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2 STRAIGHTENING AND YONEDA FOR (∞,2)-CATEGORIES

Introduction

0.1. What is done in this Chapter? The goal of this Chapter is to construct the 2-
categorical Yoneda embedding

(0.1) YonS ∶ S↪ Funct(S1 -op,1 -Cat), S ∈ 2-Cat,

which will, in turn, be needed for the proof of the Adjunction Theorem in [Chapter A.3].

As in the case of (∞,1)-categories, in the present 2-categorical context, a natural approach
to the construction of the functor YonS is via the straightening/unstraightening procedure.

The latter is an equivalence between the (∞,2)-category of functors S1 -op
→ 1 -Cat and the

(∞,2)-category of 1-Cartesian fibrations over S.

0.1.1. Let us comment on the notion of 1-Cartesian fibration over a given S ∈ 2-Cat.

The space of such will be a full subspace in (2 -Cat/S)
Spc, and it is singled out by certain

explicit conditions; the actual definition is given in Sect. 1.2.1. The definition is rigged so that
the datum of a 1-Cartesian fibration over S is equivalent to that of a functor S1 -op

→ 1 -Cat.

As to the 2-categorical structure, there are actually two natural (∞,2)-categories

(1 -Cart/S)strict ⊂ (1 -Cart/S)2 -strict,

one being a 1-full subcategory in the other.

In Sect. 1 we state the sub-main result of this Chapter, Corollary 1.2.6, that says that there
is a canonical ‘straightening/unstraightening’ equivalence

(0.2) (1 -Cart/S)2 -strict ≃ Funct(S1 -op,1 -Cat)right-lax,

which induces an equivalence

(1 -Cart/S)strict ≃ Funct(S1 -op,1 -Cat).

0.1.2. Here is, however, a catch: the above straightening/unstraightening assertion (i.e., the
equivalence (0.2)) is too weak to be amenable to a natural proof.

Namely, the equivalence (0.2) does not contain enough functoriality (the mechanics of how
this happens can be seen by tracing through the proof of the main theorem of this Chapter,
Theorem 1.1.8; see also Sect. 0.1.5 below).

0.1.3. To remedy this, we engage a more ambitious straightening/unstraightening procedure.

Namely, in Sect. 1 we introduce the notion of 2-Cartesian fibration (over a given (∞,2)-
category S). Again, the space of such is a full subspace of (2 -Cat/S)

Spc, and it is singled out
by certain explicit conditions specified in Sect. 1.1.1.

As in the case of 1-Cartesian fibrations, there two natural (∞,2)-categories

(2 -Cart/S)strict ⊂ (2 -Cart/S)2 -strict,

one being a 1-full subcategory in the other.

The 2-categorical straightening/unstraightening assertion, Theorem 1.1.8, which is the main
result of this Chapter, says that there exists a canonical equivalence

(0.3) (2 -Cart/S)2 -strict ≃ Funct(S1 -op,2 -Cat)right-lax,

which induces an equivalence

(2 -Cart/S)strict ≃ Funct(S1 -op,2 -Cat).
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0.1.4. The proof of Theorem 1.1.8 is spread over Sects. 2-4. Let us indicate its main steps.

In Sect. 2 we establish the particular case of the isomorphism (0.3), when S is the interval
[n]. This is done by a combinatorial procedure, which essentially amounts to unwinding the
definitions.

In Sect. 3 we realize 2-Cartesian fibrations over the Gray product S1 ⊛ S2 as an explicit full
subspace in 2-Cat/S1×S2 .

In Sect. 4 we use the results of the previous two sections to establish the isomorphism (0.3) at
the level of spaces underlying the (∞,2)-categories on both sides, in the case when S = [m]⊛[n].

Using [Chapter A.1, Theorems 4.1.3 and 5.2.3] we deduce from this that the isomorphism
(0.3) holds at the level of spaces for any S ∈ 2-Cat.

0.1.5. So, far, the same strategy would have worked if we worked with 1-Cartesian fibrations
and 1 -Cat instead of 2 -Cat as a target.

However, now, in the 2-Cartesian context, we observe that the statement that we are trying
to prove has enough functoriality, that it allows to formally deduce the equivalence (0.3) from
just knowing it at the level of the underlying spaces.

0.2. What else is done in this Chapter?

0.2.1. As was mentioned before, our actual goal is to construct the Yoneda embedding (0.1)
(and prove its fully faithfulness).

Having proved the 2-categorical straightening theorem in the earlier sections, the construction
of the Yoneda embedding and the proof of its properties is carried out in Sect. 5.

0.2.2. In addition, this Chapter contains two sections in the Appendix.

In Sect. A, given S ∈ 2-Cat, we give an explicit description of the universal non-unital right-lax
functor out of S:

S ιS
⇢ RLaxnon-untl(S),

so that any non-unital right-lax functor F ∶ S⇢ T is obtained as

F̃ ○ ιS,

for a canonically defined strict functor F̃ ∶ RLaxnon-untl(S) → T.

The explicit description of RLaxnon-untl(S) is used in Sect. 3.

0.2.3. In Sect. B we discuss the condition on a functor S → T between (∞,2)-categories to be
a localization on 1-morphisms. Informally, this means that T is obtained from S by inverting
certain 2-morphisms.

This notion is used in the description of 2-Cartesian fibrations over Gray products, also in
Sect. 3.

1. Straightening for (∞,2)-categories

In this section we define the notion of a 2-Cartesian fibration of (∞,2)-categories and formu-
late the main result in this Chapter: this is the straightening theorem that says that 2-Cartesian
fibrations over a given (∞,2)-category S are equivalent to functors S1 -op

→ 2 -Cat.
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1.1. The notion of 2-Cartesian fibration. In this subsection we will introduce the notion
of 2-Cartesian fibration between (∞,2)-categories.

When defining it, one should basically ‘follow one’s nose’, keeping in mind that a 2-Cartesian
fibration over S should be the same as a functor S1 -op

→ 2 -Cat, while adapting the definition
of Cartesian fibration in the context of (∞,1)-categories.

1.1.1. Let F ∶ T → S be a functor between (∞,2)-categories. We shall say that a 1-morphism

t0
α
→ t1 is 2-Cartesian over S if for every t ∈ T, the functor

MapsT(t, t0) →MapsT(t, t1) ×
MapsS(F (t),F (t1))

MapsS(F (t), F (t0)),

given by composition with α, is an equivalence of (∞,1)-categories.

Definition 1.1.2. We shall say that F is a 2-Cartesian fibration if the following conditions
hold:

(1) For every t ∈ T and a 1-morphism s′
β
→ F (t) there exists a 2-Cartesian 1-morphism

t′
α
→ t with F (α) ≃ β.

(2) For every t′, t ∈ T, the functor

Maps(t′, t) →Maps(F (t′), F (t))

is a coCartesian fibration (of (∞,1)-categories), and for any t̃′ → t′ and t → t̃, the
corresponding functors

Maps(t′, t) →Maps(t̃′, t) and Maps(t′, t) →Maps(t′, t̃),

given by composition, send arrows that are coCartesian over Maps(F (t′), F (t)) to
arrows that are coCartesian over Maps(F (t̃′), F (t)) and Maps(F (t′), F (t̃)), respec-
tivelly.

1.1.3. Let us assume that condition (1) above holds, and let us write down the second condition
in more explicit terms.

Let αS ∶ s
′
→ s be a 1-morphism in S, and let t be an object of T that lies over s. Then

condition (1) implies that there exists a canonically defined object t′ ∈ T that lies over s′ and a
1 -morphism

αT ∶ t
′
→ t

that covers αS.

Suppose now that we are given a pair of 1-morphisms

α1
S, α

2
S ∶ s

′
⇉ s

and a 2-morphism α1
S
φS
Ð→ α2

S. Then the second condition says that there exists a 1-morphism

β ∶ t1′ → t2′

and a 2-morphism

α1
T

φT
Ð→ α2

T ○ β,

with the following property: for any t̃′ in the fiber of T over s′, and a pair of morphisms

γ1 ∶ t̃′ → t1′ and γ2 ∶ t̃′ → t2′,

composition with φT defines an isomorphism from the space of 2-morphisms

β ○ γ1 → γ2
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to the space of 2-morphisms

α1
T ○ γ1 → α2

T ○ γ2

covering φS.

Furthermore, the formation of β is compatible in the natural sense with compositions

(α1
S, α

2
S) ↦ (α̃S ○ α

1
S, α̃S ○ α

2
S), α̃S ∶ s→ s̃

and

(α1
S, α

2
S) ↦ (α1

S ○ α̃
′

S, α
2
S ○ α̃

′

S), α̃′S ∶ s̃
′
→ s′.

1.1.4. Let 2 -Cart/S ⊂ 2 -Cat/S denote the full subcategory spanned by 2-Cartesian fibrations.

Let (2 -Cart/S)1-strict ⊂ 2 -Cart/S be the 1-full subcategory, where we allow as 1-morphisms
those functors T1 → T2 over S that send 1-morphisms in T1 that are 2-Cartesian over S to
1-morphisms in T2 that are 2-Cartesian over S.

1.1.5. Let (2 -Cart/S)2-strict ⊂ 2 -Cart/S be the 1-full subcategory, where we impose the fol-
lowing condition on 1-morphisms:

Given F1 ∶ T1 → S and F2 ∶ T2 → S, we consider those functors G ∶ T1 → T2 over S such that
the corresponding functors

MapsT1
(t′1, t) →MapsT2

(G(t′1),G(t))

send arrows that are coCartesian over MapsS(F1(t
′

1), F1(t)) to arrows that are coCartesian
over

MapsS(F2 ○G(t′1), F2 ○G(t)) ≃ MapsS(F1(t
′

1), F1(t)).

1.1.6. Let (2 -Cart/S)strict ⊂ 2 -Cart/S be the 1-full subcategory equal to

(2 -Cart/S)1-strict ∩ (2 -Cart/S)2-strict.

Denote also

2-Cart/S ∶= (2 -Cart/S)
1-Cat, (2-Cart/S)2-strict ∶= ((2 -Cart/S)2-strict)

1-Cat

and

(2-Cart/S)strict ∶= ((2 -Cart/S)strict)
1-Cat.

1.1.7. Our goal in the next few sections will be to prove:

Theorem-Construction 1.1.8.

(a) There exists a canonical equivalence

(2 -Cart/S)2 -strict ≃ Funct(S1 -op,2 -Cat)right-lax,

functorial in S.

(b) Under the equivalence of point (a), the 1-full subcategories

(2 -Cart/S)strict ⊂ (2 -Cart/S)2 -strict and Funct(S1 -op,2 -Cat) ⊂ Funct(S1 -op,2 -Cat)right-lax

correspond to one another.

1.2. The notion of 1-Cartesian fibration. According to Theorem 1.1.8, 2-Cartesian fibra-
tions over S correspond to functors S1 -op

→ 2 -Cat.

In this subsection we will define the notion of 1-Cartesian fibration. Those will form a full
subcategory among 2-Cartesian fibrations, and they will correspond to functors S1 -op

→ 1 -Cat.
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1.2.1. Let F ∶ T→ S be a functor between (∞,2)-categories.

Definition 1.2.2. We shall say that F is a 1-Cartesian fibration if the following conditions
hold:

(1) The induced functor

T1-Cat
→ S1-Cat

is a Cartesian fibration;

(2) For every t′, t ∈ T, the functor

MapsT(t
′, t) →MapsS(F (t′), F (t))

is a coCartesian fibration in spaces.

If F ∶ T→ S is a 1-Cartesian fibration, we will say that a 1-morphism in T is Cartesian if the
corresponding morphism in T1-Cat is Cartesian over S1-Cat.

1.2.3. Let 1 -Cart/S denote the full subcategory of 2 -Cat/S formed by 1-Cartesian fibrations.

We let (1 -Cart/S)strict be the 1-full subcategory of 1 -Cart/S, where we restrict morphisms

to those functors T1 → T2 over S, such that send arrows in (T1)
1-Cat Cartesian over S1-Cat to

arrows in (T2)
1-Cat with the same property.

Denote also

1-Cart/S ∶= (1 -Cart/S)
1-Cat and (1-Cart/S)strict ∶= ((1 -Cart/S)strict)

1-Cat.

1.2.4. We claim:

Lemma 1.2.5.

(a) For a functor F ∶ T→ S the following conditions are equivalent:

(i) F is a 1-Cartesian fibration;

(ii) F is a 2-Cartesian fibration and the fiber of F over every s ∈ S is an (∞,1)-category.

(b) If T → S is a 1-Cartesian fibration, then a 1-morphism in T is 2-Cartesian over S if and
only if it is Cartesian.

Hence, combining this lemma with Theorem 1.1.8 and [Chapter A.1, Proposition 6.3.2], we
obtain:

Corollary 1.2.6.

(a) There exists a canonical equivalence

1 -Cart/S ≃ Funct(S1 -op,1 -Cat)right-lax,

functorial in S ∈ 2-Cat.

(b) Under the equivalence of point (a), the 1-full subcategories

(1 -Cart/S)strict ⊂ 1 -Cart/S and Funct(S1 -op,1 -Cat) ⊂ Funct(S1 -op,1 -Cat)right-lax

correspond to one another.
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1.2.7. Let S = S be an (∞,1)-category. We note:

Lemma 1.2.8. A functor T→ S is a 1-Cartesian fibration if and only if the following conditions
hold:

● T = T ∈ 1-Cat;
● The resulting functor T→ S is a Cartesian fibration.

I.e., we obtain that in the above case, the notion of 1-Cartesian fibration reduces to the usual
notion of 1-Cartesian fibration on (∞,1)-categries.

It will follow from the construction that the equivalence of Corollary 1.2.6(b) in this case,
i.e.,

(1 -Cart/S)strict ≃ Funct(S1 -op,1 -Cat),

induces at the level of the underlying (∞,1)-categories, i.e.,

(Cart/S)strict and Maps(S1 -op,1 -Cat),

the equivalence of [Chapter I.1, Sect. 1.4.5].

Remark 1.2.9. Let us take S = S = [n]op. We obtain that in this case the equivalence of
Corollary 1.2.6(a) at the level of the underlying (∞,1)-categories amounts to the definition of
the (∞,1)-category Seqext

n (1 -Cat), see [Chapter A.1, Sect. 5.3].

The idea of the proof of Theorem 1.1.8 is to give a similar interpretation of Seqext
n (2 -Cat),

namely, as 2-Cartesian fibrations over [n]op. This will be furnished by Theorem 2.0.1.

The rest of the proof of Theorem 1.1.8 will amount to bootstrapping the statement for any
S ∈ 2-Cat from the case S = [n]op, and lifting the 1-categorical equivalence to a 2-categorical
one.

1.3. Variants. In this subsection we will introduce the companion notions of 2-coCartesian
and 1-coCartesian fibrations over an (∞,2)-category.

1.3.1. We shall say that a functor between (∞,2)-categories T → S is 2-coCartesian (resp.,
1-coCartesian) fibration if the corresponding functor T1&2-op

→ S1&2-op is a 2-Cartesian (resp.,
1-Cartesian) fibration.

Similarly, we introduce the 1-full subcategories

(2 -coCart/S)strict ⊂ (2 -coCart/S)2-strict ⊂ 2 -coCart/S ⊂ 2 -Cat/S

and
(1 -coCart/S)strict ⊂ (1 -coCart/S)2-strict ⊂ 1 -coCart/S ⊂ 2 -Cat/S.

1.3.2. From Theorem 1.1.8 we obtain:

Corollary 1.3.3.

(a) There exists a canonical equivalence

(2 -coCart/S)2 -strict ≃ Funct(S,2 -Cat)left-lax,

functorial in S.

(b) Under the equivalence of point (a) the 1-full subcategories

(2 -coCart/S)strict ⊂ (2 -coCart/S)2 -strict and Funct(S,2 -Cat) ⊂ Funct(S,2 -Cat)left-lax

correspond to one another.

Similarly, from Corollary 1.2.6 we obtain:
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Corollary 1.3.4.

(a) There exists a canonical equivalence

1 -coCart/S ≃ Funct(S,1 -Cat)left-lax,

functorial in S ∈ 2-Cat.

(b) Under the equivalence of point (a), the 1-full subcategories

(1 -coCart/S)strict ⊂ 1 -coCart/S and Funct(S,1 -Cat) ⊂ Funct(S,1 -Cat)left-lax

correspond to one another.

1.3.5. We note that in addition to the notions of 2-Cartesian and 2-coCartesian (resp., 1-
Cartesian and 1-coCartesian) fibration, there exist two more notions, induced by the involution
S↦ S2 -op on 2-Cat.

These notions correspond to functors from S1 -op and S2 -op with values in 2 -Cat and 1 -Cat,
respectively.

2. Straightening over intervals

In this section we will establish the following particular case of Theorem 1.1.8:

We will take the base S to be the interval [n], and we will identify the (∞,1)-categories
underlying the (∞,2)-categories appearing on the two sides in Theorem 1.1.8.

More precisely, our goal is to prove the following:

Theorem-Construction 2.0.1.

(a) There exists a canonical equivalence of simplicial categories

Seqext
●

(2 -Cat) ≃ (2-Cart/[●]op)2 -strict.

(b) For an individual n, under the equivalence

Seqext
n (2 -Cat) ≃ (2-Cart/[n]op)2 -strict,

the 1-full subcategories

Seqext
n (2-Cat) ⊂ Seqext

n (2 -Cat) and (2-coCart/[n]op)strict ⊂ (2-Cart/[n]op)2 -strict

correspond to one another.

Remark 2.0.2. Note that since [n]op is a 1-category, the inclusion

(2-Cart/[n]op)2 -strict ⊂ 2-Cart/[n]op

is an equivalence.

2.1. The main construction. We now proceed to defining the functor in one direction

2-Cart/[n]op → Seqext
n (2 -Cat).

The idea of the construction is pretty straightforward: we think of an object of Seqext
n (2 -Cat)

as a string

T0
→ T1

→ ...→ Tn

of (∞,2)-categories, which we encode by means of a functor

∆op
→ Cart/[n]op ,

see [Chapter A.1, Sect. 6.1.3].
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The value of this functor on [m] ∈ ∆op is the category of strings ti0 → ti1 → ... → tim in Ti,
where i varies along [n]. We interpret such strings as strings in the ‘total’ (∞,2)-category over
[n] that project to a single object in [n].

The total category in question is precisely the object T ∈ 2-Cart/[n]op that we start from. We
will now make turn this idea into an actual construction.

2.1.1. Given (T→ [n]op
) ∈ 2-Cart/[n]op we define an object

E●,n ∈ Funct(∆op,Cart/[n]op)

as follows:

We let

Em,n ∶= Seqext
m (T) ×

Seqext
m ([n]op)

[n]op,

where [n]op
→ Seqext

m ([n]op
) is the functor

[n]op
= Funct({∗}, [n]op

) → Funct([m], [n]op
) = Seqext

m ([n]op
).

It is straightforward to check that Em,n, viewed as a category over [n]op, is a Cartesian

fibration, and that the object E●,n thus constructed defines an object of Seqext
n (2 -Cat).

Furthermore, this construction is clearly functorial in T, thereby giving rise to a functor

(2.1) 2-Cart/[n]op → Seqext
n (2 -Cat).

Furthermore, it is clear that the above functor sends the 1-full subcategory

(2-Cart/[n]op)strict ⊂ 2-Cart/[n]op

to the 1-full subcategory

Seqext
n (2-Cat) ⊂ Seqext

n (2 -Cat).

Remark 2.1.2. Note that the construction presented above is a generalization of the construction
in [Chapter A.1, Proposition 6.3.2]. The reason that we cannot finish the proof of Theorem 2.0.1
as easily as in the case of [Chapter A.1, Proposition 6.3.2] is that we do not yet know that for
given S0,S1 ∈ 2-Cat, the category

2-Cart/[1]op ×
2-Cat×2-Cat

{S0 × S1}

identifies with

Maps2 -Cat(S0,S1) ≃ Funct(S0,S1)
1-Cat.

2.2. Proof of Theorem 2.0.1: the inverse map. We will define a functor

(2.2) Seqext
n (2 -Cat) → 2-Cart/[n]op

inverse to (2.1).

We now want to recover the ‘total’ (∞,2)-category T over [n], i.e., for each m, we want to
recover the corresponding category of strings

t0 → t1 → ...→ tn,

while we know the category of strings that project to a single element in [n].

We will recover all strings by a variant of the construction used in [Chapter A.1, Sect. 1.6]
to define the unstraightening procedure for (∞,1)-categories.
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2.2.1. In order to define the functor (2.2), we will need the following combinatorial construction.
Let Tot(∆) be the coCartesian fibration over ∆ corresponding to the tautological functor

∆→ 1-Cat .

Note that Tot(∆) is an ordinary category, whose objects are pairs ([n] ∈ ∆, i ∈ [n]), and
such that the set of morphisms ([n0], i0) → ([n1], i1) is the set of morphisms φ ∶ [n0] → [n1]

such that φ(i0) = i1.

We let p ∶ Tot(∆) → ∆ the tautological projection ([n], i) ↦ [n]. We let Tot(∆)[m] the
fiber of Tot(∆) over [m] ∈ ∆; tautologically Tot(∆)[m] ≃ [m].

We note now that in addition to p, there is another canonically defined functor

q ∶ Tot(∆) →∆.

Namely, we set

q([n], i) ∶= [i], q(([n0], i0)
φ
→ ([n1], i1)) = ([i0]

φ∣[i0]
Ð→ [i1]).

In particular, restricting to Tot(∆)[m], we obtain the functor

q[m] ∶ [m] →∆, i↦ [i].

2.2.2. Going back to the desired functor (2.2), let E●,n be an object of Seqext
n (2 -Cat), thought

of as a functor

∆op
→ Cart/[n]op .

We can view1 the data of E●,n as an (∞,1)-category E∮ over ∆op
× [n]op, such that:

● The composition E∮ →∆op
× [n]op

→∆op is a coCartesian fibration;

● The composition E∮ →∆op
× [n]op

→ [n]op is a Cartesian fibration;

● The functor E∮ →∆op
×[n]op, viewed as a functor between coCartesian fibrations over

∆op, belongs to (coCart/∆op)strict;

● The functor E∮ →∆op
× [n]op, viewed as a functor between Cartesian fibrations over

[n]op, belongs to (Cart/[n]op)strict.

2.2.3. We construct the object T ∈ 2-Cart/[n]op corresponding to E●,n as follows. We define the
category

Funct([m]
op,T)right-lax

(which will be the same as Seqext
m (T), up to the involution rev) to be a certain full subcategory

in the (∞,1)-category of pairs (φ,Φ), where φ is a functor [m] → [n], and Φ is a lift of the
functor

(φop, (rev ○q[m])
op

) ∶ [m]
op
→ [n]op

×∆op

to a functor

[m]
op
→ E∮ .

1See the elementary [Chapter A.3, Proposition 2.1.3] for a general assertion to this effect.
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2.2.4. We single out Funct([m]
op,T)right-lax by imposing the following condition on objects.

Fix i = 1, ...,m. Consider a coCartesian lift in E∮

Φ(i) → e′

of the 1-morphism
(rev ○q[m](i) → rev ○q[m](i − 1)) ∈ ∆op.

Consider a Cartesian lift in E∮

e′′ → Φ(i − 1)

of the 1-morphism
(φ(i) → φ(i − 1)) ∈ [n]op.

Note that by the last two properties of E∮ listed in Sect. 2.2.2, we have a canonical map

e′ → e′′.

We require that this map be an isomorphism.

2.2.5. Clearly, the assignment

m↦ Funct([m]
op,T)right-lax

extends to a functor ∆op
→ 1-Cat.

We set
Seqext

●
(T) ∶= Funct([●]op,T)right-lax ○ rev,

where rev is the reversal involution on ∆op.

Using [Chapter A.1, Theorem 5.2.3(a)], we show:

Lemma 2.2.6. The simplicial category Seqext
●

(T) belongs to the essential image of the functor

Seqext
●

∶ 2-Cat→ Funct(∆op,1-Cat).

Let T denote the resulting object of 2-Cat.

2.2.7. By construction, the simplicial category Seqext
●

(T) maps to the simplicial category

m↦ Funct([m], [n]op
).

Hence, the (∞,2)-category T, constructed above, comes equipped with a functor

T→ [n]op.

It is a straightforward verification that the above functor T→ [n]op is a 2-Cartesian fibration.

2.2.8. Thus, we have constructed a functor

Seqext
n (2 -Cat) → 2-Cart/[n]op .

It is again a straightforward verification that this functor is inverse to (2.1).

3. Locally 2-Cartesian and 2-Cartesian fibrations over Gray products

As was mentioned before, the assertion of Theorem 1.1.8 will be deduced from that of The-
orem 2.0.1 by a certain bootstrapping procedure.

However, in order to do so, we will need to enlarge the entities that appear in both the
left-hand and the right-hand side. For the left-hand side, the corresponding notion is that of
locally 2-Cartesian fibration.
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3.1. The notion of locally 2-Cartesian fibration. The idea of the notion of locally 2-
Cartesian fibration is the following: whereas 2-Cartesian fibrations over S correspond to functors

S1 -op
→ 2 -Cat,

locally 2-Cartesian fibrations correspond to right-lax functors

S1 -op
⇢ 2 -Cat.

3.1.1. Let F ∶ T→ S be a functor between (∞,2)-categories. We shall say that a 1-morphism α
in T is locally 2-Cartesian over S, if the resulting 1-morphism in [1] ×

F (α),S
T is 2-Cartesian with

respect to the projection
[1] ×

F (α),S
T→ [1].

Definition 3.1.2. We shall say that F is a locally 2-Cartesian fibration if the following condi-
tions hold:

(1) For every t ∈ T and a 1-morphism s′
β
→ F (t) there exists a locally 2-Cartesian 1-

morphism t′
α
→ t with F (α) ≃ β.

(2) Condition (2) in Definition 1.1.2 holds.

3.1.3. Note that if F ∶ T → S is a a locally 2-Cartesian fibration, then for every 1-morphism
s0 → s1, the functor

[1] ×
S
T→ [1]

is a 2-Cartesian fibration. In particular, by Theorem 2.0.1 and [Chapter A.1, Proposition 6.2.2],
it gives rise to a well-defined functor

Ts1 → Ts0 .
We will refer to it as the pullback functor along the given 1-morphism.

3.1.4. The next assertion follows from the definitions:

Lemma 3.1.5.

(a) A functor F ∶ T→ S is a 2-Cartesian fibration if and only it is a locally 2-Cartesian fibration
and the induced functor T1-Cat

→ S1-Cat is a Cartesian fibration of (∞,1)-categories.

(b) If F ∶ T→ S is a 2-Cartesian fibration, then any 1-morphism in T that is locally 2-Cartesian
over S is automatically 2-Cartesian.

(c) If F ∶ T→ S is a locally 2-Cartesian fibration, then a 1-morphism in T is locally 2-Cartesian
over S if and only if the corresponding 1-morphism in T2 -ordn is is locally 2-Cartesian over
S2 -ordn.

(d) If F ∶ T → S is a locally 2-Cartesian fibration, then it is 2-Cartesian if and only if the
corresponding functor T2 -ordn

→ S2 -ordn is.

3.1.6. Let 2-Cartloc
/S denote the the full subcategory of 2-Cat/S formed by locally 2-Cartesian

fibrations in (∞,1)-categories. Let

(2-Cartloc
/S )1 -strict ⊃ (2-Cartloc

/S )strict ⊂ (2-Cartloc
/S )2 -strict

be the 1-full subcategories, defined by the same conditions as in Sects. 1.1.4-1.1.6.

3.2. Locally 2-Cartesian fibrations vs 2-Cartesian fibrations over RLaxnon-untl(S). In
this subsection we will formulate, and begin the proof of, the main assertion of this section,
Theorem 3.2.2.
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3.2.1. Let
S⇢ RLaxnon-untl(S),

be the universal non-unital right-lax functor, see Sect. A.

We are going to prove:

Theorem-Construction 3.2.2. There exists a canonical fully faithful embedding

(2-Cartloc
/S )

Spc Φ
↪ (2-Cart/RLaxnon-untl(S))

Spc,

functorial in S, whose essential image consists of those 2-Cartesian fibrations for which the
pullback functors along quasi-invertible arrows (see Sect. A.3) are equivalences.

Remark 3.2.3. The above proposition is stated as an isomorphism of spaces. However, it will
follow from the construction that this equivalence extends to one between the corresponding
(∞,2)-categories (both 2-strict and strict versions).

Remark 3.2.4. If we assume Theorem 1.1.8, then Theorem 3.2.2 implies that the space

(2-Cartloc
/S )

Spc

is isomorphic to space of right-lax functors

S1 -op
⇢ 2 -Cat.

3.2.5. In the rest of this subsection we will construct the map in the easy direction, i.e.,

(2-Cartloc
/S )

Spc Ψ
← (2-Cart/RLaxnon-untl(S))

Spc.

Consider the coCartesian fibrations

S∮ →∆op and RLaxnon-untl(S)∮ →∆op,

and the adjoint functors

ι∮S ∶ S∮ ⇄ RLaxnon-untl(S)∮ ∶ ρ∮S ,
see Sect. A.

3.2.6. Starting from a 2-Cartesian fibration T̃→ RLaxnon-untl(S), define

Ψ(T̃)
∮
∶= T̃∮ ×

RLaxnon-untl(S)∮
S∮ ,

where the functor S∮ → RLaxnon-untl(S)∮ is ι∮S .

We have:

Lemma 3.2.7.

(a) The composite functor

Ψ(T̃)
∮
→ S∮ →∆op

is a coCartesian fibration.

(b) The functor ∆op
→ 1-Cat, corresponding to the coCartesian fibration of point (a) lies in

the essential image of the functor Seq
●
∶ 2-Cat → Funct(∆op,1-Cat). Denote the resulting

(∞,2)-category by Ψ(T̃).

(c) The functor

Ψ(T̃)
∮
→ S∮

maps arrows that are coCartesian over ∆op to arrows that are coCartesian over ∆op.

(d) The functor Ψ(T̃) → S arising from point (c) is a locally 2-Cartesian fibration.
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3.3. Proof of Theorem 3.2.2, the inverse map. In this subsection we define the sought-for
map

(2-Cartloc
/S )

Spc Φ
↪ (2-Cart/RLaxnon-untl(S))

Spc.

3.3.1. Given T ∈ 2-Cartloc
/S , consider the corresponding functor

T∮ → S∮ .

We define
′Φ(T)

∮
∶= T∮ ×

S∮
RLaxnon-untl(S)∮ ,

where the functor RLaxnon-untl(S)∮ → S∮ is ρ∮S .

We will define the sought-for (∞,1)-category Φ(T)∮ is a certain full subcategory of ′Φ(T)∮ .

3.3.2. Fix an object of

{γ} ×
((∆actv)[m]/)

op
(RLaxnon-untl(S)∮ ×

∆op
{[m]}) ≃ Seqn(S), γ ∶ [m] → [n],

given by
s = s0 → s1 → ...→ sn,

see Sect. A.1.3 for the notation.

The fiber of ′Φ(T)∮ over the above object of RLaxnon-untl(S)∮ is by definition

(3.1) Seqn(T) ×
Seqn(S)

{s0 → s1 → ...→ sn},

i.e., this is the category of strings

t = t0 → t1 → ...→ tn

in T that project to s.

3.3.3. The full subcategory of (3.1), corresponding to Φ(T)∮ ⊂
′Φ(T)∮ consists of those t, for

which for every i ∈ 1, ..., n for which there exists a j ∈ 1, ...,m with

γ(j − 1) ≤ i − 1 < i ≤ γ(j),

the corresponding 1-morphism ti−1 → ti in T is locally 2-Cartesian over si−1 → si.

3.3.4. We claim:

Lemma 3.3.5.

(a) The composite functor

Φ(T)
∮
→ RLaxnon-untl(S)∮ →∆op

is a coCartesian fibration.

(b) The functor ∆op
→ 1-Cat, corresponding to the coCartesian fibration of point (a) lies in

the essential image of the functor Seq
●
∶ 2-Cat → Funct(∆op,1-Cat). Denote the resulting

(∞,2)-category by Φ(T).

(c) The functor

Φ(T)
∮
→ RLaxnon-untl(S)∮

maps arrows that are coCartesian over ∆op to arrows that are coCartesian over ∆op.

(d) The functor Φ(T) → RLaxnon-untl(S) arising from point (c) is a 2-Cartesian fibration, for
which the pullback functors along quasi-invertible arrows are equivalences.
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3.4. Proof of Theorem 3.2.2, computation of the compositions. In this subsection we
will conclude the proof of Theorem 3.2.2 by showing that the maps Φ and Ψ constructed above
are mutually inverse.

3.4.1. Since the composition ρ∮S ○ ι∮S is isomorphic to IdS∮ , we obtain immediately that the
composition

(2-Cartloc
/S )

Spc Ψ
→ (2-Cart/RLaxnon-untl(S))

Spc Φ
→ (2-Cartloc

/S )
Spc

is canonically isomorphic to the identity map.

3.4.2. Let now T̃→ RLaxnon-untl(S) be a 2-Cartesian fibration. We will now construct a functor

T̃→ ′Φ(Ψ(T̃)).

The datum of such a functor is equivalent to that of a functor

(3.2) T̃∮ → T̃∮

that fits into the commutative diagram

(3.3)

T̃∮
(3.2)
ÐÐÐÐ→ T̃∮

×
×
×
Ö

×
×
×
Ö

RLaxnon-untl(S)∮
ι∮S ○ρ

∮

S
ÐÐÐÐ→ RLaxnon-untl(S)∮ .

3.4.3. The construction of the functor (3.2) is based on the following lemma:

Lemma 3.4.4. Let F ∶ C→D be a functor between (∞,1)-categories, and let ΓD ∶ [1]×D→D
be a functor such that ΓD∣{1}×D = IdD. Suppose that for every c ∈ C there exists a Cartesian
arrow c′ → c that covers the 1-morphism ΓD∣[1]×{F (c)} in D. Then there exists a uniquely
defined functor ΓC ∶ [1] ×C→C, such that:

● ΓC is equipped with an identification ΓC∣{1}×C = IdC;
● The diagram

(3.4)

[1] ×C
ΓC

ÐÐÐÐ→ C

Id[1] ×F
×
×
×
Ö

×
×
×
Ö

F

[1] ×D
ΓD

ÐÐÐÐ→ D

commutes
● For any c ∈ C, the 1-morphism given by ΓC∣[1]×{c} is Cartesian over D.

3.4.5. We apply the above lemma to D ∶= RLaxnon-untl(S)∮ ,

C ∶= T̃ext,∮
×

RLaxnon-untl(S)ext,∮
RLaxnon-untl(S)ext,∮ ,

with F induced by the projection T̃ → RLaxnon-untl(S). We let ΓD be given by the natural
transformation

ι∮S ○ ρ∮S → IdRLaxnon-untl(S)∮ ,

corresponding to the (ι∮S , ρ
∮

S )-adjunction.



16 STRAIGHTENING AND YONEDA FOR (∞,2)-CATEGORIES

Applying Lemma 3.4.4 we obtain a functor

[1] × T̃ext,∮
×

RLaxnon-untl(S)ext,∮
RLaxnon-untl(S)ext,∮

→

→ T̃ext,∮
×

RLaxnon-untl(S)ext,∮
RLaxnon-untl(S)ext,∮ .

Restricting to {0} ∈ [1], and composing with

T̃∮ ↪ T̃ext,∮
×

RLaxnon-untl(S)ext,∮
RLaxnon-untl(S)ext,∮ ,

we obtain a functor

(3.5) T̃∮ → T̃ext,∮
×

RLaxnon-untl(S)ext,∮
RLaxnon-untl(S)ext,∮ .

Now, by unwinding the definitions, we obtain that the above functor (3.5) factors through
the 1-full subcategory

T̃∮ ⊂ T̃ext,∮
×

RLaxnon-untl(S)ext,∮
RLaxnon-untl(S)ext,∮ .

The resulting functor

T̃∮ → T̃∮

is the desired functor (3.2).

3.4.6. By further unwinding the definitions, we obtain that the essential image of the functor

T̃→ ′Φ(Ψ(T̃))

constructed above, belongs to Φ(Ψ(T̃)) ⊂
′Φ(Ψ(T̃)).

Finally, if T̃ → RLaxnon-untl(S) is such that the pullback functors along quasi-invertible
arrows (see Sect. A.3) are equivalences, then the resulting functor

T̃→ Φ(Ψ(T̃))

is an equivalence.
�(Theorem 3.2.2)

3.5. Gray products and 2-Cartesian fibrations. In this subsection we will use Theo-
rem 3.2.2 to give an explicit description of 2-Cartesian fibrations over Gray products.

3.5.1. Recall the condition on a functor between (∞,2)-categories to be a localization on 1-
morphisms, see Sect. B.1. The following is straightforward:

Lemma 3.5.2. Let S̃→ S be a localization on 1-morphisms. Then the map

2 -Cart/S → 2 -Cart
/S̃,

defined by pullback, is fully faithful. Its essential image consists of those F ∶ T̃ → S̃ that satisfy
the following condition:

For every t ∈ T̃, a pair of 1-morphisms β0, β1 ∶ s
′
→ F (t) and a 2-morphism

φ ∈ MapsMapsS̃(s
′,F (t))(β0, β1),

if we denote by α0 ∶ t′ → t the 2-Cartesian lift of β0 and by ψ ∈ MapsMapsT̃(t
′,t)(α0, α1) the

coCartesian lift of φ, if the image of φ in S is invertible, then the 1-morphism α1 ∶ t′ → t is
2-Cartesian over β1.
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3.5.3. We fix S1,S2 ∈ 2-Cat. We shall now describe the space

(2-Cart/S1⊛S2)
Spc

in a way functorial in S1 and S2. Indeed, combining Lemma 3.5.2 applied to

RLaxnon-untl(S1 × S2) → S1 ⊛ S2,

with Proposition 3.2.2, we obtain:

Corollary 3.5.4. There exists a canonically defined fully faithful embedding

(2-Cart/S1⊛S2)
Spc
↪ (2-Cartloc

/S1×S2)
Spc.

Its essential image consists of those T→ S1 × S2 that satisfy:

● For every pair of composable 1-morphisms in T, locally Cartesian over S1×S2, that cover
two morphisms in S1 × S2 both of which project to isomorphisms under S1 × S2 → S1,
their composition is locally Cartesian over S1 × S2.

● For every pair of composable 1-morphisms in T, locally Cartesian over S1×S2, that cover
two morphisms in S1 × S2 both of which project to isomorphisms under S1 × S2 → S2,
their composition is locally Cartesian over S1 × S2.

● For every pair of 1-morphisms (s′1
α1
→ s1) ∈ S1 and (s′2

α2
→ s2) ∈ S2 and locally Cartesian

1-morphisms t′′
β
→ t′ and t′

γ
→ t covering (α1, ids′2) and (ids1 , α2), respectively, the

1-morphism γ ○ β is locally Cartesian over (α1, α2).

Corollary 3.5.5.

(a) The essential image of the (fully faithful) map

(2-Cart/S1⊛S2)
Spc
→ (2-Cartloc

/S1×S2)
Spc

⊂ (2-Cat/S1×S2)
Spc

consists of those
T→ S1 × S2

such that:

(1) The composition T→ S1 × S2 → S1 is a 2-Cartesian fibration;
(2) The functor T→ S1 × S2, viewed as a map in 2-Cart/S1 , belongs to (2-Cart/S1)strict;
(3) For every s1 ∈ S1, the resulting functor Ts1 → S2 is a 2-Cartesian fibration.
(4) For every 1-morphism s1 → s′1 in S1, the pullback functor Ts′1 → Ts1 , which by the

previous point is a 1-morphism in 2-Cart/S2 , belongs (2-Cart/S2)2 -strict.

(b) The subspace

(2-Cart/S1×S2)
Spc

⊂ (2-Cart/S1⊛S2)
Spc

corresponds to replacing in condition (4) the category (2-Cart/S2)2 -strict by its 1-full subcategory

(2-Cart/S2)strict ⊂ (2-Cart/S2)2 -strict.

4. Proof of Theorem 1.1.8

4.1. Proof of Theorem 1.1.8, Step 1: identifying the underlying spaces. In this sub-
section we will establish the assertion of Theorem 1.1.8 at the level of the underlying spaces.

4.1.1. First, we notice that Theorem 2.0.1 can be reformulated as follows:

Corollary 4.1.2. There exists a canonical equivalence of bi-simplicial spaces that send m,n to

Sqm,n(2 -Cat) and Maps([m],2-Cart/[n]op),

respectively.
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4.1.3. Applying the 1-fully faithful embedding

(4.1) Funct([m],2-Cat) ≃ Seqext
m (2-Cat) ≃ (2-Cart/[m]op)strict ↪ 2-Cart/[m]op ↪ 2-Cat/[m]op

(where the second isomorphism is Theorem 2.0.1(b)), we obtain a fully faithful map

Maps([m],2-Cat/[n]op) → ((2-Cat/[m]op)/[n]op×[m]op)
Spc

≃ (2-Cat/[n]op×[m]op)
Spc.

Restricting to 2-Cart/[n]op ↪ 2-Cat/[n]op , we obtain a fully faithful map

(4.2) Maps([m],2-Cart/[n]op) → (2-Cat/[n]op×[m]op)
Spc.

Lemma 4.1.4. The essential image of the map (4.2) lies in

(2-Cartloc
/[n]op×[m]op

)
Spc

⊂ (2-Cat/[n]op×[m]op)
Spc

and coincides with the essential image of fully faithful embedding

(2-Cart/[n]op⊛[m]op)
Spc
↪ (2-Cartloc

/[n]op×[m]op
)
Spc

of Corollary 3.5.4.

Proof. Follows from Corollary 3.5.5(a). �

4.1.5. Thus, combining Lemma 4.1.4 and Corollary 4.1.2 we obtain a canonical identification
of bi-simplicial spaces

(4.3) Sqm,n(2 -Cat) ≃ (2-Cart/[n]op⊛[m]op)
Spc.

We can now establish the assertion of Theorem 1.1.8 at the level of the underlying spaces:

Corollary 4.1.6. For S ∈ 2-Cat, there exists a canonical equivalence

(2-Cart/S)
Spc

≃ Maps2-Cat(S
1 -op,2 -Cat),

functorial in S.

Proof. It follows from [Chapter A.1, Theorems 4.1.3 and 5.2.3(a)] that for S ∈ 2-Cat, the re-
striction map

(2-Cat/S)
Spc
→MapsFunct(∆op×∆op,Spc)(Sq

●,●(S), (2-Cat/[●]⊛[●])
Spc

)

is an isomorphism, and under this isomorphism the subspaces

(2-Cart/S)
Spc

⊂ (2-Cat/S)
Spc

and

MapsFunct(∆op×∆op,Spc)(Sq
●,●(S), (2-Cart/[●]⊛[●])

Spc
) ⊂

⊂ MapsFunct(∆op×∆op,Spc)(Sq
●,●(S), (2-Cat/[●]⊛[●])

Spc
)

correspond to one another.

Hence, the assertion of the corollary follows from the isomorphism (4.3) using the canonical
identification of bi-cosimplicial objects of 2-Cat:

([m] ⊛ [n])1 -op
≃ [n]op

⊛ [m]
op.

�

4.2. Proof of Theorem 1.1.8, Step 2: identifying the underlying (∞,1)-categories.
In this subsection we will construct the identification of the (∞,1)-categories underlying the
two sides in Theorem 1.1.8(b).
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4.2.1. We need to construct an isomorphism of simplicial spaces

Maps1-Cat([m], (2-Cart/S)strict) ≃ Maps2-Cat(S
1 -op

× [m],2 -Cat), [m] ∈ ∆.

Taking into account Corollary 4.1.6, we need to construct an isomorphism of simplicial spaces

(4.4) Maps([m], (2-Cart/S)strict) ≃ (2-Cart/S×[m]op)
Spc, [m] ∈ ∆.

4.2.2. Given [m] ∈ ∆, using the 1-fully faithful embedding

Funct([m],2-Cat) ≃ Seqext
m (2-Cat) ≃ (2-Cart/[m]op)strict ↪ 2-Cart/[m]op ↪ 2-Cat/[m]op

of (4.1) (which, we note, uses the statement of Theorem 2.0.1), we obtain a fully faithful map

Maps([m],2-Cat/S) ↪ ((2-Cat/[m]op)/S×[m]op)
Spc

≃ (2-Cat/S×[m]op)
Spc.

Composing with the embedding

Maps([m], (2-Cart/S)strict) ↪Maps([m],2-Cart/S) ↪Maps([m],2-Cat/S),

we obtain a fully faithful map

(4.5) Maps([m], (2-Cart/S)strict) → (2-Cat/S×[m]op)
Spc.

Lemma 4.2.3. The essential image of the map (4.5) equals

(2-Cart/S×[m]op)
Spc

⊂ (2-Cat/S×[m]op)
Spc.

Proof. Follows from Corollary 3.5.5(b). �

Thus, we obtain the required identification (4.4).

4.3. Proof of Theorem 1.1.8, Step 3: end of the argument.

4.3.1. Given T ∈ 2-Cat, we need to construct an isomorphism of spaces

Maps(T, (2 -coCart/S)2 -strict) ≃ Maps2-Cat(T⊛ S1 -op,2 -Cat),

functorial in T and S, so that the subspaces

Maps(T, (2 -coCart/S)strict) ⊂ Maps(T, (2 -coCart/S)2 -strict)

and

Maps2-Cat(T × S1 -op,2 -Cat) ⊂ Maps2-Cat(T⊛ S1 -op,2 -Cat)

correspond to one another.

Taking into account Corollary 4.1.6, we need to construct an isomorphism of spaces

(4.6) Maps(T, (2 -coCart/S)2 -strict) ≃ (2-coCart/S⊛T1 -op)
Spc,

so that

Maps(T, (2 -coCart/S)strict) ⊂ Maps(T, (2 -coCart/S)2 -strict)

maps to

(2-coCart/S×T1 -op)
Spc

⊂ (2-coCart/S⊛T1 -op)
Spc.
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4.3.2. The equivalence of (∞,1)-categories

Maps2-Cat(T,2 -Cat) ≃ (2-coCart/T1 -op)strict

established in Step 2, gives rise to a 1-fully faithful embedding

Maps2-Cat(T,2 -Cat) ↪ 2-Cat/T1 -op .

From here, we obtain a fully faithful embedding

Maps(T,2 -Cat/S) ↪ ((2-Cat/T1 -op)/S×T1 -op)
Spc

= (2-Cat/S×T1 -op)
Spc.

Composing with

Maps(T, (2 -coCart/S)2 -strict) ⊂ Maps(T,2 -Cat/S),

we obtain a fully faithful map

(4.7) Maps(T, (2 -coCart/S)2 -strict) ↪ (2-Cat/S×T1 -op)
Spc.

We claim:

Lemma 4.3.3.

(a) The essential image of the map (4.7) is contained in (2-Catloc
/S×T1−op)

Spc and equals the
essential image of the fully faithful embedding

(2-coCart/S⊛T1 -op)
Spc
↪ (2-Catloc

/S×T1−op)
Spc

of Corollary 3.5.4.

(b) Under the resulting isomorphism

Maps(T, (2 -coCart/S)2 -strict) ≃ (2-coCart/S⊛T1 -op)
Spc

the subspace

Maps(T, (2 -coCart/S)strict) ⊂ Maps(T, (2 -coCart/S)2 -strict)

maps to

(2-coCart/S×T1 -op)
Spc

⊂ (2-coCart/S⊛T1 -op)
Spc.

Proof. Follows from Corollary 3.5.5. �

The last lemma establishes the desired isomorphism (4.6).
�(Theorem 1.1.8)

5. The Yoneda embedding

The goal of this section is to discuss the several incarnations of what can be called the Yoneda
lemma in the context of (∞,2)-categories.

For example, we will show that to s ∈ S there corresponds a Yoneda functor

(5.1) hs ∶ S→ 1 -Cat, hs(s
′
) = MapsS(s, s

′
),

and for any S F
→ 1 -Cat we have an equivalence

(5.2) MapsFunct(S,1 -Cat)(hs, F ) ≃ F (s).

By letting s vary, we will construct the Yoneda embedding

Yon ∶ S↪ Funct(S1 -op,1 -Cat).
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5.1. The right-lax slice construction. In order to construct the Yoneda functors, we will
use Corollary 1.3.4 in order to interpret the datum of a functor S→ 1 -Cat as a 1-coCartesian
fibration.

In this subsection we will construct the corresponding 1-coCartesian fibrations (up to revers-
ing the arrows).

5.1.1. Let S be an (∞,2)-category, and s ∈ S an object. We define the (∞,2)-category S//s to
be

Funct([1],S)right-lax ×
S
{s},

where the fiber product is formed using functor

Funct([1],S)right-lax → S.

given by evaluation at 1 ∈ [1].

5.1.2. Let ps ∶ S//s → S be the functor given by evaluation at 0 ∈ [1]. By definition, the fiber of
p over s′ ∈ S is an (∞,2)-category

Funct([1],S)right-lax ×
S×S

{(s′, s)},

which by [Chapter A.1, Corollary 3.4.8] is an (∞,1)-category, equipped with a canonical iden-
tification with MapsS(s

′, s).

5.1.3. We claim:

Lemma 5.1.4. The functor ps ∶ S//s → S is a 1-Cartesian fibration.

Proof. Let α ∶ s′0 → s be an object of S//s, and and let β ∶ s′1 → s′0 is a 1-morphism in S. Then
it is easy to see that the commutative diagram

s′0
α

ÐÐÐÐ→ s

β
Õ
×
×
×

Õ
×
×
×

ids

s′1
α○β
ÐÐÐÐ→ s

represents a Cartesian arrow in (S//s)
1-Cat over β: indeed this is an assertion at the level of the

underlying (∞,1)-categories.

To finish the proof of the lemma, given a pair of objects

s0 = (α0 ∶ s
′

0 → s) and s1 = (α1 ∶ s
′

1 → s)

of S/s, we need to show that the functor

MapsS//s(s0, s1) →MapsS(s0, s1)

is a coCartesian fibration in spaces.

The category MapsS//s(s0, s1) has as objects pairs (β,φ), where β ∶ s′0 → s′1 and φ is a 2-

morphism α0 → α1 ○β. Morphisms from (β,φ) to (β̃, φ̃) is the space of 2-morphisms ψ ∶ β → β̃,

equipped with an identification φ̃ ≃ α1(ψ) ○ φ. This makes it clear that the assignment

(β,φ) ↦ β

is coCartesian fibration in spaces.
�
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5.1.5. Applying Corollary 1.2.6, from the 1-Cartesian fibration S//s → S we obtain a functor

h̃s ∶ S1 -op
→ 1 -Cat.

The value of this functor on a given s′ ∈ S is

(S//s)s′ ≃ MapsS(s
′, s).

5.2. The 2-categorical Yoneda lemma. In this subsection we will establish the isomorphism
(5.2).

5.2.1. For a pair of 1-Cartesian fibrations in (∞,1)-categories T0,T1 over S, let us denote by

Mapsstrict
S (T0,T1) ∶= Maps

(1 -Cart/S)strict
(T0,T1),

where the notation (1 -Cart/S)strict is as in Sect. 1.2.3.

I.e., Mapsstrict
S (T0,T1) is the full subcategory of MapsS(T0,T1) that consists of those func-

tors that map 1-morphisms in T0 that are Cartesian over S to 1-morphisms in T1 with the same
property.

5.2.2. We claim:

Proposition 5.2.3. For a 1-Cartesian fibration F ∶ T→ S, evaluation at (s
ids
→ s) ∈ S//s defines

an equivalence

Mapsstrict
S (S//s,T) → Ts.

Proof. Let

(Funct([1],T)right-lax)
Cart/S

⊂ Funct([1],T)right-lax

denote the full subcategory whose objects are 1-morphisms Cartesian over S.

Evaluation defines functors

ev0, ev1 ∶ (Funct([1],T)right-lax)
Cart/S

→ T.

Consider the fiber product

(Funct([1],T)right-lax)
Cart/S

×
ev1,T

Ts ≃ (Funct([1],T)right-lax)
Cart/S

×
F○ev1,S

{s}.

It is easy to see that the functor (between (∞,2)-categories over S)

(Funct([1],T)right-lax)
Cart/S

×
ev1,T

Ts → S//s ×Ts

is an equivalence.

Hence, we obtain a functor (between (∞,2)-categories over S)

S//s ×Ts → (Funct([1],T)lax)
Cart/S

×
ev1,T

Ts → (Funct([1],T)lax)
Cart/S ev0

Ð→ T.

The latter gives rise to a functor

Ts →MapsS(S//s,T).

It is easy to see that the latter functor takes values in Mapsstrict
S (S//s,T) and provides an

inverse to one in the statement of the proposition.
�
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5.2.4. Applying Corollary 1.2.6, from Proposition 5.2.3 we obtain:

Corollary 5.2.5. For F ∶ S1 -op
→ 1 -Cat, evaluation at s ∈ S defines an equivalence

MapsFunct(S1 -op,1 -Cat)(h̃s, F ) ≃ F (s).

5.3. The 2-categorical Yoneda embedding. We will now show how to turn s ∈ S into a
parameter and thus obtain the Yoneda functor

YonS ∶ S→ Funct(S1 -op,1 -Cat).

We will then show that YonS is fully faithful.

5.3.1. For S ∈ 2-Cat, consider the (∞,2)-category

Funct([1],S)right-lax.

Evaluation on 0,1 ∈ [1] defines two functors

ev0, ev1 ∶ Funct([1],S)right-lax ⇉ S.

As in Lemma 5.1.4 one shows:

Lemma 5.3.2.

(a) The functor ev1 ∶ Funct([1],S)right-lax → S is a 2-coCartesian fibration of (∞,2)-categories.

(b) The functor

(ev0 × ev1) ∶ Funct([1],S)right-lax → S × S
is a strict functor between 2-coCartesian fibrations over S.

5.3.3. Applying Corollary 1.3.3, from the functor ev0 × ev1 we obtain a functor

S→ 2 -Cat,

equipped with a natural transformation to the constant functor with value S.

I.e., we obtain a functor

(5.3) S→ 2 -Cat/S

5.3.4. Note, however, that by Lemma 5.1.4, the functor (5.3) takes values in the full subcategory

1 -Cart/S ⊂ 2 -Cat/S.

Moreover, the functor (5.3) factors through the 1-full subcategory

(1 -Cart/S)strict ⊂ 1 -Cart/S.

I.e., we have a functor

(5.4) S→ (1 -Cart/S)strict.

5.3.5. Applying the equivalence (1 -Cart/S)strict ≃ Funct(S1 -op,1 -Cat), from (5.4), we obtain
a functor

(5.5) YonS ∶ S→ Funct(S1 -op,1 -Cat),

or, equivalently, a functor

(5.6) S1 -op
× S→ 1 -Cat.

We will refer to the functor YonS of (5.5) as the 2-categorical Yoneda functor.
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5.3.6. We claim:

Proposition 5.3.7. The functor (5.5) is fully faithful.

Proof. We need to show that for s, s′ ∈ S, the functor

MapsS(s, s
′
) →MapsFunct(S1 -op,1 -Cat)(YonS(s),YonS(s

′
))

is an equivalence.

Equivalently (by virtue of Corollary 1.2.6), we need to show that the composite functor

(5.7) MapsS(s, s
′
) →MapsFunct(S1 -op,1 -Cat)(Yon(s),Yon(s′)) →Mapsstrict

S (S//s,S//s′)

is an equivalence.

By construction, the above map (5.7) has the property that for any t ∈ S the induced map

MapsS(s, s
′
) →Mapsstrict

S (S//s,S//s′) →

→Maps((S//s)t, (S//s′)t) ≃ Maps(MapsS(t, s),MapsS(t, s
′
))

is the map

MapsS(s, s
′
) →Maps(MapsS(t, s),MapsS(t, s

′
)),

given by composition of 1-morphisms.

Taking t = s and evaluating at ids, we obtain that the composition

MapsS(s, s
′
) →Mapsstrict

S (S//s,S//s′) →

→Maps((S//s)s, (S//s′)s) →Maps(MapsS(s, s),MapsS(s, s
′
)) →MapsS(s, s

′
)

is the identity map.

Now, according to Proposition 5.2.3, the composition

Mapsstrict
S (S//s,S//s′) →Maps((S//s)s, (S//s′)s) →

→Maps(MapsS(s, s),MapsS(s, s
′
)) →MapsS(s, s

′
)

is an isomorphism, implying that (5.7) is an equivalence as well.
�

Appendix A. The universal right-lax functor

A.1. The construction.

A.1.1. Consider the 1-fully faithful functor

2-Cat→ 2-Catright-laxnon-untl
,

see [Chapter A.1, Sect. 3.1.5].

This functor is easily seen to commute with limits. Hence, it admits a left adjoint, to be
denoted

S↦ RLaxnon-untl(S).
It turns out that this functor can be described rather explicitly, and this description is useful.
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A.1.2. Recall the notation S∮ , see [Chapter A.1, Sect. 3.1.1].

Starting from S ∈ 2-Cat, consider the following (∞,1)-category:

RLaxnon-untl(S)∮ ∶= S∮ ×
∆op

Actv,

where Actv is the full subcategory of Funct([1],∆op
), spanned by active morphisms, and

Actv →∆op is the functor of evaluation at 0 ∈ [1].

Evaluation on 1 ∈ [1] defines a functor

(A.1) RLaxnon-untl(S)∮ →∆op.

A.1.3. For example,

RLaxnon-untl(S)∮ ×
∆op

{[0]} ≃ Seq0(S).

The category RLaxnon-untl(S)∮ ×
∆op

{[1]} is described as follows. It is a coCartesian fibration

over ∆op
actv (where ∆actv is the 1-full subcategory of ∆ where we restrict the arrows to active

morphisms). We have

{[n]} ×
∆actv

(RLaxnon-untl(S)∮ ×
∆op

{[1]}) ≃ Seqn(S).

For an active map α ∶ [m] → [n] the corresponding functor between the fibers identifies with
the functor

Seqn(S) → Seqm(S),

induced by α.

A.1.4. The projection [1] → [0] defines a functor ∆op
→ Actv, which in turn gives rise to a

functor

ι∮S ∶ S∮ → RLaxnon-untl(S)∮ ∶= S∮ ×
∆op

Actv,

compatible with projections to ∆op.

We will prove:

Theorem A.1.5.

(i) The functor RLaxnon-untl(S)∮ →∆op of (A.1) is a coCartesian fibration, and the resulting
functor ∆op

→ 1-Cat lies in the essential image of the functor Seq
●
; denote the resulting (∞,2)-

category by RLaxnon-untl(S).

(ii) The functor ι∮S sends coCartesian arrows over inert morphisms in ∆op to coCartesian
arrows. Denote the resulting lax functor S⇢ RLaxnon-untl(S) by ιS.

(iii) For any T ∈ 2-Cat, the composite map

Maps2-Cat(RLaxnon-untl(S),T) →Maps2-Catright-laxnon-untl
(RLaxnon-untl(S),T) →

→Maps2-Catright-laxnon-untl
(S,T),

where the second arrow is given by precomposition with ιS, is an isomorphism.
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A.1.6. Note that the functor
ι∮S ∶ S∮ → RLaxnon-untl(S)∮

admits a left adjoint; to be denoted λ∮S . This is a functor between categories over ∆op that
sends coCartesian edges to coCartesian edges.

For example, the corresponding functor

RLaxnon-untl(S)∮ ×
∆op

[1] → Seq1(S)

is given, in terms of the description in Sect. A.1.3 by the compatible family of functors

Seqn(S) → Seq1(S),
each corresponding to the unique active map [1] → [n].

Hence, we obtain that the functor λ∮S corresponds to a functor

λS ∶ RLaxnon-untl(S) → S.

We claim:

Proposition A.1.7. The functor λS ∶ RLaxnon-untl(S) → S is the counit of the adjunction, i.e.,
corresponds to the identity functor on S, considered as a non-unital right-lax functor.

Proof. We need to show that the composite lax functor

S ιS
⇢ RLaxnon-untl(S)

λS
→ S

identifies with the identity functor on S.

For that we need to show that the composite functor

λ∮S ○ ι∮S ∶ S∮ → S∮

is the identity functor. But this follows from the fact that the functor ι∮S is fully faithful.
�

A.2. Proof of Theorem A.1.5.

A.2.1. To prove point (i) of the theorem, let us explicitly describe the functor

∆op
→ 1-Cat

corresponding to the projection

RLaxnon-untl(S)∮ →∆op.

Namely, this functor sends [m] to a coCartesian fibration over ((∆actv)[m]/)
op, whose fiber

over an active map γ ∶ [m] → [n] is

{γ} ×
((∆actv)[m]/)

op
(RLaxnon-untl(S)∮ ×

∆op
{[m]}) = Seqn(S),

and where for active map α ∶ [n1] → [n2] the corresponding functor

Seqn2
(S) → Seqn1

(S)
is induced by α.

For a map β ∶ [m1] → [m2], the corresponding functor

(A.2) RLaxnon-untl(S)∮ ×
∆op

{[m2]} → RLaxnon-untl(S)∮ ×
∆op

{[m1]}
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is described as follows.

For an active map γ2 ∶ [m2] → [n2], the category of factorizations of γ2 ○ β as

[m1]
γ′1
→ [n′1]

α′

→ [n2]

has a final object

[m1]
γ1
→ [n1]

α
→ [n2]

In fact, α is the injection of the sub-segment with the smallest element γ2 ○ β(0) and the
largest element γ2 ○ β(m1).

The corresponding functor in (A.2) sends

{γ2} ×
((∆actv)[m2]/

)op
(RLaxnon-untl(S)∮ ×

∆op
{[m2]}) →

→ {γ1} ×
((∆actv)[m1]/

)op
(RLaxnon-untl(S)∮ ×

∆op
{[m1]})

and equals the functor

Seqn2
(S) → Seqn1

(S)

is induced by α.

The verification of Conditions (0)-(2) for being an (∞,2)-category is now straightforward.

It is equally easy to see that the functor ι∮S sends coCartesian arrows over inert arrows in ∆ to
coCartesian arrows.

A.2.2. Let us now show that the map

Maps2-Cat(RLaxnon-untl(S),T) →Maps2-Catright-laxnon-untl
(S,T)

is an isomorphism.

Given T ∈ 2-Cat, the operation of relative left Kan extension along ι∮S gives rise to a fully
faithful embedding of spaces

(A.3) Maps1-Cat/∆op (S∮ ,T∮ ) →Maps1-Cat/∆op (RLaxnon-untl(S)∮ ,T∮ ).

Let

Maps′1-Cat/∆op (S∮ ,T∮ ) ⊂ Maps1-Cat/∆op (S∮ ,T∮ )

be the subspace consisting of functors that send coCartesian arrows over inert morphisms in
∆op to coCartesian morphisms. Let

Maps′1-Cat/∆op (RLaxnon-untl(S)∮ ,T∮ ) ⊂ Maps1-Cat/∆op (RLaxnon-untl(S)∮ ,T∮ )

be the subspace consisting of functors that send all coCartesian arrows to coCartesian mor-
phisms. We will show that the map (A.3) defines an isomorphism

(A.4) Maps′1-Cat/∆op (S∮ ,T∮ ) →Maps′1-Cat/∆op (RLaxnon-untl(S)∮ ,T∮ ).
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A.2.3. Note that the functor

ι∮S ∶ S∮ → RLaxnon-untl(S)∮

admits a right adjoint, to be denoted ρ∮S . Explicitly, for every m and γ ∶ [m] → [n], the functor

ρ∮S makes the following diagram commutative

{γ} ×
((∆actv)[m]/)

op
(RLaxnon-untl(S)∮ ×

∆op
{[m]}) ÐÐÐÐ→ RLaxnon-untl(S)∮

∼

×
×
×
Ö

×
×
×
Ö

ρ∮S

Seqn(S) ÐÐÐÐ→ S∮ .

In particular, we note that ρ∮S does not respect the projections

RLaxnon-untl(S)∮ →∆op and S∮ →∆op.

We have the following general assertion:

Lemma A.2.4. Suppose we have a diagram of (∞,1)-categories

C′ ι //

��

C

��
I

such that ι is fully faithful and admits a right adjoint ρ. Then for any coCartesian fibration
D→ I, relative left Kan extension gives a fully faithful embedding

Maps1-Cat/I
(C′,D) ↪Maps1-Cat/I

(C,D)

with the image consisting of functors F ∶ C→D over I such that for every c ∈ C, the counit of
the adjunction ι ○ ρ(c) → c induces the arrow

F (ι ○ ρ(c)) → F (c)

in D that is coCartesian over I.

A.2.5. Applying this lemma, we need to show that for a functor

F ∶ RLaxnon-untl(S)∮ → T∮

the following conditions are equivalent:

(1) F takes coCartesian arrows to coCartesian arrows;

(2) F takes the arrows coming from the counit of the adjunction ι∮S ○ ρ∮S → id and also

arrows of the form ι∮S (f), where f is a coCartesian arrow in S∮ lying over an inert map
in ∆op, to coCartesian arrows.

We have the following general observation:

Lemma A.2.6. Let D → I be a coCartesian fibration of (∞,1)-categories. Then an arrow in
D is coCartesian over I if and only if its image in D1 -ordn is coCartesian over I1 -ordn.

This lemma allows to replace the verification of the equivalence of conditions (1) and (2)
above to the case when T (and hence also S) is an ordinary 2-category. In this case the
assertion is straightforward.

A.3. Quasi-invertible 1-morphisms.
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A.3.1. Since
Seq0(RLaxnon-untl(S)) ≃ Seq0(S),

the categories S0 and RLaxnon-untl(S) have the same spaces of objects.

Note that the subcategory

(Seq1(RLaxnon-untl(S)))
invert

⊂ Seq1(RLaxnon-untl(S))
identifies with

Seq0(S) ≃ {[0]} ×
∆actv

(RLaxnon-untl(S)∮ ×
∆op

{[1]}) ⊂

⊂ RLaxnon-untl(S)∮ ×
∆op

{[1]} = Seq1(RLaxnon-untl(S)).

A.3.2. We shall say that a 1-morphism is quasi-invertible if it belongs to the full subcategory,

to be denoted (Seq1(RLaxnon-untl(S)))
q-invert

, and equal to

Seq0(S) ≃ (Seq1(S))
invert

⊂ Seq1(S) ≃ {[1]} ×
∆actv

(RLaxnon-untl(S)∮ ×
∆op

{[1]}) ⊂

⊂ RLaxnon-untl(S)∮ ×
∆op

{[1]} = Seq1(RLaxnon-untl(S)).

Remark A.3.3. Note that we thus obtain two different fully faithful functors

Seq0(S) ≃ (Seq1(RLaxnon-untl(S)))
invert

↪ Seq1(RLaxnon-untl(S))
and

Seq0(S) ≃ (Seq1(RLaxnon-untl(S)))
q-invert

↪ Seq1(RLaxnon-untl(S)).
By construction, these functors are connected by a natural transformation (from the former

to the latter).

A.3.4. We observe:

Lemma A.3.5. A non-unital right-lax functor S⇢ T is unital if and only if the corresponding
functor

RLaxnon-untl(S) → T
sends quasi-invertible 1-morphisms to isomorphisms.

Appendix B. Localizations on 1-morphisms

B.1. The notion of localization on 1-morphisms.

B.1.1. Let C be an (∞,1)-category, and let C′
⊂ C be a 1-full subcategory with the same class

of objects. (I.e., the datum of C amounts to specifying a class of 1-morphisms containing all
isomorphisms and closed under compositions).

Recall that the localization of C with respect to C′ is a pair

(C, Fcan ∶ C→ C̃can),

universal with respect to functors F ∶ C→ C̃ that map 1-morphisms from C′ to isomorphisms.

B.1.2. Let F ∶ S→ T be a functor between (∞,2)-categories.

Definition B.1.3. We shall say that F is a localization on 1-morphisms if:

(1) The functor Seq0(S) → Seq(T)0 is an isomorphism (in Spc);

(2) The functor Seq1(S) → Seq(T)1 is a localization.
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B.1.4. We claim:

Proposition B.1.5. For a functor F ∶ S→ T, the following are equivalent:

(1) F is a localization on 1-morphisms;

(2) The corresponding functor S∮ → T∮ is a localization.

Proof. Follows from the next general lemma:

Lemma B.1.6. Let C→ I and D→ I be coCartesian fibrations, and let F ∶ C→D be a functor
compatible with the projections to I such that F sends coCartesian arrows to coCartesian arrows.
Then F is a localization if and only if for every i ∈ I the corresponding functor C×

I
{i} →D×

I
{i}

is a localization.

�

As a corollary, we obtain:

Corollary B.1.7. Let S → T be a localization on 1-morphisms. Then for any X ∈ 2-Cat, the
maps

Maps2-Cat(T,X) →Maps2-Cat(S,X), Maps2-Catright-lax
(T,X) →Maps2-Catright-lax

(S,X)

and

Maps2-Catright-laxnon-untl
(T,X) →Maps2-Catright-laxnon-untl

(S,X)

are fully faithful.

B.1.8. It is easy to see that if S → T is a localization on 1-morphisms, then for any X ∈ 2-Cat,
so is the functor

S ×X→ S ×T.

From here we obtain:

Corollary B.1.9. Let S → T be a localization on 1-morphisms. Then for any X ∈ 2-Cat, the
functor

Funct(T,X) → Funct(S,X)

is fully faithful.

B.2. Description of localizations.

B.2.1. We have:

Proposition B.2.2. Let S be an (∞,2)-category. The following pieces of data are equivalent:

(i) The datum of a functor S→ T, which is a localization on 1-morphisms.

(ii) The datum of a functor S2 -ordn
→ T2 -ordn, which is a localization on 1-morphisms.

(iii) The datum of a subset of isomorphism classes of morphisms in Seq1(S) that contains all
isomorphisms and is closed under the composition operation

π0(Seq1(S)) ×
π0(Sq(S)0)

π0(Seq1(S)) → π0(Seq1(S)).

Proof. Follows from the next general lemma:
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Lemma B.2.3. Let C → I be a coCartesian fibration. Then the datum of a localization F ∶

C →D, such that D is also a coCartesian fibration over I and F sends coCartesian arrows to
coCartesian arrows is equivalent to the datum of a localization C×

I
{i} →Di for each i ∈ I, such

that for every 1-morphism i1 → i2 in I the corresponding functor

C ×
I
{i1} →C ×

I
{i2}

sends the 1-morphisms that become isomorphisms on Di1 to 1-morphisms that become isomor-
phisms on Di2 .

�

B.2.4. As a corollary we obtain:

Corollary B.2.5. For S ∈ 2-Cat, the canonical functors

λS ∶ RLaxnon-untl(S) → S,
RLaxnon-untl(S ×T) → S⊛T and S⊛T→ S ×T

are localizations on 1-morphisms.


