be separably
generated if it can be written in the form K ⊂ K0 = k(x1, ..., xn), where K/K0 is
a finite separable extension.

Lemma 2.6.4. Let K/k be a finitely generated field extension.
(1) We have dimK(ΩK/k) ≥ tr.deg.(K/k).
(2) If K/k is separably generated, then the inequality in (1) is an equality.

NB: We’ll soon see that the assertion of (2) is in fact ”if and only if”.

Proof. To prove point (1) choose an integral scheme of finite type over X with field
of fractions K. Then the assertion follows from Lemma 2.6.2

To prove point (2), consider the exact sequence:

K ⊗
K0

ΩK0/k → ΩK/k → ΩK/K0,

and the assertion follows.
�

Lemma 2.6.5. If k is perfect, then any finitely generated field extension is separably
generated.

For the proof, see references in Hartshorne, Theorem 4.8A.

Corollary 2.6.6. Any integral scheme over a perfect field is generically smooth.
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3. Smooth morphisms between schemes

3.1. Let f : X → S be a morphism of schemes. Untill the end of this write-up,
we’ll assume that the base S is locally Noetherian.

Assume that f is of finite type (smoothness is only defined for morphisms of
finite type).

Definition 3.1.1. We say that f is smooth of relative dimension n if the following
conditions hold:
(i) X is flat over S.
(ii) For every point s ∈ S, the base change X×

S
kS is a smooth scheme of dimension

n over the residue field ks.

Theorem 3.1.2. Let f : X → S be a morphism of finite type. The following
conditions are equivalent:
(a) Condition (ii) in the definition of smoothness holds, and ΩX/S is locally free of
rank n.
(b) f is smooth of rel.dim. = n.
(c) X is flat and locally on X, we can find a closed embedding over X ↪→ X ′ := An

S

(compatible with the projection to S), so that if we denote by IX,X′ the corresponding
sheaf of ideals on X ′, the sequence

IX,X′/I
2
X,X′ → ΩX′/S |X → ΩX/S → 0

is a short exact sequence of vector bundles.

Proof. The fact that (a) implies (b) follows from Lemma 2.2.2. The implications
(c) ⇒ (a) is tautological. So, it’s enough to show that (b) implies (c). We’ll use
the following generalization of Lemma 2.5.3:

Lemma 3.1.3. Let α : F → E be a map of coherent sheaves on a locally Noetherian
scheme X, where E is locally free. Assume that for every x ∈ X, there exists a closed
subscheme Zx ⊂ X containing x, such that the resulting map α|Zx

: F|Zx
→ F|Zx

is injective and the quotient is locally free on Zx. Then: (i) the map α is injective,
(ii) F is locally free, (iii) coker(α) is locally free. In fact, it is sufficient to check
this condition for closed points only.

We apply this lemma to the map IX,X′/I
2
X,X′ → ΩX′/S |X . For every x ∈ X

we take Zx := Xf(x). We need to verify that the conditions of the lemma hold.
First, since X is flat over Y , for every y ∈ Y , the natural map I|X′y → IX′y,Xy

is an
isomorphism, and hence

(IX,X′/I
2
X,X′)Xy

' IXy,X′y
/I2

Xy,X′y
.

Now, the assertion follows from Theorem 2.5.2.
�

NB: Note that from what we proved it follows that Theorem 3.1.2 can be rephrased
as follows: X → S is smooth if and only it is flat, and for any closed embedding
X ↪→ X ′ with X ′ smooth over S, the sequence in point (3) of the theorem is short
exact. In one of the problems for this week you’ll show that the condition that
X → S is in fact automatic.
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3.2. We’ll now discuss a differential criterion for smoothness of a map:

Let X,Y be two schemes, smooth over a base S, and f : X → Y a map between
them.

Theorem 3.2.1. The following conditions are equivalent:
(a) f is smooth of relative dimension dim. rel(X,S)− dim. rel(Y, S).
(b) ΩX/Y is locally free of rank dim. rel(X,S)− dim. rel(Y, S).
(c) The map f∗(ΩY/S)→ ΩX/S is injective, and the quotient is locally free.


