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Introduction

0.1. Who are these Lie algebroids? In this chapter we initiate the study of Lie algebroids
over prestacks (technically, over prestacks locally almost of finite type that admit deformation
theory). The reason we decided to devote a chapter to this notion is that Lie algebroids provide
a convenient language to discuss differential-geometric properties of prestacks, which will be
studied in [Chapter IV.5].

0.1.1. In classical algebraic geometry, a Lie algebroid (over a classical scheme) X is a quasi-
coherent sheaf L, equipped with an OX -linear map to the tangent sheaf and an operation of
Lie bracket that satisfy some natural axioms (see Sect. 9.1).

In the setting of derived we define the category of Lie algebroids on X to be that of formal
groupoids on X. This is sensible because the category of Lie algebras in IndCoh(X) is equivalent
to the category of formal groups over X, due to [Chapter IV.3, Theorem 3.6.2].

The reason we call these objects ‘Lie algebroids’ is that we construct various forgetful functors
to more linear categories and show that Lie algebroids can be described as ind-coherent sheaves
with an additional structure. However, a distinctive feature of the derived story we are going
to present is that the only description of this extra structure that we describe is in terms of
geometry. I.e., we could not come up with a more ‘algebraic’ definition.

0.1.2. We show that with the definition of Lie algebroids as formal groupids, one can perform
with them all the expected operations:

A Lie algebroid L will have an associated object

oblvLieAlgbroid(L) ∈ IndCoh(X),

equipped with a morphism oblvLieAlgbroid(L) → T (X), called the anchor map. The kernel of
the anchor map has a structure of Lie algebra in IndCoh(X), while the space of global sections
of oblvLieAlgbroid(L) has also a structure of Lie algebra (in Vect).

Thus, the category LieAlgbroid(X) is related to the category IndCoh(X)/T (X) by a pair of
adjoint functors

freeLieAlgbroid : IndCoh(X)/T (X) � LieAlgbroid(X) : oblvLieAlgbroid /T ,

and we will show that the resulting monad

oblvLieAlgbroid /T ◦ freeLieAlgbroid

acting on IndCoh(X)/T (X) has ‘the right size’, see Proposition 5.3.2.
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Furthermore, LieAlgbroid(X) is related to the category LieAlg(IndCoh(X)) by a pair of
adjoint functors

diag : LieAlg(IndCoh(X))→ LieAlgbroid(X) : ker-anch,

(where the meaning of diag is that an OX-linear Lie algebra can be considered into a Lie
algebroid with the zero anchor map, and ker-anch sends a Lie algebroid to the kernel of its
anchor map1). The monad

ker-anch ◦ diagX

is given by the operation of semi-direct product with the inertia Lie algebra inertX, which is
again what one expects from a sensible definition of Lie algebroids.

0.1.3. Finally, let us comment on our inability to define Lie algebroids without resorting to
geometry. In fact, this is not surprising: throughout the book the only way we access Lie
algebras is via the definition of the Lie operad as the Koszul dual of the commutative operad. So,
it is natural that in order to define objects that generalize Lie algebras we resort to commutative
objects (in our case, prestacks).

In Sect. 5.6 we present a very general categorical framework, in which one can define ‘broids’
as modules over a certain monad.

0.2. What is done in this chapter? We should say right away that this chapter does not
contain any big theorems. Mostly, it uses the material of the previous chapters to set up the
theory of Lie algebroids and also sets ground for applications in [Chapter IV.5].

0.2.1. In Sect. 1 we return to the study of groupoids (in spaces and then in the framework of
algebraic geometry).

Given a space (resp., prestack) X, we define two functors from the category Groupoid(X)
to the category of groups over X.

The first of these functors, denoted Inert, sends a groupoid to its inertia group. Applying
this functor to the unit groupoid (i.e., the initial object of Groupoid(X)), we obtain the inertia
group of X, denoted InertX .

The second functor, denoted Ωfake, sends a groupoid R to ΩX(R), where we view R as a
pointed object over X via

unit : X � R : ps.

The above two functors are related by a fiber sequence

Ωfake(R)→ InertX → Inert(R).

1Another way to look at the above adjoint pair is that the category LieAlg(IndCoh(X)) identifies with the

over-category

(LieAlgbroid(X))/0,

where 0 is the zero Lie algebroid.
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0.2.2. In Sect. 2 we introduce the notion of Lie algebroid over an object X ∈ PreStklaft-def ,
along with two pairs of adjoint functors

freeLieAlgbroid : IndCoh(X)/T (X) � LieAlgbroid(X) : oblvLieAlgbroid /T ,

and

diagX : LieAlg(IndCoh(X))→ LieAlgbroid(X) : ker-anch .

We introduce also another functor

Ωfake : LieAlgbroid(X)→ LieAlg(IndCoh(X)),

so that for L ∈ LieAlgbroid(X) we have the fiber sequence

Ωfake(L)→ inertX → ker-anch(L),

where inertX is the Lie algebra of the inertia group of X.

We note that

oblvLie(inertX) = T (X)[−1]

and when we apply oblvLie to the map Ωfake(L)→ inertX, we recover the shift by [−1] of the
anchor map, i.e., of the object

oblvLieAlgbroid /T ∈ IndCoh(X)/T (X).

0.2.3. In Sect. 3 we consider the basic examples of Lie algebroids: the tangent algebroid, the
zero algebroid, the Lie algebroid attached to a map of prestacks, and the Atiyah algebroid
attached to an object of QCoh(X)perf .

0.2.4. In Sect. 4 we introduce the notion of module over a Lie algebroid, and define the universal
enveloping algebra of a Lie algebroid.

0.2.5. In Sect. 5 we study the relationship between square-zero extensions and Lie algebroids.
Recall that according to [Chapter IV.1, Theorem 2.3.2], for a given X ∈ PreStklaft-def , the
category of formal moduli problems under X is equivalent to that of formal groupoids over X,
and thus to the category of Lie algebroids.

Using this equivalence, we construct functor

RealSqZExt : IndCoh(X)/T (X) → FormModX/

to correspond to the functor

freeLieAlgbroid : IndCoh(X)/T (X) → LieAlgbroid(X).

We show that the functor is the left adjoint to the functor that sends X → Y to T (X/Y) ∈
IndCoh(X)/T (X), i.e., it really behaves like a square-zero extension.

We also show that the notion of square-zero extension developed in the present section
using Lie algebroids is equivalent to one developed in [Chapter III.1, Sect. 10], which was
bootstrapped from the case of schemes.
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0.2.6. In Sect. 6 we introduce the Atiyah class, which is a functorial assignment for any F ∈
IndCoh(X) of a map

T (X)[−1]
!
⊗ F

αF→ F.

We show that if i : X→ X′ is a square-zero extension of X, given by

F′
γ→ T (X),

then the category IndCoh(X′) can be described as the category consisting of F ∈ IndCoh(X),
equipped with a null-homotopy of the composite map

F′
!
⊗ F

γ
!
⊗id−→ T (X)[−1]

!
⊗ F

αF→ F.

We deduce that the dualizing object ωX′ ∈ IndCoh(X′) fits into the exact triangle

iIndCoh
∗ (ωX)→ ωX′ → iIndCoh

∗ (F′),

further justifying the terminology ‘square-zero extension’.

0.2.7. In Sect. 7 we show that the space of global sections of a Lie algebroid carries a canonical
structure of Lie algebra. (In particular, global vector fields carry a structure of Lie algebra.)

We also show that h is a Lie algebra object in IndCoh(X) obtained as Ωfake(L) for a Lie
algebroid L, then the Lie algebra structure on the space of global sections of h is the trivial one.

0.2.8. In Sect. 8 we present another point of view on the category LieAlgbroid(X). Namely, we
show that the functor

ker-anch : LieAlgbroid(X)→ LieAlg(IndCoh(X))

is monadic.

I.e., the category LieAlgbroid(X) can be realized as the category of modules for the monad

MInertinf
X

:= ker-anch ◦ diag

acting on the category LieAlg(IndCoh(X)).

The monad MInertinf
X

is given by the operation of ‘semi-direct product’ with the inertia

Lie algebra inertX. So in a sense, this gives a very manageable presentation of the category
LieAlgbroid(X). We learned this idea from J. Francis.

Thus, there are (at least) two ways to exhibit LieAlgbroid(X) as modules over a monad
acting on some category: one is what we just said above, and another via the adjunction

freeLieAlgbroid : IndCoh(X)/T (X) � LieAlgbroid(X) : oblvLieAlgbroid /T .

0.2.9. Finally, in Sect. 9 we compare our definition of Lie algebroids with the usual (i.e., clas-
sical) one, when our prestack X is a classical scheme X.

We show (see Theorem 9.1.5) that the subcategory consisting of Lie algebroids L, for which
the object oblvLieAlgbroid(L) ∈ IndCoh(X) lies in the essential image of the functor

QCoh(X)♥ ↪→ QCoh(X)
ΥX
↪→ IndCoh(X)

is canonically equivalent to that of classical Lie algebroids.

Further, we show that if L ∈ LieAlgbroid(X) is such that oblvLieAlgbroid(L) ∈ IndCoh(X)
lies in the essential image of the functor

QCoh(X)♥,flat ↪→ QCoh(X)♥ ↪→ QCoh(X)
ΥX
↪→ IndCoh(X),
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then the category L-mod(IndCoh(X)) agrees with the classical definition of the category of
modules over a Lie algebroid.

1. The inertia group

In this section we return to the discussion of groupoids, first in the category Spc and then
in formal geometry.

We show that there are two forgetful functors from the category of groupoids (on a given
space or prestack) X to that of groups over X. The first functor is given by the inertia group, i.e.
the morphisms with the same source and target. The second is given by taking the relative loop
space of the groupoid. We also establish a relationship between these two functors: namely,
they fit into a fiber sequence with the inertia group of the identity groupoid in the middle.

1.1. Inertia group of a groupoid. In this subsection we work in the category of spaces. We
introduce the notion of inertia group of a groupoid.

1.1.1. Recall the setting of [Chapter IV.1, Sect. 2.1]. For X ∈ Spc, note that we have a
tautological forgetful functor

diag : Grp(Spc/X)→ Grpoid(X).

In fact,

Grp(Spc/X) ' Grpoid(X)/ diagX
.

Hence, the functor diag admits a right adjoint, denoted Inert, given by Cartesian product
(inside Grpoid(X)) with diagX .

Concretely, as a space

Inert(R) := X ×
X×X

R,

(we recall that X ×X is the final object in Grpoid(X)).

1.1.2. For R = diagX being the identity groupoid, we thus obtain an object of Grp(Spc/X),
denoted InertX .

I.e., as an object of Grp(Spc/X), we have:

InertX = X ×
X×X

X = ΩX(X ×X),

where X ×X is regarded as an object of Ptd(Spc/X) via the maps

∆X : X � X ×X : ps.

The object InertX ∈ Grp(Spc/X) is called the inertia group2of X.

1.1.3. For R = X ×
Y
X, we have:

Inert(R) = X ×
Y

InertY .

2Note that we can also think of InertX as XS1
, i.e., the free loop space of X.
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1.1.4. There is another functor

Ωfake : Grpoid(X)→ Grp(Spc/X).

Namely,

Ωfake(R) := ΩX(R),

where in the left-hand side ΩX is the loop functor Ptd(Spc/X)→ Grp(Spc/X), where we view

R as as an object of Ptd(Spc/X) via

unit : X � R : ps.

For example,

InertX = Ωfake(X ×X).

1.1.5. Since X ×X is the final object in Grpoid(X), for any groupoid R we have a tautological
map R→ X ×X, which gives rise to a map

Ωfake(R)→ InertX .

In addition, the unit map diagX → R gives rise to a map in Grp(Spc/X)

InertX → Inert(R).

It is easy to see that

Ωfake(R)→ InertX → Inert(R)

is a fiber sequence in Grp(Spc/X).

1.1.6. Note also that the composed endo-functor of Groupoid(X)

diag ◦Ωfake

identifies with

R 7→ diagX ×
R

diagX ,

where the fiber product is taken in Groupoid(X).

1.2. Infinitesimal inertia. In this subsection we translate the material from Sect. 1.1 to the
context of infinitesimal algebraic geometry. I.e., instead of Spc, we will work with the category
PreStklaft-def , and instead of groupoids we will consider objects of FormGrpoid(X) over a given
prestack X.

1.2.1. Let X be an object of PreStklaft-def . Consider the category FormGrpoid(X).

Note that FormGrpoid(X) admits a final object equal to (X×X)∧, the formal completion of
the diagonal in X× X.

The initial object in FormGrpoid(X) is diagX, and we have a canonical identification

Grp(FormMod/X) ' FormGrpoid(X)/ diagX
.

1.2.2. Consider the forgetful functor

diag : Grp(FormMod/X)→ FormGrpoid(X).

It admits a right adjoint, denoted Inertinf , and given by Cartesian product (inside the cate-
gory FormGrpoid(X)) with the unit groupoid diagX. Explicitly,

Inertinf(R) = X ×
(X×X)∧

R.
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1.2.3. For R = diagX being the identity groupoid, we thus obtain an object of Grp(Spc/X),

denoted Inertinf
X . We call it the infinitesimal inertial group of X.

I.e., as an object of PreStk, we have:

Inertinf
X = X ×

(X×X)∧
X.

1.2.4. We reserve the notation InertX for the object

X ×
X×X

X ∈ Grp(PreStk/X),

i.e., the usual (=non-infinitesimal) inertia group of X.

It is easy to see that Inertinf
X is obtained from InertX by completion along the unit section.

1.2.5. There is another functor

Ωfake : FormGrpoid(X)→ Grp(FormMod/X).

Namely,
Ωfake(R) := ΩX(R),

where in the left-hand side ΩX is the loop functor Ptd(FormMod/X) → Grp(FormMod/X),
where we view R as as an object of Ptd(FormMod/X) via

unit : X� R : ps.

For example,
Inertinf

X = Ωfake((X× X)∧).

1.2.6. Since (X × X)∧ is the final object in FormGrpoid(X), for any groupoid R we have a
tautological map R→ (X× X)∧, which gives rise to a map

Ωfake(R)→ Inertinf
X .

In addition, the unit map X→ R gives rise to a map in Grp(FormMod/X)

Inertinf
X → Inertinf(R).

It is easy to see that

(1.1) Ωfake(R)→ Inertinf
X → Inertinf(R)

is a fiber sequence.

1.3. Inertia Lie algebras. In this subsection we will introduce Lie algebra counterparts of
the constructions in Sect. 1.2.

1.3.1. In what follows we denote

inertX := LieX(Inertinf
X ) ∈ LieAlg(IndCoh(X).

Note that
oblvLie(inertX) ' T (X)[−1].

1.3.2. For R ∈ FormGrpoid(X), denote

inert(R) := Lie(Inertinf(R)).

From the fiber sequence (1.1) we obtain a fiber sequence in LieAlg(IndCoh(X)):

(1.2) Lie(Ωfake(R))→ inertX → inert(R).
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1.3.3. If R is the groupoid corresponding to a formal moduli problem X→ Y (i.e., R = X×
Y
X),

then

inert(R) ' inertY |X.

In particular,

oblvLie(inert(R)) ' T (Y)|X[−1].

The canonical map

oblvLie(inertX)→ oblvLie(inert(R)),

induced by Inertinf
X → Inertinf(R), is the shft by [−1] of the differential T (X)→ T (Y)|X.

Note also that

oblvLie ◦ Lie(Ωfake(R)) ' T (X/Y)[−1].

Applying oblvLie to (1.2), we obtain the shift by [−1] of the tautological exact triangle

T (X/Y)→ T (X)→ T (Y)|X.

2. Lie algebroids: definition and basic pieces of structure

In this section we introduce the category LieAlgbroid(X) of Lie algebroids on X as the cate-
gory of formal groupoids on X and study several forgetful functors to the categories IndCoh(X)
and LieAlg(IndCoh(X)), including those induced by the functors from Sect. 1.

2.1. Lie algebroids and the main forgetful functor.

We define the category LieAlgbroid(X) to be the same as FormGrpoid(X). The difference
will only express itself in our point of view: we will (try to) view Lie algebroids as objects of a
linear category (namely, IndCoh(X)), equipped with an extra structure.

According to [Chapter IV.1, Theorem 2.3.2], we can also identify

LieAlgbroid(X) ' FormModX/ .

2.1.1. Our ‘main’ forgetful functor is denoted

oblvLieAlgbroid /T : LieAlgbroid(X)→ IndCoh(X))/T (X),

and is constructed as follows:

It associates to a formal moduli problem X→ Y the object of IndCoh(X)/T (X) equal to

T (X/Y)→ T (X).

The functor oblvLieAlgbroid /T is conservative by [Chapter III.1, Proposition 8.3.2].
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2.1.2. We will think of a Lie algebroid L as the corresponding object oblvLieAlgbroid /T (L) of
IndCoh(X)/T (X), abusively denoted by the same character L, equipped with an extra structure.

We shall denote by oblvLieAlgbroid the composition of oblvLieAlgbroid /T and the forgetful functor

IndCoh(X)/T (X) → IndCoh(X).

The corresponding map

(2.1) oblvLieAlgbroid(L)
anch→ T (X)

is usually referred to as the anchor map.

Proposition 2.1.3.

(a) The category LieAlgbroid(X) admits sifted colimits, and the functor oblvLieAlgbroid /T com-
mutes with sifted colimits.

(b) The functor oblvLieAlgbroid /T admits a left adjoint.

Proof. Point (a) of the proposition follows from [Chapter IV.1, Corollary 2.2.4]. To prove point
(b), by the Adjoint Functor Theorem, it is enough to show that the functor oblvLieAlgbroid /T

commutes with limits, while the latter is obvious from the definitions.
�

We will denote the functor

IndCoh(X)/T (X) → LieAlgbroid(X),

left adjoint to oblvLieAlgbroid /T , by freeLieAlgbroid. In Sect. 5 we will clarify the geometric
meaning of this functor.

2.1.4. Note that Corollary 2.1.3 implies:

Corollary 2.1.5. The functor

oblvLieAlgbroid /T : LieAlgbroid(X)→ IndCoh(X)/T (X)

is monadic.

2.1.6. The above discussion can be rendered into the relative setting, where instead of the
category PreStklaft-def , we consider the category (PreStklaft-def)/Z over a fixed Z ∈ PreStklaft-def .

For X ∈ (PreStklaft-def)/Z, we denote the resulting category of relative Lie algebroids by

LieAlgbroid(X/Z).

Its natural forgetful functor, denoted by the same symbol oblvLieAlgbroid /T takes values in
the category IndCoh(X)T (/X/Z). I.e., we now take tangent spaces relative to Z.

2.2. From Lie algebroids to Lie algebras. It turns out that there are two forgetful functors
from LieAlgbroid(X) to LieAlg(IndCoh(X)), induced by the two functors from groupoids to
groups in Sect. 1. We will explore these two functors in the present subsection.
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2.2.1. We define the functor

ker-anch : LieAlgbroid(X)→ LieAlg(IndCoh(X))

so that the diagram

FormGrpoid(X)
∼−−−−→ LieAlgbroid(X)

Inertinf

y yker-anch

Grp(FormMod/X)
Lie−−−−→
∼

LieAlg(IndCoh(X))

is commutative.

I.e., if L is the algebroid corresponding to the groupoid R, we have

ker-anch(L) := inert(R),

in the notation of Sect. 1.3.2.

Note that by construction, for L ∈ LieAlgbroid(X), we have:

oblvLie ◦ ker-anch(L) ' Fib
(
oblvLieAlgbroid(L)

anch→ T (X)
)
,

functorially in L.

In particular, the functor ker-anch is conservative.

2.2.2. Another forgetful functor, denoted Ωfake : LieAlgbroid(X) → LieAlg(IndCoh(X)), is de-
fined so that the diagram

FormGrpoid(X)
∼−−−−→ LieAlgbroid(X)

Ωfake

y yΩfake

Grp(FormMod/X)
Lie−−−−→
∼

LieAlg(IndCoh(X))

commutes.

In particular, the fiber sequence (1.2) translates as

(2.2) Ωfake(L)→ inertX → ker-anch(L).

Note that by construction

oblvLie ◦ Ωfake(L) ' oblvLieAlgbroid(L)[−1].

I.e., the object of IndCoh(X), underlying the shift by [−1] of a Lie algebroid, carries a natural
structure of Lie algebra in IndCoh(X).

The functor Ωfake is also conservative.

Remark 2.2.3. In Sect. 7, we shall see that the object of Vect equal to global sections of
oblvLieAlgbroid(L) for a Lie algebroid L itself carries a structure of Lie algebra.
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2.2.4. We will refer to the canonical map

(2.3) Ωfake(L)→ inertX

as the shifted anchor map. After applying oblvLie, the map (2.3) becomes the shit by [−1] of
the map (2.1).

Applying oblvLie to (2.2), we obtain a fiber sequence in IndCoh(X) that is equal to the shift
by [−1] of the tautological sequence

oblvLie(ker-anch(L))→ oblvLieAlgbroid(L)→ T (X).

2.2.5. The functor ker-anch admits a left adjoint, denoted

diag : LieAlg(IndCoh(X))→ LieAlgbroid(X).

Tautologically, it makes the following diagram commute

FormGrpoid(X)
∼−−−−→ LieAlgbroid(X)

diag

x xdiag

Grp(FormMod/X)
Lie−−−−→
∼

LieAlg(IndCoh(X)).

We note:

Lemma 2.2.6. The following diagram of functors commutes:

IndCoh(X)
freeLie−−−−→ LieAlg(IndCoh(X))y ydiag

IndCoh(X)/T (X)
freeLieAlgbroid−−−−−−−−−→ LieAlgbroid(X),

where the left vertical arrow sends F ∈ IndCoh(X) to (F
0→ T (X)).

Proof. Follows by adjunction from the commutativity of the corresponding diagram of right
adjoints

IndCoh(X)
oblvLie←−−−−− LieAlg(IndCoh(X))x xker-anch

IndCoh(X)/T (X)

oblvLieAlgbroid /T←−−−−−−−−−−− LieAlgbroid(X),

where the left vertical arrow sends

(F
γ→ T (X)) 7→ Fib(γ).

�

3. Examples of Lie algebroids

In this section we discuss four main examples of Lie algebroids: the tangent algebroid, the
zero algebroid, the Lie algebroid attached to a map, and the Atiyah algebroid attached to a
perfect complex.

3.1. The tangent and zero Lie algebroids. In this subsection we introduce two most basic
Lie algebroids.
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3.1.1. The most basic example of a Lie algebroid is the final object of LieAlgbroid(X), denoted
T(X). It is called the tangent Lie algebroid.

It corresponds to the formal moduli problem X
pdR,X−→ XdR. The corresponding groupoid is

(X× X)∧.

We have

oblvLieAlgbroid /T (T(X)) = (T (X)
id→ T (X)).

We also have:
ker-anch(T(X)) = 0 and Ωfake(T(X)) ' inertX .

3.1.2. For a Lie algebroid L, we define the notion of splitting to be the right inverse of the
canonical map L→ T(X).

3.1.3. The initial object in LieAlgbroid(X) is the ‘zero’ Lie algebroid, denoted

0 ∈ LieAlgbroid(X).

It equals diag(0), and corresponds to the groupoid diagX. The corresponding formal moduli
problem is

X
id→ X.

We have:
oblvLieAlgbroid /T (0) = (0→ T (X)).

We also have
ker-anch(0) = inertX and Ωfake(0) = 0.

3.1.4. Note that the composite endo-functor of LieAlgbroid(X)

diag ◦Ωfake

identifies with
L 7→ 0×

L
0,

where the fiber product is taken in LieAlgbroid(X).

3.2. The Lie algebroid attached to a map. In this subsection we discuss the Lie algebroid
attached to a map of prestacks.

3.2.1. Let X→ Y be a map in PreStklaft-def . Consider the corresponding map

X→ Y∧X,

where
Y∧X := XdR ×

YdR

Y,

and the corresponding formal groupoid

(X×
Y
X)∧,

see [Chapter IV.1, Sect. 2.3.3].

We denote the corresponding algebroid by T(X/Y). We have

oblvLieAlgbroid /T (T(X/Y)) = (T (X/Y)→ T (X)).

We also have:
ker-anch(T(X/Y)) ' inertY |X,
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and therefore

oblvLieAlg(ker-anch(T(X/Y))) ' f !(T (Y))[−1].

3.2.2. Note that we recover T(X) as T(X/ pt).

Note also that the zero Lie algebroid can be recovered as T(X/X).

3.2.3. By definition, the datum of splitting of the Lie algebroid T(X/Y) is equivalent to that of
factoring the map X→ Y as

X
pdR,X−→ XdR → Y.

3.3. Digression: the universal classifying space. In this subsection we introduce the
prestack responsible for the functor that sends an affine scheme to the (space underlying) the
category of perfect complexes on this scheme. We will use this prestack in the next subsection
in order to construct the Atiyah algebroid of a perfect complex.

3.3.1. We define the prestack Perf by setting

Maps(S,Perf) = (QCoh(S)perf)Spc, S ∈ Schaff ,

where we recall that the superscript ‘Spc’ stands for taking the space obtained from a given
(∞, 1)-category by discarding non-invertible morphisms.

Proposition 3.3.2. The prestack Perf belongs to PreStklaft-def .

Proof. First, we note that Perf is convergent (see [Chapter I.3, Proposition 3.6.10]). In order
to prove that Perf belongs to PreStklaft, it is sufficient to show that the functor

S 7→ QCoh(S)perf

takes filtered limits (on all of Schaff) to colimits. However, this follows from [DrGa2, Lemma
1.9.5].

Thus, it remains to show that Perf admits deformation theory. This will be done in Sect. A.2.
�

3.3.3. We will now describe the Lie algebra inertPerf .

Let Euniv be the tautological object of QCoh(Perf)perf . Consider the object

End(Euniv) ∈ AssocAlg(QCoh(Perf)).

Applying the symmetric monoidal functor

Υ : QCoh(−)→ IndCoh(−)

(see [Chapter II.3, Sect. 3.3]), we obtain an object

ΥPerf(End(Euniv)) ∈ AssocAlg(IndCoh(Perf)).

We claim:

Proposition 3.3.4. The object inertPerf ∈ LieAlg(IndCoh(Perf)) identifies canonically with
the Lie algebra obtained from ΥPerf(End(Euniv)) by applying the forgetful functor

resAssoc→Lie : AssocAlg(IndCoh(Perf))→ LieAlg(IndCoh(Perf)).

Proof. The rest of this subsection is devoted to the proof of this proposition.
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3.3.5. Consider first the object

InertPerf ∈ Grp(PreStk/Perf).

By definition, for S ∈ Schaff , the groupoid Maps(S, InertPerf) consists of the data (E, g), where
E ∈ QCoh(S)perf and g is an automorphism of E.

We need to show that the Lie algebra of the completion Inertinf
Perf of InertPerf along the unit

section (obtained by the functor LiePerf of [Chapter IV.3, Theorem 3.6.2]) identifies canonically
with

resAssoc→Lie (ΥPerf(End(Euniv))) .

3.3.6. Consider

ΥPerf(Euniv) ∈ IndCoh(Perf).

The above description of InertPerf implies that ΥPerf(Euniv) naturally lifts to an object of

InertPerf -mod(IndCoh(Perf));

see [Chapter IV.3, Sect. 5.1.1] for the notation.

In particular, by restriction, we can view ΥPerf(Euniv) as an object of

Inertinf
Perf -mod(IndCoh(Perf)).

By [Chapter IV.3, Proposition 5.1.2], we can view ΥPerf(Euniv) as an object of

inertPerf -mod(IndCoh(Perf)),

and by [Chapter IV.2, Sect. 7.4] as an object of

U(inertPerf)-mod(IndCoh(Perf)).

Hence, we obtain a map of associative algebras

U(inertPerf)→ End(ΥPerf(Euniv)) ' ΥPerf(End(Euniv)).

By adjunction, we obtain a map of Lie algebras

(3.1) inertPerf → resAssoc→Lie (ΥPerf(End(Euniv))) .

It remains to see that the latter map is an isomorphism.

3.3.7. By definition,

oblvLie(inertPerf) = T (InertPerf /Perf)|Perf ,

and deformation theory identifies the latter with oblvAssoc (ΥPerf(End(Euniv)).

Morover, by unwinding the constructions, we obtain that the resulting map

oblvLie(inertPerf)→ oblvAssoc (ΥPerf(End(Euniv))

equals the map obtained from (3.1) by applying the functor oblvLie.

Hence, we obtain that the map (3.1) induces an isomorphism of the underlying objects of
IndCoh(Perf), as required.

�

3.4. The Atiyah algebroid. In this subsection we introduce the Atiyah algebroid correspond-
ing to an object of QCoh(X)perf for X ∈ PreStklaft-def . Furthermore, we show, that as in the
classical case, the Atiyah algebroid controls the obstruction to giving such an object a structure
of crystal on X.
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3.4.1. Recall that for X ∈ PreStk the category

QCoh(X)perf ⊂ QCoh(X)

is defined as
lim

S∈(Schaff
/X

)op
QCoh(S)perf .

Therefore,
QCoh(X)perf ' Maps(X,Perf),

where Perf is as in Sect. 3.3.

3.4.2. For X ∈ PreStklaft-def , and given an object E ∈ QCoh(X)perf , and thus a map

X→ Perf,

we define the Atiyah algebroid of E, denoted At(E), to be T(X/Perf).

Note that
ker-anch(At(E)) ' inert(Perf)|X,

and the latter identifies with ΥX(End(E)) by Proposition 3.3.4.

3.4.3. By Sect. 3.2.3, the datum of splitting of At(E) is equivalent to that of factoring the map
X→ Perf, corresponding to E, as

X
pdR,X−→ XdR → Perf .

I.e., this is equivalent to a structure of left crystal on E, see [GaRo2, Sect. 2.1] for what this
means.

According to [GaRo2, Proposition 2.4.4], this is equivalent to a structure of crystal on ΥX(E).

4. Modules over Lie algebroids and the universal enveloping algebra

4.1. Modules over Lie algebroids. In this subsection we introduce the notion of module
over a Lie algebroid.

In particular, we show that for E ∈ QCoh(X)perf , the ind-coherent sheaf ΥX(E) ∈ IndCoh(X)
has a canonical structure of a module over the Atiyah algebroid At(E); Moreover, the Atiyah
algebroid is the universal Lie algebroid that acts on ΥX(E); i.e. an action of an algebroid L on
ΥX(E) is equivalent to a map of Lie algebroids L→ At(E).

4.1.1. Let L be a Lie algebroid on X, corresponding to a groupoid R. We define the category
L-mod(IndCoh(X)) to be

IndCoh(X)R,

see [Chapter IV.1, Sect. 2.2.5] for the notation.

We let
indL : IndCoh(X)� L-mod(IndCoh(X)) : oblvL

denote the corresponding adjoint pair of functors.

4.1.2. Let (X
π→ Y) ∈ FormModX/ be the object corresponding to L. By [Chapter IV.1, Propo-

sition 2.2.6], we have a canonical equivalence

IndCoh(Y) ' L-mod(IndCoh(X)).

Under this equivalence, the functor oblvL corresponds to π!, and the functor indL corre-
sponds to πIndCoh

∗ .
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4.1.3. Assume for a moment that L is of the form diag(h) for h ∈ LieAlg(IndCoh(X). In this
case, by [Chapter IV.3, Sect. 5.2.1], we have a canonical identification

L-mod(IndCoh(X)) ' h-mod(IndCoh(X)).

Under this equivalence, the functor oblvL goes over to oblvh, and the functor indL corre-
sponds to indh.

4.1.4. Examples. For L = T(X) we obtain:

T(X)-mod(IndCoh(X)) = IndCoh(XdR) =: Crys(X).

For L = 0, we have

T(X)-mod(IndCoh(X)) = IndCoh(X).

4.1.5. Let now E ∈ QCoh(X)perf . By construction, ΥX(E) has a canonical structure of module
over At(E).

Hence, for a Lie algebroid L, a homomorphism L → At(E) defines on ΥX(E) a structure of
L-module.

Proposition 4.1.6. The above map from the space of homomorphisms L → At(E) to that of
structures of L-module on ΥX(E) is an isomorphism.

Proof. Let X
π→ Y be the object of FormModX/ corresponding to L. The space of homo-

morphisms L → At(E) is isomorphic to the space of factorizations of the map X → Perf,
corresponding to E as

X
π→ Y→ Perf .

I.e., this is the space of ways to write E as π∗(E′) for E′ ∈ QCoh(Y)perf .

The space of structures of L-module on ΥX(E) is isomorphic to the space of ways to write
ΥX(E) as π!(ΥY(E′)). I.e., we have to show that the diagram of categories

QCoh(Y)perf ΥY−−−−→ IndCoh(Y)

π∗
y yπ!

QCoh(X)perf ΥX−−−−→ IndCoh(X)

is a pullback square. However, this follows by descent from [Chapter II.3, Lemma 3.3.7].
�

4.2. The universal enveloping algebra. In this subsection we associate to a Lie algebroid
L its universal enveloping algebra, viewed as an algebra object in the category of endo-functors
of IndCoh(−).

4.2.1. Let L be a Lie algebroid on X. Consider the monad on IndCoh(X) corresponding to the
adjunction

indL : IndCoh(X)� L-mod(IndCoh(X)) : oblvL.

We denote by U(L) the corresponding algebra object in the monoidal DG category

Functcont(IndCoh(X), IndCoh(X)).

Tautologically,

oblvAssoc(U(L)) = oblvL ◦ indL.
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4.2.2. Assume for a moment that L is of the form diag(h) for h ∈ LieAlg(IndCoh(X)).

In this case, by [Chapter IV.3, Proposition 5.1.2], U(L) is given by tensor product with U(h).

Remark 4.2.3. In [Chapter IV.5] we will see that U(L) possesses an extra structure: namely a
filtration. This extra structure will allow us to develop infinitesimal differential geometry on
prestacks.

4.3. The co-algebra structure. In the classical situation, the unversal enveloping algebra of
a Lie algebroid, when considered as a left OX -module, has a natural structure of co-commutative
co-algebra. In this subsection we will establish the corresponding property in the derived setting.

4.3.1. Consider the functor

Functcont(IndCoh(X), IndCoh(X))→ IndCoh(X),

given by precomposition with

p!
X : Vect→ IndCoh(X).

Let U(L)L ∈ IndCoh(X) denote the image of

oblvAssoc(U(L)) ∈ Functcont(IndCoh(X), IndCoh(X))

under this functor.

The object U(L)L corresponds to the functor

oblvL ◦ indL ◦ p!
X : Vect→ IndCoh(X).

4.3.2. Note that the category L-mod(IndCoh(X)) ' IndCoh(Y) carries a natural symmetric
monoidal structure, and the functor oblvL is symmetric monoidal. Hence, the functor indL

has a natural left-lax symmetric monoidal structure.

Hence, the functor oblvL ◦ indL ◦ p!
X also has a left-lax symmetric monoidal structure. This

defines on U(L)L ∈ IndCoh(X) a structure of co-commutative co-algebra in the symmetric
monoidal category IndCoh(X), and the map 0→ L defines an augmentation.

4.3.3. Thus, we can view U(L)L as an object of

CocomCoalgaug(IndCoh(X)).

We are going to prove:

Proposition 4.3.4. There exists a canonical isomorphism in CocomCoalg(IndCoh(X)):

U(L)L ' Chevenh(Ωfake(L)).

Proof. Let ps, pt : R ⇒ X be the formal groupoid corresponding to L. We can rewrite the
functor oblvL ◦ indL ◦ p!

X as

(ps)
IndCoh
∗ ◦ p!

R

(here pR is the projection R → pt), where the left-lax symmetric monoidal structure comes
from the symmetric monoidal structure on p!

R and the left-lax symmetric monoidal structure
on (ps)

IndCoh
∗ , the latter obtained by adjunction from the symmetric monoidal structure on p!

s.

Let us regard R as an object of Ptd(FormMod/X) via the maps ∆X and ps. Now, the
statement of the proposition follows from [Chapter IV.3, Sect. 5.2.2].

�
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5. Square-zero extensions and Lie algebroids

In this section, we will show that under the equivalence LieAlgbroid(X) ' FormModX/, free
Lie algebroids on X correspond to square-zero extensions.

This is parallel to [Chapter IV.3, Corollary 3.7.8], which says that split square zero extensions
correspond to free Lie algebras.

5.1. Square-zero extensions of prestacks. Let X be a scheme. Consider the full subcate-
gory

SchX/,inf-closed ⊂ SchX/,

see [Chapter III.1, Sect. 5.1.2].

Recall that we have a pair of mutually adjoint functors

RealSqZ : ((QCoh(X)≤−1)T∗(X)/)
op � SchX/,inf-closed,

where the right adjoint sends (X → Y ) 7→ T ∗(X/Y ).

We will now carry out parallel constructions in the setting of formal moduli problems under
an arbitrary object of PreStklaft-def .

5.1.1. For X ∈ PreStklaft-def consider the category FormModX/.

Consider the functor

(5.1) FormModX/ → IndCoh(X)/T (X), (X→ Y) 7→ (T (X/Y)→ T (X)).

Note that under the equivalence

FormModX/ ' LieAlgbroid(X),

the functor (5.1) corresponds to oblvLieAlgbroid /T .

Hence, by Proposition 2.1.3(b), the functor (5.1) admits a left adjoint. In what follows, we
shall denote the left adjoint to (5.1) by

RealSqZ : IndCoh(X)/T (X) → FormModX/ .

The following diagram commutes by definition:

(5.2)

FormMod/X
∼−−−−→ FormGrpoid(X)

RealSqZ

x ∼
x

IndCoh(X)/T (X)
freeLieAlgbroid−−−−−−−−−→ LieAlgbroid(X).

5.1.2. We have:

Lemma 5.1.3. For any (X
f→ Z) ∈ (PreStklaft-def)X/ and (F

γ→ T (X)) ∈ IndCoh(X)/T (X), the
space of extensions of f to a map

RealSqZ(F
γ→ T (X))→ Z

is canonically isomorphic to that of nul-homotopies of the composed map

F
γ→ T (X)→ T (Z)|X.

Proof. We can replace Z by

Z′ := Z ×
ZdR

XdR,

so that Z′ ∈ FormModX/, and then the assertion follows from the definition. �
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5.1.4. Recall the functor RealSplitSqZ of [Chapter IV.3, Sect. 3.7]. By [Chapter IV.3, Propo-
sition 3.7.3], it is the left adjoint to

Ptd(FormMod/X)→ IndCoh(X), (X→ Y→ X) 7→ T (Y/X)|X,

and by construction corresponds under the equivalence

Ptd(FormMod/X)
ΩX−→ Grp(FormMod/X)

Lie−→ LieAlg(IndCoh(X))

to the functor

IndCoh(X)
[−1]−→ IndCoh(X)

freeLie−→ LieAlg(IndCoh(X)).

The commutative diagram of Lemma 2.2.6 translates into the commutative diagram

(5.3)

IndCoh(X)
RealSplitSqZ ◦[1]−−−−−−−−−−−→ Ptd(FormMod/X)y y

IndCoh(X)/T (X)
RealSqZ−−−−−→ FormModX/,

where the left vertical arrow sends F 7→ (F
0→ T (X)), and the right vertical arrow is the

tautological forgetful functor.

5.2. Tangent complex of a square-zero extension. In this subsection we approach the
following question: how to describe the relative tangent complex of a square-zero extension?

This question makes sense even for schemes, however, it turns out that it is more convenient
to answer in the framework of arbitrary objects of PreStklaft-def and formal moduli problems.

By answering this question we will also arrive to an alternative definition of Lie algebroids
as modules over a certain monad.

5.2.1. From the commutative diagram (5.2) we obtain (compare with [Chapter IV.3, Corollary
3.7.6]):

Corollary 5.2.2. The monad on IndCoh(X)/T (X) given by the composition

T (X/−) ◦ RealSqZ

is canonically isomorphic to

oblvLieAlgbroid /T ◦ freeLieAlgbroid.

In other words, Corollary 5.2.2 gives a description of the relative tangent complex of a
square-zero extension in terms of the ‘more linear’ functor freeLieAlgbroid.

Remark 5.2.3. In Sect. 5.3 we will give an ‘estimate’ of what the monad

oblvLieAlgbroid /T ◦ freeLieAlgbroid

looks like when viewed as a plain endo-functor.

5.2.4. From Corollary 2.1.5, we obtain:

Corollary 5.2.5. There exists a canonical equivalence of categories

(5.4) LieAlgbroid(X) ' (T (X/−) ◦ RealSqZ)-mod(IndCoh(X)/T (X)).

Note that Corollary 5.2.5 implies that we can use the right-hand side of (5.4) as an alternative
definition of the category LieAlgbroid(X).
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5.3. Filtration on the free algebroid. The main result of this subsection, Proposition 5.3.2
gives an estimate of what the monad

oblvLieAlgbroid /T ◦ freeLieAlgbroid : IndCoh(X)/T (X) → IndCoh(X)/T (X)

looks like as a plain endo-functor, see Proposition 5.3.2 below.

5.3.1. The goal of this subsection is to prove:

Proposition 5.3.2. For (F
γ→ T (X)) ∈ IndCoh(X)/T (X), the object

oblvLieAlgbroid /T ◦ freeLieAlgbroid(F → T (X)) ∈ IndCoh(X)/T (X)

can be naturally lifted to

(IndCoh(X)Fil,≥0)/T (X)

(where T (X) is regarded as a filtered object placed in degree 0), such that its associated graded
identifies with

oblvLie ◦ freeLie(F)
0−→ T (X)

with its natural grading.

The rest of this subsection is devoted to the proof of Proposition 5.3.2. In the proof we will
appeal to the material from [Chapter IV.5, Sect. 1]. Let us explain the idea:

Given an object (F
γ→ T (X)) ∈ IndCoh(X)/T (X), scaling γ to zero gives (by applying

[Chapter IV.5, Sect. 1]) a filtration on (F
γ→ T (X), such that the associated graded is F

0→ T (X).

The result then follows by applying freeLieAlgbroid to this filtered object, because

freeLieAlgbroid((F
0→ T (X))

is the free Lie algebra generated by F.

5.3.3. Consider the following presheaves of categories

P1 and P2, (Schaff
aft)

op →∞ -Cat .

The functor P1 sends an affine scheme S to

IndCoh(X× S)/T (X)|X×S .

The functor P2 sends an affine scheme S to

FormModX×S/ /S .

Here FormModX×S/ /S stands for formal moduli problems under X × S, equipped with a
map of prestacks to S.

The functors

RealSqZ/S : IndCoh(X× S)/T (X)|X×S � FormModX×S/ /S : T (X× S/−)

give rise to a pair of natural transformations

(5.5) P1 � P2,

see Sect. 5.4.1 below for the notation.

5.3.4. We regard P1 and P2 as endowed with the trivial action of the monoid A1 (we refer the
reader to [Chapter IV.5, Sect. 1.2] for the formalism of actions of monoids on presheaves of
categories). The functors in (5.5) are (obviously) A1-equivariant.
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5.3.5. We now consider the presheaf of categories P0, represented by the monoid A1, equipped
with an action on itself by multiplication.

The object (F
γ→ T (X)) ∈ IndCoh(X)/T (X)) gives rise to a natural transformation

(5.6) P0 → P1

defined as follows: the corresponding object of P1(A1) is

F|X×A1
γscaled−→ T (X)|X×A1 ,

where the value of γscaled over λ ∈ A1 is λ · γ.

It is easy to see that the above natural transformation P0 → P1 has a canonical structure of
left-lax equivariance with respect to A1.

Note that by [Chapter IV.5, Lemma 1.5.5(a)], the category of left-lax equivariant functors
A1 → P1 identifies with

(IndCoh(X)Fil,≥0)/T (X).

Under this identification, the above functor (5.6) is given by

F
γ→ T (X),

where F (resp., T (X)) is regarded as a filtered object placed in degree 1 (resp., 0).

5.3.6. Thus, we obtain that the composite functor

P0 → P1 → P2 → P1

has a structure of left-lax equivariance with respect to A1.

The corresponding object of (IndCoh(X)Fil,≥0)/T (X) is the desired lift of

oblvLieAlgbroid /T ◦ freeLieAlgbroid(F → T (X)).

�

5.4. Pullbacks of square-zero extensions. In this subsection we will show that the functor

RealSqZ : IndCoh(X)/T (X) → FormModX/

introduced above, is compatible with base change.

This will allow us, in the next subsection, to compare RealSqZ with another notion of square-
zero extension of a prestack, namely, the one from [Chapter III.1, Sect. 10.1].

5.4.1. Let X0 be an object of PreStklaft-def , and let X ∈ (PreStklaft-def)/X0
. The functor RealSqZ

defines a functor

RealSqZ/X0
: IndCoh(X)/T (X/X0) → (PreStklaft-def)X/ /X0

.
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5.4.2. Let f0 : Y0 → X0 be a map in PreStklaft-def , and set Y := Y0 ×
X0

X. Let f denote the

resulting map X→ Y. Tautologically,

f !(T (X/X0)) ' T (Y/Y0).

By adjunction, for

(FX
γX−→ T (X/X0)) ∈ IndCoh(X)/T (X/X0)

and its pullback by means of f !

(FY
γY−→ T (Y/Y0)) ∈ IndCoh(Y)/T (Y/Y0),

we have a canonical map in (PreStklaft-def)Y/ /Y0

(5.7) RealSqZ/Y0
(γY)→ Y0 ×

X0

RealSqZ/X0
(γX).

We claim:

Proposition 5.4.3. The map (5.7) is an isomorphism.

We can depict the assertion of Proposition 5.4.3 by the commutative diagram

(5.8)

IndCoh(Y)/T (Y/Y0)
f !

←−−−− IndCoh(X)/T (X/X0)

RealSqZ/Y0

y yRealSqZ/X0

(PreStklaft-def)Y/ /Y0

Y0 ×
X0

−

←−−−− (PreStklaft-def)X/ /X0
.

5.4.4. Proof of Proposition 5.4.3. We have a commutative diagram

IndCoh(Y)
f !

←−−−− IndCoh(X)y y
IndCoh(Y)/T (Y/Y0)

f !

←−−−− IndCoh(X)/T (X/X0),

where the vertical arrows are as in Lemma 2.2.6. Since the essential image of

IndCoh(X)→ IndCoh(X)/T (X/X0)

generates the target category under sifted colimits, and since the horizontal arrows in (5.8)
commute with colimits, it suffices to show that the outer diagram in

IndCoh(Y)
f !

←−−−− IndCoh(X)y y
IndCoh(Y)/T (Y/Y0)

f !

←−−−− IndCoh(X)/T (X/X0)

RealSqZ/Y0

y yRealSqZ/X0

(PreStklaft-def)Y/ /Y0

Y0 ×
X0

−

←−−−− (PreStklaft-def)X/ /X0

commutes.
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However, by Lemma 2.2.6, the outer diagram identifies with

IndCoh(Y)
f !

←−−−− IndCoh(X)

freeLie

y yfreeLie

LieAlg(IndCoh(Y))
f !

←−−−− LieAlg(IndCoh(X))

BY◦exp

y yBX◦exp

Ptd((PreStklaft-def)/Y)

Y0 ×
X0

−

←−−−− Ptd((PreStklaft-def)/X)y y
(PreStklaft-def)Y/ /Y0

Y0 ×
X0

−

←−−−− (PreStklaft-def)X/ /X0
.

Now, the commutativity of the latter diagram is manifest, since the middle vertical arrows
are equivalences.

�

5.5. Relation to another notion of square-zero extension. In this subsection, we will
relate the category IndCoh(X)/T (X) and the functor RealSqZ to the construction considered in
[Chapter III.1, Sect. 10.1].

5.5.1. Assume for a moment that X = X ∈ Schaft and let us start with a map

T ∗(X)→ I, I ∈ Coh(X)≤−1.

On the one hand, the construction of [Chapter III.1, Sect. 5.1], produces from T ∗(X) → I

an object

RealSqZ(T ∗(X)→ I) ∈ (Schaft)nil-isom from X ⊂ (Schaft)X/.

On the other hand, setting F = DSerre
X (I), we obtain an object

(F → T (X)) ∈ IndCoh(X)/T (X).

It follows from that under the embedding

(Schaft)nil-isom from X ↪→ FormModX/,

we have an isomorphism

RealSqZ(T ∗(X)→ I) ' RealSqZ(F → T (X)),

functorially in

(T ∗(X)→ I) ∈ ((Coh(X)≤−1)T∗(X)/)
op.

Indeed, both objects satisfy the same universal property on the category FormModX/.

5.5.2. Let X be an object of PreStk, and let I ∈ QCoh(X)≤0. In this case, the construction of
[Chapter III.1, Sect. 10.1.1] produces a category (in fact, a space) SqZ(X, I), equipped with a
forgetful functor

(5.9) SqZ(X, I)→ PreStkX/ .



LIE ALGEBROIDS 25

5.5.3. Assume now that X ∈ PreStklaft-def . Assume, moreover, that I, regarded as an object of

QCoh(X)≤0 ⊂ Pro(QCoh(X)−)fake,

belongs to

Pro(QCoh(X)−)fake
laft ⊂ Pro(QCoh(X)−)fake,

see [Chapter III.1, Sect. 4.3.6] for what this means.

This condition can be rewritten as follows: for any S ∈ (Schaff
aft)/X, the pullback I|S ∈

QCoh(S)≤0 has coherent cohomologies.

5.5.4. Set

F := DSerre
X (I[1]) ∈ IndCoh(X).

We claim:

Proposition 5.5.5. There exists a canonically defined isomorphism of spaces

SqZ(X, I) ' MapsIndCoh(X)(F, T (X))

that makes the diagram

SqZ(X, I) −−−−→ PreStkX/

∼
x x

MapsIndCoh(X)(F, T (X))
RealSqZ−−−−−→ FormModX/

commute.

The rest of this subsection is devoted to the proof of Proposition 5.5.5.

5.5.6. Note that

MapsIndCoh(X)(F, T (X)) ' MapsPro(QCoh(X)−)fakelaft
(T ∗(X), I[1]).

Hence, we have a map

SqZ(X, I)→ MapsIndCoh(X)(F, T (X)),

given by the construction in [Chapter III.1, Sect. 10.2].

We will now construct the inverse map.

5.5.7. For (FX
γX→ T (X)) ∈ IndCoh(X)/T (X) set

(X ↪→ X′) := RealSqZ(γX) ∈ FormModX/ .

We claim that the object

(X ↪→ X′) ∈ PreStkX/,

constructed above has a natural structure of an object of SqZ(X, I).

It will be clear by unwinding the constructions that the two functors

SqZ(X, I)↔ MapsIndCoh(X)(F, T (X))

are inverses of each other.
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5.5.8. Let S′ be an object of Schaff
aft, equipped with a map f ′ : S′ → X′. Set

S := S′ ×
X′

X,

and let f denote the resulting map S → X. Denote FS := f !(FX).

Note that Proposition 5.4.3 implies that S → S′ has a canonical structure of square-zero
extension by means of IS := DSerre

S (FS)[−1]. Hence, it remains to show that S ∈ Schaff
aft.

5.5.9. To prove that S ∈ Schaff
aft, it is enough to show that T ∗(S)|redS ∈ Coh(redS)≤0. We have

an exact triangle

T ∗(S/S′)|redS → T ∗(S)|redS → T ∗(S′)|redS ,

so it suffices to show that T ∗(S/S′)|redS ∈ Coh(redS)≤0.

We have:

T ∗(S/S′)|redS = DSerre
redS (T (S/S′)|redS),

where DSerre is understood in the sense of [Chapter III.1, Corollary 4.3.8].

By Proposition 5.3.2, T (S/S′)|redS has a canonical filtration indexed by positive integers,
with the d-th sub-quotient isomorphic to the d graded component (oblvLie ◦ freeLie(FredS))d of
oblvLie ◦ freeLie(FredS).

The required assertion follows now from the fact that for every d,

DSerre
redS ((oblvLie ◦ freeLie(FredS))d) '

(
Lie(d)⊗ IredS [1]⊗d

)Σd
,

and hence lives in cohomological degrees ≤ −d.

5.6. What is the general framework for the definition of Lie algebroids? Here is a
general categorical framework for the definition of ‘broids’ that our construction of Lie algebroids
fits in.

5.6.1. Let C be an ∞-category with finite limits, and in particular, a final object ∗ ∈ C. Let C∗
be the corresponding pointed category, i.e., C∗ := C∗/.

Let D denote the stabilization of C∗, i.e., the category of spectrum objects on C∗. According
to [Lu1, Corollary 1.4.2.17], this is a stable ∞-category. Let RealSplitSqZ denote the forgetful
functor D→ C∗, i.e., what is usually denoted Ω∞.

5.6.2. Consider the functor

D
RealSplitSqZ−→ C∗ → C,

where the second arrow is the forgetful functor.

Let us assume that this functor has a left adjoint, to be denoted coTan.
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5.6.3. Note that for any y ∈ C we have a tautologically defined map coTan(y)→ coTan(∗).

Consider now the functor

(5.10) coTanrel : C→ DcoTan(∗)/, coTanrel(y) := coFib(coTan(y)→ coTan(∗)).

Assume that this functor also admits a left adjoint, to be denoted

RealSqZ : DcoTan(∗)/ → C.

Consider the comonad

coTanrel ◦RealSqZ

acting on DcoTan(∗)/.

The ‘broids’ that we have in mind are by definition objects of the category

(coTanrel ◦RealSqZ)-comod(DcoTan(∗)/).

The functor coTanrel of (5.10) upgrades to a functor

coTanenh
rel : C→ (coTanrel ◦RealSqZ)-comod(DcoTan(∗)/).

The above functor coTanenh
rel is not an equivalence in general, but it happens to be one in

our particular example, see Sect. 5.6.5.

5.6.4. By contrast, the category of ‘bras’ is constructed as follows. We consider the functor

RealSplitSqZ ◦[1] : D→ C∗,

and its left adjoint

C∗ → C
coTanrel−→ D;

we denote it by coTanrel by a slight abuse of notation.

The category of ‘bras’ is:

(coTanrel ◦RealSplitSqZ ◦[1])-comod(D).

The functor coTanrel upgrades to a functor

coTanenh
rel : C∗ → RealSplitSqZ ◦[1])-comod(D).

This functor coTanenh
rel is also not an equivalence in general, but it happens to be one in the

example of Sect. 5.6.5.

5.6.5. In our case, we apply the above discussion to C = (FormModX/)
op, so that

C∗ = Ptd(FormMod/X).

Recall that by [Chapter IV.3, Proposition 3.7.12], the functor

RealSplitSqZ : IndCoh(X)→ Ptd(FormMod/X)

identifies (IndCoh(X))op with the stabilization of Ptd(FormMod/X)op.

Now, we claim that the notion of ‘broid’ (resp. ‘bra’) defined above recovers the notion of
Lie algebroid on X (resp., Lie algebra in IndCoh(X)). Indeed, this follows from Corollary 5.2.5
(resp., [Chapter IV.3, Corollary 3.7.6]).
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6. IndCoh of a square-zero extension

The goal of this section is to describe the category of ind-coherent sheaves on a square-zero
extension.

First, we show that every ind-coherent sheaf on X has a canonical action of the Lie algebra
inertX . We then use this fact to give an algebraic description of the category of ind-coherent
sheaves on a square-zero extension.

Subsequently, we show that the dualizing sheaf of a square-zero extension of X is naturally
an extension of the direct image of the ‘defining ideal’ by the direct image image of the dualizing
sheaf of X.

6.1. Modules for the inertia Lie algebra. In this subsection we observe that any object of
IndCoh(−) acquires a canonical action of the inertia Lie algebra.

6.1.1. Let X be an object of PreStklaft-def . Recall the infinitesimal inertia group Inertinf
X and

its Lie algebra inertX.

By [Chapter IV.3, Sect. 5.2.1], we have:

inertX -mod(IndCoh(X)) ' IndCoh((X× X)∧),

where the forgetful functor

oblvinertX : inertX -mod(IndCoh(X))→ IndCoh(X)

corresponds to

∆!
X : IndCoh((X× X)∧)→ IndCoh(X),

and the functor

trivinertX : IndCoh(X)→ inertX -mod(IndCoh(X))

corresponds to

p!
s : IndCoh(X)→ IndCoh((X× X)∧).

6.1.2. Note, however, that the functor

p!
t : IndCoh(X)→ IndCoh((X× X)∧)

gives rise to another symmetric monoidal functor, denoted

can : IndCoh(X)→ inertX -mod(IndCoh(X)),

equipped with an isomorphism

(6.1) oblvinertX ◦ can = IdIndCoh(X) .

The datum of the functor can and the isomorphism (6.1) is equivalent to a functorial as-
signment to any F ∈ IndCoh(X) of a structure of inertX-module.

6.1.3. By construction, for F ∈ IndCoh(X), a datum of isomorphism

can(F) ' trivinertX(F) ∈ inertX -mod(IndCoh(X))

is equivalent to that of an isomorphism

p!
s(F) ' p!

t(F) ∈ IndCoh((X× X)∧).

This datum is strictly weaker than that of descent of F with respect to the groupoid (X×X)∧,
i.e., a structure of crystal.
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6.1.4. Assume for a moment that F = ΥX(E) for E ∈ QCoh(X)perf .

Consider the canonical map in LieAlg(IndCoh(X)):

inertX → ker-anch(At(E)) ' ΥX(End(E)).

By Proposition 4.1.6, the datum of such a map is equivalent to that of structure of inertX-
module on ΥX(E). One can show that this is the same structure as given by the functor can,
applied to ΥX(E).

6.2. The canonical split square-zero extension. In this section we observe that for any

object F ∈ IndCoh(X) there exists a canonical (a.k.a. Atiyah) map T (X)[−1]
!
⊗ F → F.

We will see that this map is induced by the action of the Lie algebra inertX on F, using the
fact that oblvLieAlg(inertX) = T (X)[−1].

6.2.1. Consider again the object

∆X : X→ (X× X)∧ : ps

in Ptd(FormMod/X). We have

T ((X× X)∧/X)X ' T (X).

Hence, applying [Chapter IV.3, Proposition 3.7.3] to the identity map T (X) → T (X), we
obtain a canonically defined map

RealSplitSqZ(T (X))→ (X× X)∧,

such that the composition

RealSplitSqZ(T (X))→ (X× X)∧
ps→ X

is the tautological projection RealSplitSqZ(T (X))→ X.

6.2.2. Consider now the composition

RealSplitSqZ(T (X))→ (X× X)∧
pt→ X;

we denote it by d (cf. [Chapter III.1, Sect. 4.5.1]).

By Lemma 5.1.3, the map d corresponds to a particular choice of the null-homotopy of the
map

T (X)[−1]
0→ T (X)

id−→ T (X).

Unwinding the definitions, the above null-homotopy is given by the identity map on T (X).

6.2.3. Identifying

IndCoh(RealSplitSqZ(T (X))) ' freeLie(T (X)[−1])-mod(IndCoh(X))

(see [Chapter IV.3, Sect. 5.2.1]), we obtain a functor

IndCoh(X)
can−→ IndCoh((X× X)∧)→

→ IndCoh(RealSplitSqZ(T (X))) ' freeLie(T (X)[−1])-mod(IndCoh(X)).

We denote this functor by

canfree : IndCoh(X)→ freeLie(T (X)[−1])-mod(IndCoh(X)).

Its composition with the forgetful functor

oblvfreeLie(T (X)[−1]) : freeLie(T (X)[−1])-mod(IndCoh(X))→ IndCoh(X)
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is the identity functor, i.e.,

(6.2) oblvfreeLie(T (X)[−1]) ◦ canfree ' IdIndCoh(X) .

6.2.4. The datum of the functor canfree and the isomorphism (6.2) is equivalent to a functorial
assignment to any F ∈ IndCoh(X) of a map

(6.3) αF : T (X)[−1]
!
⊗ F → F.

Note that by construction, for F′ ∈ IndCoh(XdR), the map

(6.4) α(pX,dR)!(F′) : T (X)[−1]
!
⊗ (pX,dR)!(F′)→ (pX,dR)!(F′)

is canonically trivialized.

6.2.5. By construction, the map

freeLie(T (X)[−1])→ inertX

coming from the identification oblvLie(inertX) ' T (X)[−1], induces a commutative diagram

IndCoh(X)
can−−−−→ inertX -mod(IndCoh(X))

Id

y y
IndCoh(X)

canfree−−−−−→ freeLie(T (X)[−1])-mod(IndCoh(X))

Id

y yoblvfreeLie(T (X)[−1])

IndCoh(X)
Id−−−−→ IndCoh(X).

6.3. Description of IndCoh of a square-zero extension. In this subsection we will give an
explicit description of the category IndCoh(−) on a square-zero extension.

6.3.1. Let γ : F → T (X) be an object of IndCoh(X)/T (X). Consider the following category,
denoted Annul(F, γ):

It consists of objects F′ ∈ IndCoh(F), equipped with a null-homotopy for the map

F[−1]
!
⊗ F′ → T (X)[−1]

!
⊗ F′

α′F→ F′.

We have a tautological forgetful functor

Annul(F, γ)→ IndCoh(X).

6.3.2. Consider now the object

RealSqZ(F, γ) ∈ FormModX/ .

In this subsection we will prove (cf. [Chapter III.1, Sect. 5.1.1]):

Theorem 6.3.3. There exists a canonically defined equivalence of categories

Annul(F, γ) ' IndCoh(RealSqZ(F, γ))

that commutes with the forgetful functors to IndCoh(X).

The rest of this subsection is devoted to the proof of Theorem 6.3.3.
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6.3.4. Step 1. We first construct the functor

(6.5) IndCoh(RealSqZ(F, γ))→ Annul(F, γ).

Let f : X → Y be an object of FormModX/. It follows from the definitions, that for F′ ∈
IndCoh(Y), the map

T (X/Y)[−1]
!
⊗ f !(F′)→ T (X)[−1]

!
⊗ f !(F′)

α
f!(F)−→ f !(F′)

is equipped with a canonical null-homotopy.

Applying this to Y := RealSqZ(F, γ), and composing with the tautological map

F → T (X/RealSqZ(F, γ)),

we obtain the desried functor (6.5).

6.3.5. Step 2. It is easy to see that the forgetful functor

Annul(F, γ)→ IndCoh(X)

is monadic. Let MF,γ denote the corresponding monad.

By Step 1, we obtain a map of monads

(6.6) MF,γ → U(freeLieAlgbroids(F, γ)).

To prove the proposition, it remains to show that the map (6.6) is an isomorphism.

6.3.6. Step 3. We claim that both sides in (6.6), and the map between them, can be naturally
upgraded to the category

AssocAlg
(

(Functcont(IndCoh(X), IndCoh(X)))
Fil,≥0

)
.

Indeed, this enhancement corresponds to the A1-family that deforms γ to the 0 map, as in
Sect. 5.3.5.

Since the functor ass. gr. is conservative on (Functcont(IndCoh(X, IndCoh(X)))
Fil,≥0

, it suf-
fices to show that the map (6.6) induces an isomorphism at the associated graded level.

This reduces the verification of the isomorphism (6.6) to the case when γ is the 0 map.

6.3.7. Step 4. Note that when γ = 0, the category Annul(F, γ) identifies with that of objects
F′ ∈ IndCoh(X), equipped with a map

F
!
⊗ F′ → F′.

I.e., Annul(F, 0) ' freeAssoc(F)-mod(IndCoh(X)), and the monad MF,γ is given by tensor
product with freeAssoc(F).

Similarly, the monad U(freeLieAlgbroids(F, 0)) is given by tensor product with U(freeLie(F)).

Unwinding the definitions, we obtain that the map (6.6) corresponds to the map

freeAssoc(F)→ U(freeLie(F)),

and hence is an isomorphism.

6.4. The dualizing sheaf of a square-zero extension. As a corollary of Theorem 6.3.3 we
obtain the following fact that justifies the terminology ‘square-zero extension’.
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6.4.1. Let X,F, γ be as above. Denote

X′ := RealSqZ(F, γ) ∈ FormModX/,

Let i : X→ X′ denote the canonical map.

We claim:

Proposition 6.4.2. There is a canonical fiber sequence IndCoh(X′)

(6.7) iIndCoh
∗ (ωX)→ ωX′ → iIndCoh

∗ (F)[1].

The rest of this subsection is devoted to the proof of the proposition.

6.4.3. Step 1. We will construct a fiber sequence

iIndCoh
∗ (F)→ iIndCoh

∗ (ωX)→ ωX′ .

We interpret the category IndCoh(X′) as

Annul(F, γ) ' MF,γ-mod(IndCoh(X)).

Under this identification, the functor iIndCoh
∗ corresponds to indMF,γ

.

The object ωX′ corresponds to ωX ∈ IndCoh(X), where the null-homotopy for

F[−1]
!
⊗ ωX → T (X)[−1]

!
⊗ ωX

αX−→ ωX

comes from (6.4).

6.4.4. Step 2. The datum of a map iIndCoh
∗ (F)→ iIndCoh

∗ (ωX) is equivalent to that of a map

F → MF,γ(ωX)

in IndCoh(X).

Consider the canonical filtration on MF,γ , see Sect. 6.3.6. We have a fiber sequence

ωX → MFil,≤1
F,γ (ωX)→ F.

Moreover, the composition

ωX → MFil,≤1
F,γ (ωX)→ MF,γ(ωX)→ ωX,

(where the last arrow is obtained by adjunction from iIndCoh
∗ (ωX)→ ωX′), is the identity map.

Hence, we obtain a splitting

MFil,≤1
F,γ (ωX) ' F ⊕ ωX,

and in particular a map

F → MF,γ(ωX),

whose composition with MF,γ(ωX)→ ωX is zero.

This gives rise to a map

indMF,γ
(F)→ indMF,γ

(ωX)

in MF,γ-mod(IndCoh(X)), whose composition with the map

indMF,γ
(ωX)→ ωX

is zero.
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6.4.5. Step 3. Thus, it remains to show that

oblvMF,γ
◦ indMF,γ

(F)→ oblvMF,γ
◦ indMF,γ

(ωX)→ ωX

is an exact triangle.

It is enough to establish the exactness at the associated graded level. However, in this case,
the maps in question identity with

(oblvAssoc ◦ freeAssoc(F))
!
⊗ F → (oblvAssoc ◦ freeAssoc(F))→ ωX,

and the exactness is manifest.

7. Global sections of a Lie algebroid

In this section we address the following question: one expects that global sections of a Lie
algebroid form a Lie algebra. This is done in two steps:

First for the tangent Lie algebroid and then in general. For the tangent Lie algebroid, the
idea is that its global sections can be identified with the Lie algebra of the group of (formal)
automorphisms of X. To implement the second step, we relate actions of a free Lie algebra to
free Lie algebroids.

7.1. Action of the free Lie algebra and Lie algebroids. In this subsection we show that
the quotient of a prestack with respect to an action of a free Lie algebra is given by a square-zero
extension of that prestack.

7.1.1. For V ∈ Vect, consider freeLie(V ) ∈ LieAlg(Vect). Consider the corresponding object

exp(freeLie(V )) ∈ Grp(FormMod/ pt).

Let X be an object of PreStklaft-def . Recall that according to [Chapter IV.3, Theorem 6.1.5],
the datum of an action of exp(freeLie(V )) on X is equivalent to that of map

V ⊗ ωX → T (X)

in IndCoh(X).

7.1.2. Given an action of exp(freeLie(V )) on X, consider

exp(freeLie(V ))× X

as a formal groupoid over X.

Let

X/ exp(freeLie(V ))

denote the corresponding object of FormModX/.

We claim:

Proposition 7.1.3. There is a canonical isomorphism in FormModX/

X/ exp(freeLie(V )) ' RealSqZ(V ⊗ ωX → T (X)).

The above proposition can be reformulated as follows.

Corollary 7.1.4. The Lie algebroid corresponding to the formal groupoid exp(freeLie(V ))×X

identifies canonically with

freeLieAlgbroid(V ⊗ ωX → T (X)).
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7.1.5. Proof of Proposition 7.1.3. Let f : X→ Y be an object of FormModX/. We need to show
that the datum of a map

X/ exp(freeLie(V ))→ Y

in FormModX/ is canonically equivalent to that of a map

(V ⊗ ωX → T (X))→ (T (X/Y)→ T (X))

in IndCoh(X)/T (X).

However, the latter follows from [Chapter IV.3, Theorem 6.1.5], applied to X, viewed as an
object of (PreStklaft-def)/Y.

�

7.2. The Lie algebra of vector fields. In this subsection we will show that global vector
fields on prestack form a Lie algebra.

7.2.1. Let X be an object of PreStklaft-def .

Consider the (discontinuous) functor

(p!
X)R : IndCoh(X)→ Vect,

right adjoint to p!
X.

Remark 7.2.2. Note that when X is an eventually coconnective scheme X, the functor (p!
X)R

is continuous and identifies with
Γ(X,−) ◦ΥR

X ,

where ΥR
X is the right adjoint of the functor

ΥX : QCoh(X)→ IndCoh(X), E 7→ E⊗ ωX .

7.2.3. Consider the object (p!
X)R(T (X)) ∈ Vect. We claim:

Proposition-Construction 7.2.4. The object (p!
X)R(T (X)) can be canonically lifted to an

object VF(X) ∈ LieAlg(Vect).

Proof. Recall the object
Autinf(X) ∈ Grp((FormModlaft)/ pt),

see [Chapter IV.3, Sect. 6.2.1].

Define
VF(X) := Liept(Autinf(X)).

We need to show that
oblvLie(VF(X)) ' (p!

X)R(T (X)).

This is equivalent to showing that for V ∈ Vect,

MapsLieAlg(Vect)(freeLie(V ),VF(X)) ' MapsVect(V, (p
!
X)R(T (X))).

However, the latter follows from [Chapter IV.3, Theorem 6.1.5].
�

Remark 7.2.5. Note that by the construction of Autinf(X), for h ∈ LieAlg(Vect), the space

MapsLieAlg(Vect)(h,VF(X))

identifies canonically with that of actions of the formal group exp(h) on X.

7.3. Construction of the Lie algebra structure. In this subsection we will finally construct
a structure of Lie algebra on global sections of a Lie algebroid, see Proposition 7.3.3.
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7.3.1. Let X be an object of PreStklaft-def . We define a functor

(7.1) p!
X : LieAlg(Vect)/VF(X) → LieAlgbroid(X)

as follows.

By definition, we can think of an object

(h→ VF(X)) ∈ LieAlg(Vect)/VF(X)

as a datum of action of exp(h) on X.

We let p!
X(h → VF(X)) ∈ LieAlgbroid(X) be the Lie algebroid corresponding to the formal

groupoid exp(h)× X.

7.3.2. We claim:

Proposition 7.3.3. The functor p!
X of (7.1) admits a right adjoint, denoted (p!

X)R/VF(X). The

composition

LieAlgbroid(X)
(p!X)R/VF(X)−→ LieAlg(Vect)/VF(X)

oblvLie−→ Vect/(p!
X

)R(T (X))

is the functor

LieAlgbroid(X)
oblvLieAlgbroid /T−→ IndCoh(X)/T (X)

(p!X)R−→ Vect/(p!
X

)R(T (X)) .

Proof. Follows immediately from Corollary 7.1.4. �

7.3.4. Note that by construction, we have a commutative diagram

LieAlgbroid(X)
(p!X)R/VF(X)−−−−−−−→ LieAlg(Vect)/VF(X)

ker-anch

y y
LieAlg(IndCoh(X))

(p!X)R−−−−→ LieAlg(Vect)

where the right vertical arrow is the functor

(h
γ→ VF(X)) 7→ Fib(γ).

It is easy to see, however, that the diagram, obtained from the above one by passing to left
adjoints along the vertical arrows, is also commutative:

(7.2)

LieAlgbroid(X)
(p!X)R/VF(X)−−−−−−−→ LieAlg(Vect)/VF(X)

diag

x x
LieAlg(IndCoh(X))

(p!X)R−−−−→ LieAlg(Vect),

where the right vertical arrow sends

h 7→ (h
0→ VF(X)).
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7.3.5. Let us denote by (p!
X)R the composition

LieAlgbroid(X)
(p!X)R/VF(X)−→ LieAlg(Vect)/VF(X) → LieAlg(Vect),

where the second arrow is the forgetful functor.

From (7.3), we obtain a commutative diagram

(7.3)

LieAlgbroid(X)
(p!X)R−−−−→ LieAlg(Vect)

diag

x xid

LieAlg(IndCoh(X))
(p!X)R−−−−→ LieAlg(Vect),

7.3.6. Consider now the functor

(7.4) LieAlgbroid(X)
Ωfake

−→ LieAlg(IndCoh(X))
(p!X)R−→ LieAlg(Vect).

We claim:

Proposition 7.3.7. The functor (7.4) identifies canonically with

LieAlgbroid(X)
oblvLieAlgbroid−→ IndCoh(X)

(p!X)R−→ Vect
[−1]−→ Vect

trivLie−→ LieAlg(Vect).

Proof. Using (7.3), we rewrite the functor (7.4) as

LieAlgbroid(X)
Ωfake

−→ LieAlg(IndCoh(X))
diag−→ LieAlgbroid(X)

(p!X)R−→ LieAlg(Vect).

Using Sect. 3.1.4, we further rewrite this as

(7.5) LieAlgbroid(X)→ LieAlgbroid(X)
(p!X)R−→ LieAlg(Vect)

where the first arrow is

L 7→ 0×
L

0.

This the functor LieAlgbroid(X)
(p!X)R−→ LieAlg(Vect) commutes with fiber products, the func-

tor in (7.5) identifies with

(7.6) oblvGrp ◦ ΩLie ◦ (p!
X)R.

Now, recall that according to [Chapter IV.2, Proposition 1.7.2], we have

oblvGrp ◦ ΩLie ' trivLie ◦ [−1] ◦ oblvLie.

Hence, (7.6) identifies with

trivLie ◦ [−1] ◦ oblvLie ◦ (p!
X)R ' trivLie ◦ [−1] ◦ oblvLie ◦ (p!

X)R ◦ oblvLieAlgbroid,

as required.
�

Remark 7.3.8. Propositions 7.3.3 and 7.3.7 can be summarized as follows: for a Lie algebroid
L on X, consider the corresponding object oblvLieAlgbroid(L) ∈ IndCoh(X). Of course, it does
not have a structure of Lie algebra in IndCoh(X). Yet, (p!

X)R(oblvLieAlgbroid(L)) does have a
structure of Lie algebra.
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Now, oblvLieAlgbroid(L)[−1] does have a structure of Lie algebra, but it is not obtained by
looping another object in LieAlg(IndCoh(X)). Despite this, the Lie algebra of global sec-
tions of oblvLieAlgbroid(L)[−1] is obtained by looping the Lie algebra of global sections of
oblvLieAlgbroid(L).

8. Lie algebroids as modules over a monad

In this section we develop the idea borrowed from [Fra]:

Lie algebroids on X can be expressed as modules over a certain canonically defined monad
acting on the category LieAlgbroid(IndCoh(X)). This monad is given by the operation of
‘semi-direct product’ with the inertia Lie algebra inertX.

8.1. The inertia monad. In this subsection we will work in the category of spaces. Given a
space X, we will define a monad acting on the category Grp(Spc/X), modules for which ‘almost’

reproduce the category Grpoid(X).

8.1.1. For X ∈ Spc, consider the above pair of adjoint functors

diag : Grp(Spc/X)� Grpoid(X) : Inert .

It gives rise to a monad on Grp(Spc/X) that we will denote by MInertX , and refer to it as
the inertia monad on X.

8.1.2. For H ∈ Grp(Spc/X), the object MInertX (H) ∈ Grp(Spc/X) has the following pieces of
structure:

• We have a map H → MInertX (H), corresponding to the unit in MInertX ;
• We have a map MInertX (H) → InertX , corresponding to the map H → X and the

identification

MInertX (X) = Inert(diagX) = InertX ;

• A right inverse InertX → MInertX (H) of the above map MInertX (H) → InertX , corre-
sponding to the map X → H.

It is easy to see that the maps

H → MInertX (H)→ InertX

form a fiber sequence in Grp(Spc/X).

Monads having these properties will be axiomatized in Sect. 8.2 under the name special
monads.

8.1.3. Note that the fiber sequence and the section of the second arrow

H → MInertX (H)� InertX

makes MInertX (H) look like a semi-direct product

InertX nH.

In particular, we obtain a canonically defined action of InertX on any H ∈ Grp(Spc/X).
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8.1.4. Consider the category

MInertX -mod(Grp(Spc/X)),

equipped with a pair of adjoint functors

indMInertX
: Grp(Spc/X)� MInertX -mod(Grp(Spc/X)) : oblvMInertX

.

As we shall presently see, the category MInertX -mod(Grp(Spc/X)) is ‘almost equivalent’ to

Grpoid(X).

8.1.5. By construction, the functor Inert factors though a canonically defined functor

Inertenh : Grpoid(X)→ MInertX -mod(Grp(Spc/X)),

so that

Inert(R) = oblvMInertX
(Inertenh(R)).

It is easy to see that the above functor R 7→ Inertenh(R) admits a left adjoint; we will denote
it by

diagenh : MInertX -mod(Grp(Spc/X))→ Grpoid(X).

Proposition 8.1.6. The functor diagenh is fully faithful. Its essential image consists of those
R ∈ Grpoid(X), for which the map

π0(Inert(R))→ π0(R)

is surjective.

Proof. First, we have the following general claim:

Lemma 8.1.7. Let F : C� D : G be a pair of adjoint functors between ∞-categories, where G
commutes G-split geometric realizations. Then the resulting functor

Fenh : (G ◦ F)-mod(C)→ D

is fully faithful.

The fact that diagenh is fully faithful follows immediately from the lemma. The essential
image of diagenh lies in the specified subcategory of Grpoid(X) because this is so for diag, and
because this subcategory is closed under colimits.

To prove the proposition it remains to show that the functor Inert is conservative on the
specified subcategory of Grpoid(X) and commutes with geometric realizations. The former is
straightforward. The latter follows from [Chapter IV.1, Lemma 2.1.3].

�

8.2. Special monads. In this subsection we introduce a certain class of monads that we call
special. They will be useful in studying Lie algebroids. However, we believe that this notion
has other applications as well.
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8.2.1. Assumption on the category. Let T be a pointed (∞, 1)-category; denote its final/initial
object by ∗ ∈ T.

We shall make the following general assumptions:

• (i) T admits limits;
• (ii) Sifted colimits in T exist and are universal (=commute with base change);
• (iii) Groupoids in T are universal (see [Lu1, Definition 6.1.2.14] for what this means).

Note that for any t̃→ t, the map

(8.1) |t̃•/t| → t

is a monomorphism (here t̃•/t is the simplicial object of T equal to the Čech nerve of t̃→ t).

We shall say that t̃→ t is an effective epimorphism if the map (8.1) is an isomorphism. Let
(T/t)epi be the full subcategory of T/t spanned by effective epimorphisms.

8.2.2. We shall now make the following additional assumption on T:

For any t ∈ T, the functor

(T/t)epi → T, (t̃→ t) 7→ t̃×
t
∗

is conservative.

8.2.3. Examples. Here are two examples of this situation:

One is Grp(Spc/X), where X ∈ Spc.

Another is LieAlg(O), where O is a symmetric monoidal DG category.

8.2.4. One corollary of the property in Sect. 8.2.2 is that the inclusion

Grp(T) ↪→ Monoid(T)

is an equality.

Indeed, for t ∈ Monoid(T), we need to show that the map

t× t (id,mult)−→ t× t
is an isomorphism. However, the above map is a map on (T/t)epi, where both sides map to t
via the first projection, while the base change of the above map with respect to ∗ → t is the
identity map.

8.2.5. Definition of special monad. Let (T, ∗) be as above. Let Monad(T) denote the category
of all monads acting on T.

We let Monad(T)spl ⊂ Monad(T) denote the full subcategory spanned by monads M satis-
fying the following condition:

For every t ∈ T, the maps

t→ M(t)→ M(∗)
form a fiber sequence, i.e., the map

t→ M(t) ×
M(∗)
∗

is an isomorphism.

Here t → M(t) is given by the unit of the monad M, and M(t) → M(∗) is given by the
canonical map t→ ∗. We will refer to such monads as special monads.
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8.2.6. Note that for any t ∈ T, the above map

M(t)→ M(∗)

admits a section, given by applying M to the canonical map t← ∗. So, we have a diagram

(8.2) t→ M(t)� M(∗).

8.2.7. Basic properties of special monads. Note that (8.2) implies that for t ∈ T, the map
M(t)→ M(∗) is an effective epimorphism. From here, we obtain:

Lemma 8.2.8. The monad M, considered as a mere endo-functor of T, commutes with sifted
colimits.

Proof. We have to show that for a sifted family ti the map

colimM(ti)→ M(colim ti)

is an isomorphism. By Sect. 8.2.2, it is enough to show that

(colimM(ti)) ×
M(∗)
∗ → M(colim ti) ×

M(∗)
∗ ' colim ti

is an isomorphism. However, since sifted colimits in T are universal,

(colimM(ti)) ×
M(∗)
∗ ' colim

(
M(ti) ×

M(∗)
∗
)
' colim ti,

as required. �

Corollary 8.2.9. The category M-mod(T) admits sifted colimits and the forgetful functor

oblvM : M-mod(T)→ T

commutes with sifted colimits.

8.3. Infinitesimal inertia monad. We will now adapt the material in Sect. 8.1 to the setting
of formal geometry.

8.3.1. As in Sect. 8.1, the pair of adjoint functors

diag : Grp(FormMod/X)� FormGrpoid(X) : Inertinf

defines a monad, denoted MInertinf
X

on Grp(FormMod/X).

Moreover, is easy to see that MInertinf
X

is special.

8.3.2. Consider the resulting pair of adjoint functors

(8.3) diagenh : MInertinf
X

-mod
(
Grp(FormMod/X)

)
� FormGrpoid(X) : Inertinf,enh .

We now claim:

Proposition 8.3.3. The functor diagenh and Inertinf,enh of (8.3) are mutually inverse equiv-
alences of categories.

Proof. We need to show that the functor Inertinf satisfies the conditions of the Barr-Beck-Lurie
theorem. The fact that the functor Inertinf commutes with sifted colimits (and, in particular,
geometric realizations) follows from [Chapter IV.1, Corollary 2.2.4]. Hence, it remains to see

that Inertinf is conservative. This follows, e.g., from the fact that the functor ΩX is conservative,
via the fiber sequence (1.1). �
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8.4. The inertia monad on Lie algebras and Lie algebroids. In this subsection we show
that the category LieAlg(IndCoh(X)) carries a canonical monad, given by semi-direct product
with the inertia Lie algebra, and that Lie algebroids identify with the category of modules over
this monad.

8.4.1. Let X be an object of PreStklaft-def . Recall the equivalence

LieX : Grp(FormMod/X)� LieAlg(IndCoh(X)) : exp

of [Chapter IV.3, Theorem 3.6.2].

Hence, the monad MInertinf
X

acting on Grp(FormMod/X) defines a special monad, denoted

MinertX , on LieAlg(IndCoh(X)).

8.4.2. From Proposition 8.3.3, we obtain:

Corollary 8.4.3. The category LieAlgbroid(X), equipped with the forgetful functor ker. anch.
is canonically equivalent to the category MinertX-mod(LieAlg(IndCoh(X))), equipped with the
forgetful functor oblvMinertX

.

8.4.4. By adjunction, under the identification of Corollary 8.4.3, the functor

diag : LieAlg(IndCoh(X))→ LieAlgbroid(X)

identifies with

indMinertX
: LieAlg(IndCoh(X))→ MinertX -mod(LieAlg(IndCoh(X))).

The zero Lie algebroid, i.e., the initial object of LieAlgbroid(X), corresponds to

indMinertX
(0) ∈ MinertX-mod(LieAlg(IndCoh(X))).

Under the identification of Corollary 8.4.3 the tangent algebroid T(X) (i.e., the final object
in LieAlgbroid(X)) corresponds to

0 ∈ MinertX -mod(LieAlg(IndCoh(X))).

8.4.5. Note that

MinertX(0) = oblvMinertX
◦ indMinertX

(0) = inertX .

As was mentioned already, the monad MinertX is special. Hence, for h ∈ LieAlg(IndCoh(X)),
from (8.2) we obtain a split fiber sequence

(8.4) h→ MinertX(h)� inertX .

Hence, we can think of MinertX(h) as a semi-direct product

inertX nh

for a canonically defined action of inertX on h.

Remark 8.4.6. When we forget the Lie algebra structure on h, we recover the canonical action
of inertX on objects of IndCoh(X) from Sect. 6.1.2.

Vice versa, since the functor can of Sect. 6.1.2 is symmetric monoidal, it defines an action
of inertX on every h ∈ LieAlg(IndCoh(X)), and one can show that this is the same action as
defined above.
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8.4.7. Recall the functor

Ωfake : LieAlgbroid(X)→ LieAlg(IndCoh(X)).

In terms of the equivalence of Corollary 8.4.3, it sends L ∈ LieAlgbroid(X), to the fiber of
the composite map

(8.5) inertX → MinertX(h)→ h,

where the first arrow is the canonical splitting of (8.4), and the second arrow is given by the
action of MinertX on h.

8.4.8. We have the following identifications

ker-anch ◦ diag(h) ' MinertX(h) ' inertX nh;

Ωfake ◦ diag(h) ' ΩLie(h);

oblvLieAlgbroid /T ◦ diag(h) ' (oblvLie(h)
0→ T (X)).

Remark 8.4.9. Note that there are the following two ways to relate the category LieAlgbroid(X)
to a more linear category.

One is given by Corollary 8.4.3, which implies that we can interpret LieAlgbroid(X) as
MinertX -mod(LieAlg(IndCoh(X))).

The other is as modules for the monad

oblvLieAlgbroid /T ◦ freeLieAlgbroid ' T (X/−) ◦ RealSqZ

in the category IndCoh(X)/T (X).

This former has the advantage that the monad involved, i.e., MinertX , is ‘smaller’: it is given
by semi-direct product with inertX.

The latter has the advantage that the recipient category, i.e., IndCoh(X)/T (X) is more ele-
mentary than LieAlg(IndCoh(X)).

9. Relation to classical Lie algebroids

In this section we let X be a classical scheme locally of finite type. Our goal is to show that
Lie algebroids, as defined in Sect. 2.1, whose underlying object of IndCoh is ‘classical’ are the
same as classical Lie algebroids.

9.1. Classical Lie algebroids. In this subsection we recall the notion of classical Lie algebroid
on a classical scheme and state the main result of this section, Theorem 9.1.5.

9.1.1. First, we introduce the object T naive(X) ∈ QCoh(X)♥ as follows.

Recall the functor
ΥX : QCoh(X)→ IndCoh(X)

(see [Chapter II.3, Sect. 3.2.5]). Let ΥR
X denote its right adjoint. 3

We start with T (X) ∈ IndCoh(X), and consider the object

ΥR
X(T (X)) ∈ QCoh(X).

3Since X is classical, and in particular, eventually coconnective, the functor ΥR
X is continuous, see [Ga1,

Corollary 9.6.3].
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It follows from the definitions that

ΥR
X(T (X)) ' Hom(T ∗(X),OX),

where Hom is internal Hom in the symmetric monoidal category QCoh(X).

In particular, ΥR
X(T (X)) ∈ QCoh(X)≥0. Finally, we set

T naive(X) := H0(ΥR
X(T (X))).

I.e., T naive(X) is the usual naive tangent sheaf of a classical scheme.

9.1.2. Let us recall the notion of classical Lie algebroid over X (see [BB, Sect. 2]).

By definition, this is a data of

(1) Lcl ∈ QCoh(X)♥;
(2) a map anch : Lcl → T naive(X);
(3) a Lie bracket on Lcl, which is a differential operator of order 1,

such that

• The map anch is compatible with the Lie brackets;
• The [ξ1, f · ξ2] = f · [ξ1, ξ2] + (anch(ξ1)(f)) · ξ2.

9.1.3. Let LieAlgbroid(X)cl denote the category of classical Lie algebroids on X. We have a
tautological forgetful functor

oblvLieAlgbroidcl /Tnaive : LieAlgbroid(X)cl → (QCoh(X)♥)/Tnaive(X),

and it is easy to see that it admits a left adjoint, denoted freeLieAlgbroidcl .

The pair

freeLieAlgbroidcl : (QCoh(X)♥)/Tnaive(X) � LieAlgbroid(X)cl : oblvLieAlgbroidcl /Tnaive

is easily seen to be monadic.

9.1.4. The goal of this section is to prove the following:

Theorem 9.1.5. There exists a canonical equivalence between LieAlgbroid(X)cl and the full
subcategory of LieAlgbroid(X) that consists of those objects for which oblvAlgbroid(L) belongs
to the essential image of QCoh(X)♥ under the (fully faithful) functor

ΥX : QCoh(X)→ IndCoh(X).

This equivalence makes the diagram

LieAlgbroid(X)cl −−−−→ LieAlgbroid(X)

oblv
LieAlgbroidcl /Tnaive

y yoblvLieAlgbroid /T

(QCoh(X)♥)/Tnaive(X)
ΥX−−−−→ IndCoh(X)/T (X)

commute.

9.2. The locally projective case. In this subsection we consider a special case of Theo-
rem 9.1.5 where the groupoid corresponding to the algebroid in question is itself classical and
formally smooth over X.
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9.2.1. Let QCoh(X)♥,proj,ℵ0 ⊂ QCoh(X)♥ be the full subcategory consisting of objects that
are Zariski-locally projective and countably generated.

As a first step towards the proof of Theorem 9.1.5 we will establish its particular case:

Theorem 9.2.2. The following four categories are naturally equivalent:

(a) The full subcategory of LieAlgbroid(X)cl, consisting of those Lcl, for which the object

oblvLieAlgbroidcl /Tnaive(Lcl) ∈ QCoh(X)♥

belongs to QCoh(X)♥,proj,ℵ0

(a’) The full subcategory of FormGrpoid(X), spanned by those objects R that:

• R is an indscheme, which is classical and ℵ0 (see [GaRo1, Sect. 1.4.11] for what this
means);
• R is classically formally smooth (see [GaRo1, Defn. 8.1.1] for what this means) relative

to X with respect to the projection ps : R→ X.

(b) The full subcategory of LieAlgbroid(X), consisting of those objects L, for which

oblvAlgbroid(L) ∈ IndCoh(X),

belongs to the essential image under ΥX of the full subcategory

QCoh(X)♥,proj,ℵ0 ⊂ QCoh(X).

(b’) The full subcategory of FormGrpoid(X), spanned by those objects R that:

• R is an indscheme, which is weakly ℵ0 (see [GaRo1, Sect. 1.4.11] for what this means);
• R is formally smooth relative to X (see [Chapter III.1, Sect. 7.3.1] for what this means)

with respect to the projection ps : R→ X.

The rest of the subsection is devoted to the proof of Theorem 9.2.2.

9.2.3. The equivalence of (a) and (a’). This is standard in the theory of classical Lie algebroids.

9.2.4. The equivalence of (b) and (b’). Follows by combining [Chapter III.2, Corollary 3.3.5],
[GaRo1, Corollary 8.3.6] and the following fact (see [BD, Proposition 7.12.6 and Theorem
7.12.8]):

Lemma 9.2.5. Let F ∈ QCoh(X)♥ be Zariski-locally countably generated. Then the following
conditions are equivalent:

(i) F is Zariski-locally projective.

(ii) The functor

QCoh(X)♥ → Vect♥, F′ 7→ H0(Γ(X,F ⊗ F′))

can be written as

colim
i∈Z≥0

Hom(Fi,F
′),

where the maps Fi → Fj for j ≥ i are surjective.

9.2.6. The equivalence of (a’) and (b’). This is a relative version of [GaRo1, Corollary 9.1.7].

9.3. The general case. In this subsection we will finish the proof of Theorem 9.1.5 by reducing
the general case to the projective one by a trick that involves monads.
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9.3.1. As will be evident from the proof, the assertion of Theorem 9.1.5 is Zariski-local on X.
So, henceforth, we will assume that X is affine.

Consider the full subcategories

(QCoh(X)♥,proj,ℵ0)/Tnaive(X) ⊂ (QCoh(X)♥)/Tnaive(X) ⊂ (QCoh(X)≤0)/ΥRX(T (X))

and

(ΥX(QCoh(X)♥,proj,ℵ0))/T (X) ⊂ (ΥX(QCoh(X)♥))/T (X) ⊂ (ΥX(QCoh(X)≤0))/T (X) ⊂
⊂ IndCoh(X)/T (X).

The functor ΥX defines equivalences

(QCoh(X)♥,proj,ℵ0)/Tnaive(X)
∼−−−−→ (ΥX(QCoh(X)♥,proj,ℵ0))/T (X)y y

(QCoh(X)♥)/Tnaive(X)
∼−−−−→ (ΥX(QCoh(X)♥))/T (X)y y

(QCoh(X)≤0)/Tnaive(X)
∼−−−−→ (ΥX(QCoh(X)≤0))/T (X)

Note also that the inclusions

(QCoh(X)♥)/Tnaive(X) ⊂ (QCoh(X)≤0)/Tnaive(X)

and
(ΥX(QCoh(X)♥))/T (X) ⊂ (ΥX(QCoh(X)≤0))/T (X)

admit left adjoints, given by truncation. We denote these functors in both contexts by τ≥0
QCoh.

9.3.2. Consider the monad oblvLieAlgbroid /T ◦ freeLieAlgbroid acting on IndCoh(X)/T (X). We
have:

Lemma 9.3.3. The monad oblvLieAlgbroid /T ◦ freeLieAlgbroid preserves the full subcategories

(ΥX(QCoh(X)♥,proj,ℵ0))/T (X) ⊂ (ΥX(QCoh(X)≤0))/T (X) ⊂ IndCoh(X)/T (X).

The map of functors

τ≥0
QCoh ◦ (oblvLieAlgbroid /T ◦ freeLieAlgbroid)→

→ τ≥0
QCoh ◦ (oblvLieAlgbroid /T ◦ freeLieAlgbroid) ◦ τ≥0

QCoh

is an isomorphism.

Proof. Follows from Proposition 5.3.2. �

9.3.4. From Lemma 9.3.3 we obtain that the endo-functor

τ≥0
QCoh ◦ (oblvLieAlgbroid /T ◦ freeLieAlgbroid)

of
(ΥX(QCoh(X)♥))/T (X) → (ΥX(QCoh(X)♥))/T (X)

has a natural structure of monad, and the category

(9.1) τ≥0
QCoh ◦ (oblvLieAlgbroid /T ◦ freeLieAlgbroid)-mod((ΥX(QCoh(X)♥))/T (X))

identifies canonically with the full subcategory of

(oblvLieAlgbroid /T ◦ freeLieAlgbroid)-mod((ΥX(QCoh(X)≤0))/T (X)),
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equal to the preimage of

(ΥX(QCoh(X)♥))/T (X) ⊂ (ΥX(QCoh(X)≤0))/T (X)

under the forgetful functor

(oblvLieAlgbroid /T ◦ freeLieAlgbroid)-mod((ΥX(QCoh(X)≤0))/T (X))→
→ (ΥX(QCoh(X)≤0))/T (X).

Thus, we obtain that the full subcategory of LieAlgbroid(X) appearing in Theorem 9.1.5,
identifies canonically with the category (9.1).

Hence, to prove Theorem 9.1.5, it suffices to show that under the equivalence (of ordinary
(!) categories)

(QCoh(X)♥)/Tnaive(X) ' (ΥX(QCoh(X)♥))/T (X),

the monad
oblvLieAlgbroidcl /Tnaive ◦ freeLieAlgbroidcl

identifies with the monad

τ≥0
QCoh ◦ (oblvLieAlgbroid /T ◦ freeLieAlgbroid).

9.3.5. Note, however, that from Theorem 9.2.2, we obtain that the two monads are canonically
identified when restricted to

(QCoh(X)♥,proj,ℵ0)/Tnaive(X) ' (ΥX(QCoh(X)♥,proj,ℵ0))/T (X).

Moreover, it is easy to see that the monad oblvLieAlgbroidcl /Tnaive ◦ freeLieAlgbroidcl commutes
with sifted colimits. The corresponding fact holds also for the monad

τ≥0
QCoh ◦ (oblvLieAlgbroid /T ◦ freeLieAlgbroid),

by Corollary 8.2.9.

9.3.6. Now, the desired isomorphism of monads follows from the following fact: for any object
γ ∈ (QCoh(X)♥)/Tnaive(X), the category(

(QCoh(X)♥,proj,ℵ0)/Tnaive(X)

)
/γ

is sifted and the canonical map

colim
γ′∈((QCoh(X)♥,proj,ℵ0 )/Tnaive(X))/γ

→ γ

is an isomorphism.

9.4. Modules over classical Lie algebroids. In this subsection we compare we will com-
pare the category L-mod(IndCoh(X)), as defined above, with the corresponding category for a
classical Lie algebroid on a classical scheme.

9.4.1. Let X be a classical scheme of finite type, and let Lcl be a classical Lie algebroid on X.
Throughout this subsection we wil assume that Lcl is flat as an OX -module.

Let
(QCoh(X ×X)∆X

)♥rel.flat

be the monoidal category introduced in [Chapter III.4, Sect. 4.1.1].

According to [BB, Sect. 2], to Lcl one associates its universal enveloping algebra U(Lcl)

which is an associative algebra object in (QCoh(X ×X)∆X
)♥rel.flat.
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9.4.2. We have a canonically defined fully faithful monoidal functor

(QCoh(X ×X)∆X
)♥rel.flat → QCoh(X ×X)

and a monoidal equivalence

QCoh(X ×X)→ Functcont(QCoh(X),QCoh(X)).

Composing, we obtain a fully faithful functor

(9.2) AssocAlg((QCoh(X ×X)∆X
)♥rel.flat)→ AssocAlg (Functcont(QCoh(X),QCoh(X))) .

Hence, we obtain that U(Lcl) gives rise to a monad acting on QCoh(X). In particular, it
makes sense to talk about the category

U(Lcl)-mod(QCoh(X)).

This is, by definition, the category of modules over the classical Lie algebroid Lcl, denoted
Lcl-mod(QCoh(X)).

Remark 9.4.3. The category Lcl-mod(QCoh(X)) has a t-structure uniquely characterized by
the property that the forgetful functor to QCoh(X) is t-exact. Now, as in [GaRo2, Proposition
4.7.3] one can show that if Lcl is flat as an object of QCoh(X), then the naturally defined
functor

D((Lcl-mod(QCoh(X)))♥)→ Lcl-mod(QCoh(X))

is an equivalence.

9.4.4. Let L be the object of LieAlgbroid(X), corresponding to Lcl under the equivalence of
Theorem 9.1.5.

The next assertion follows from [Chapter IV.5, Theorem 6.1.2] (which will be proved inde-
pendently):

Lemma 9.4.5. For Lcl flat as an OX-module, the endo-functor oblvAssoc(U(L)) preserves the
essential image of the (fully faithful) functor ΥX : QCoh(X)→ IndCoh(X).

Hence, we obtain that U(L) defines a monad, denoted U(L)|QCoh(X), on QCoh(X). Moreover,
the functor ΥX gives rise to a fully faithful functor

U(L)-mod(QCoh(X))→ U(L)-mod(IndCoh(X)) := L-mod(IndCoh(X)).

9.4.6. We are going to prove:

Theorem 9.4.7. The monads U(Lcl) and U(L)|QCoh(X) on QCoh(X) are canonically isomor-
phic.

As a corollary, we obtain:

Corollary 9.4.8. The category Lcl-mod(QCoh(X)) is canonically equivalent to the full subcat-
egory of L-mod(IndCoh(X)), consisting of objects, whose image under the forgetful functor

L-mod(IndCoh(X))→ IndCoh(X)

lies in the essential image of ΥX : QCoh(X)→ IndCoh(X).

9.4.9. Proof of Theorem 9.4.7, Step 1. First, the assumption on Lcl and [Chapter IV.5, Theorem
6.1.2] imply that U(L)|QCoh(X) lies in the essential image of the functor (9.2).

Hence, the assertion of the the theorem is about comparison of associative algebras in the
ordinary monoidal category (QCoh(X ×X)∆X

)♥rel.flat.

In particular, the assertion is Zariski-local on X, and hence we can assume that X is affine.
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9.4.10. Proof of Theorem 9.4.7, Step 2. We claim that the stated isomorphism of associative
algebras holds when

oblvLieAlgbroidcl(Lcl) ∈ QCoh(X)♥,proj,ℵ0 .

Indeed, this follows by unwinding the construction of the equivalence in Theorem 9.2.2.

9.4.11. Proof of Theorem 9.4.7, Step 3. We claim that the assignments

L U(Lcl) and L U(L)|QCoh(X)

commute with sifted colimits.

Indeed, for U(Lcl) this follows from the construction. For U(L)|QCoh(X), this follows from
Proposition 2.1.3(a) and [Chapter IV.5, Theorem 6.1.2].

9.4.12. Proof of Theorem 9.4.7, Step 4. The required isomorphism follows from Step 3, since
our Lcl can be written as a sifted colimit of Lie algebroids as in Step 2, see Sect. 9.3.6.

Appendix A. An application: ind-coherent sheaves on push-outs

In this section we will use the material from Sect. 6.3 to show that the categories IndCoh(−)
and QCoh(−)perf behave well with respect to push-outs of affine schemes.

A.1. Behavior of ind-coherent sheaves with respect to push-outs. In this subsection
we will consider the case of IndCoh.

A.1.1. Let

(A.1)

X ′1
f ′−−−−→ X ′2

g1

x xg2
X1

f−−−−→ X2

be a push-out diagram in Schaff
aft, where the vertical maps are closed embeddings, and the

horizontal maps are finite. Consider the corresponding commutative diagram of categories

(A.2)

IndCoh(X ′1)
(f ′)!←−−−− IndCoh(X ′2)

g!1

y yg!2
IndCoh(X1)

f !

←−−−− IndCoh(X2).

The goal of this subsection is to prove the following result:

Theorem A.1.2. The diagram (A.2) is a pullback square.

The rest of this subsection is devoted to the proof of Theorem A.1.2.
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A.1.3. Reduction step 1. Note that in [Chapter III.1, Proposition 1.4.5] we showed that the
functor

(A.3) IndCoh(X ′2)→ IndCoh(X ′1) ×
IndCoh(X1)

IndCoh(X2)

is fully faithful. So, it remains to show that the functor (A.3) is essentially surjective.

Let IndCoh(X ′1)X1 ⊂ IndCoh(X ′1) (resp., IndCoh(X ′2)X2 ⊂ IndCoh(X ′2)) be the full subcat-
egory consisting of objects with set-theoretic support on X1 (resp., X2). It is easy to see that
it is sufficient to show that the corresponding functor

(A.4) IndCoh(X ′2)X2 → IndCoh(X ′1)X1 ×
IndCoh(X1)

IndCoh(X2)

is an equivalence.

Indeed, the essential surjectivity of (A.4) will imply the same property of (A.3), which follows
from the localization sequences of DG categories

IndCoh(X ′2)X2
→ IndCoh(X ′2)→ IndCoh(X ′2 \X2)

and

IndCoh(X ′1)X1 ×
IndCoh(X1)

IndCoh(X2)→ IndCoh(X ′1) ×
IndCoh(X1)

IndCoh(X2)→ IndCoh(X ′2\X2).

A.1.4. Reduction step 2. The formal completion of X1 in X ′1 can be written as a filtered colimit
of schemes X ′1,α, where each X1 → X ′1,α is a nilpotent embedding. Then the formal completion
of X2 in X ′2 can be written as the colimit of the schemes

X ′2,α := X ′1,α t
X1

X2,

see [GaRo1, Proposition 6.7.4].

The functors

IndCoh(X ′2)X2
→ lim

α
IndCoh(X ′2,α) and IndCoh(X ′1)X1

→ lim
α

IndCoh(X ′1,α)

are both equivalences (see [GaRo1, Proposition 7.4.5]).

This reduces us to the case when X1 → X ′1 is a nilpotent embedding.

A.1.5. Reduction step 3. Using [Chapter III.1, Proposition 5.5.3] and the convergence property
of IndCoh (see [Chapter II.2, Proposition 6.4.3]) we can further reduce to the case when the
map

X1 → X ′1
has a structure of a square-zero extension.

A.1.6. Proof in the case when X1 → X ′1 is a square-zero extension. Let the square-zero exten-
sion X1 → X ′1 be given by a map

T ∗(X1)→ F, F[−1] ∈ Coh(X1).

Then X2 → X ′2 is also a square-zero extension, given by

T ∗(X2)
(df)∗−→ f∗(T

∗(X1))→ f∗(F).

Denote
F̃1 := DSerre

X1
(F), F̃2 := DSerre

X2
(f∗(F)).

Since f is finite, we have

f IndCoh
∗ (F̃1) ' F̃2.
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According to Theorem 6.3.3, the category IndCoh(X ′1) can be described as consisting of pairs
F′1 ∈ IndCoh(X1), equipped with a null-homotopy of the composition

F̃1[−1]
!
⊗ F′1 → T (X1)[−1]

!
⊗ F′1 → F′1,

and similarly for IndCoh(X ′2).

Now, this makes the assertion of Theorem A.1.2 manifest: an object of the fiber prod-
uct IndCoh(X ′1) ×

IndCoh(X1)
IndCoh(X2) is an object F′2 ∈ IndCoh(X2), equipped with a null-

homotopy for the composition

F̃1[−1]
!
⊗ f !(F′2)→ T (X1)[−1]

!
⊗ f !(F′2)→ f !(F′2),

which by adjunction is the same as a null-homotopy of the map

f IndCoh
∗ (F̃1[−1]

!
⊗ f !(F′2))→ f IndCoh

∗ (T (X1)[−1]
!
⊗ f !(F′2))→ F′2,

while the latter, by the projection formula identifies with the map

f IndCoh
∗ (F1)[−1]

!
⊗ F′2 → f IndCoh

∗ (T (X1))[−1]
!
⊗ F′2 → F′2,

and the latter map identifies with

F̃2[−1]
!
⊗ F′2 → T (X2)[−1]

!
⊗ F′2 → F′2.

�

A.2. Deformation theory for the functor QCoh(−)perf . In this subsection we will study
the behavior of the category QCoh(−)perf with respect to push-outs.

A.2.1. First, we claim that Theorem A.1.2 admits the following corollary:

Corollary A.2.2. Under the assumptions of Theorem A.1.2, the diagram

(A.5)

QCoh(X ′1)perf (f ′)∗←−−−− QCoh(X ′2)perf

g∗1

y yg∗2
QCoh(X1)perf f∗←−−−− QCoh(X2)perf

is a pullback square.

Proof. Follows from the fact that we have a commutative diagram of symmetric monoidal
functors

QCoh(X ′2) −−−−→ QCoh(X ′1) ×
QCoh(X1)

QCoh(X2)

Υ

y yΥ

IndCoh(X ′2) −−−−→ IndCoh(X ′1) ×
IndCoh(X1)

IndCoh(X2),

combined with [Chapter II.3, Lemma 3.3.7]:

Indeed, Theorem A.1.2 implies that the bottom horizontal arrow identifies the category of
dualizable objects in IndCoh(X ′2) with

IndCoh(X ′1)dualizable ×
IndCoh(X1)dualizable

IndCoh(X2)dualizable.

�
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A.2.3. We now claim that the diagram (A.5) is a pullback square for any diagram of affine
schemes (A.2), in which the vertical arrows are closed embeddings and horizontal maps finite.

Indeed, the laft property of the functor QCoh(−)perf , we reduce the assertion to the case

when X1, X
′
1 and X2 belong to Schaff

aft.

A.2.4. We are now ready to finish the proof of the fact that the prestack Perf admits deformation
theory.

From Corollary A.2.2 it follows that Perf admits pro-cotangent spaces and is infinitesimally
cohesive. Hence, it remains to show that it admits a pro-cotangent complex.

By [Chapter III.1, Lemma 4.2.4(b)], it suffices to prove the following. Let f : X1 → X2 be a

map in Schaff
aft, and let F1 be an object of Coh(X1)≤0, and let (X1)F1

denote the corresponding
split square-zero extension of X1.

For every F2 ∈ Coh(X2)≤0 equipped with a map f∗(F2)→ F1, consider the map

(X1)F1
→ (X2)F2

,

and the corresponding functor

QCoh((X2)F2)perf → QCoh((X1)F1)perf ×
QCoh(X1)perf

QCoh(X2)perf .

We need to show that the functor

colim
F2∈Coh(X2)≤0,f∗(F2)→F1

QCoh((X2)F2
)perf → QCoh((X1)F1

)perf ×
QCoh(X1)perf

QCoh(X2)perf

is an equivalence.

We will deduce this from Theorem 6.3.3 and [Chapter II.3, Lemma 3.3.7].

A.2.5. We rewrite the category QCoh((X1)F1
)perf as consisting of pairs F′ ∈ QCoh(X1)perf ,

equipped with a map

DSerre
X1

(F1)
!
⊗ΥX1

(F′)→ ΥX1
(F′)

in IndCoh(X1), which is equivalent to a map

End(F′)→ F1,

in QCoh(X1), and similarly for QCoh((X2)F2
)perf .

For a given F′ ∈ QCoh(X2)perf , denote E := End(F′) ∈ QCoh(X2)perf . Thus, we have to
show that the map

(A.6) colim
F2∈Coh(X2)≤0,f∗(F2)→F1

MapsQCoh(X2)(E,F2)→

→ MapsQCoh(X1)(f
∗(E),F1) ' MapsQCoh(X2)(E, f∗(F1))

is an isomorphism.
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A.2.6. We note that the index category

F2 ∈ Coh(X2)≤0, f∗(F2)→ F1

that appears in the above formula identifies by adjunction with

F2 ∈ Coh(X2)≤0,F2 → f∗(F1),

i.e., with (Coh(X2)≤0)/f∗(F1).

Since f∗(F1) ∈ QCoh(X2)≥0, this category is filtered and the map

colim
F2∈Coh(X2)≤0,F2→f∗(F1)

F2 → f∗(F1)

is an isomorphism.

Now, the isomorphism in (A.6) follows from the fact that E ∈ QCoh(X2) is compact.


