
INTRODUCTION TO PART II: IND-COHERENT SHEAVES

1. Ind-coherent sheaves vs quasi-coherent sheaves

One of the primary goals of this book is to construct the theory of ind-coherent sheaves as
a theory of O-modules on prestacks that exists alongside the theory of quasi-coherent sheaves.

We shall now try to explain what we mean by a ‘theory’, and highlight the formal features
that the two theories have in common and those that set them apart.

1.1. For us QCoh is ultimately a functor

QCoh∗PreStk : (PreStk)op → DGCatcont .

I.e., it is a functorial assignment

(X ∈ PreStk) (QCoh(X) ∈ DGCatcont) and (X
f→ Y) (f∗ : QCoh(Y)→ QCoh(X)).

Moreover, the functor QCoh∗PreStk has a natural right-lax symmetric monoidal structure,
where PreStk is a symmetric monoidal category with respect to the Cartesian product, and
DGCatcont is symmetric monoidal category with respect to the ⊗ tensor product of DG cate-
gories.

NB: Here it is of crucial importance that we work with DGCatcont (and not DGCat): the
operation of tensor product of DG categories is only functorial with respect to continuous (i.e.,
colimit preserving) functors.

Thus, for X,Y ∈ PreStk, we have a well-defined functor

(1.1) QCoh(X)⊗QCoh(Y)→ QCoh(X× Y), F,G 7→ F � G.

1.2. The functor (1.1) is an equivalence if X and Y are schemes (in fact, it is an equivalence of
just one of them is a scheme).

The functor QCoh∗PreStk has the following features:

(i) If X
f→ Y is a schematic and quasi-compact morphism between prestacks, the above functor

f∗ admits a continuous right adjoint

f∗ : QCoh(X)→ QCoh(Y).

Moreover, if

X′
gX−−−−→ X

f ′
y yf

Y′
gY−−−−→ Y

is a Cartesian diagram of prestacks with vertical maps being schematic, the natural transfor-
mation of functors

g∗Y ◦ f∗ → f ′∗ ◦ g∗X, QCoh(X)⇒ QCoh(Y′)
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that arises by adjunction from the isomorphism of functors

(f ′)∗ ◦ g∗Y ' g∗X ◦ f∗,

is an isomorphism.

(ii) If X = X ∈ Sch, then the functor

QCoh(X)⊗QCoh(X) ' QCoh(X ×X)
∆∗X→ QCoh(X)

Γ(X,−)−→ Vect

defines the counit of a duality, thereby giving rise to an equivalence

Dnaive
X : QCoh(X)∨ → QCoh(X).

In the above formula Γ(X,−) is the functor (pX)∗ : QCoh(X) → QCoh(pt) = Vect, where
pX is the tautological projection X → pt.

1.3. Here is what the theory of IndCoh will do. First and foremost it will be a functor

IndCoh!
PreStklaft

: (PreStklaft)
op → DGCatcont .

I.e., it is a functorial assignment

(X ∈ PreStklaft) (IndCoh(X) ∈ DGCatcont) and (X
f→ Y) (f ! : IndCoh(Y)→ IndCoh(X)).

As in the case of QCoh, the functor IndCoh!
PreStklaft

has a natural right-lax symmetric
monoidal structure.

If we work over the ground field of characteristic 0 (which is our assumption throughout),
then the corresponding functor

(1.2) IndCoh(X)⊗ IndCoh(Y)→ IndCoh(X× Y), F,G 7→ F � G.

is an equivalence if either X or Y is a scheme.

Already here, there is one piece of difference from the case of QCoh: the functor (1.2) is
guaranteed to be an equivalence on a far larger class of algebro-geometric objects. Namely, it
suffices to require that X (or Y) be an inf-scheme. We refer the reader to [Chapter III.2] where
it is explained what inf-schemes are. Here we will just say that this is a class of prestacks that
includes formal schemes and de Rham prestacks of schemes, and is closed under fiber products.

1.4. Here are some features of the functor IndCoh!
PreStklaft

:

(i) If X
f→ Y is a schematic (more generally, inf-schematic) morphism between prestacks, we

have a well-defined continuous functor

f IndCoh
∗ : IndCoh(X)→ IndCoh(Y),

and if if

X′
gX−−−−→ X

f ′
y yf

Y′
gY−−−−→ Y

is a Cartesian diagram of laft prestacks with vertical maps being schematic (more generally,
inf-schematic), then we are given an isomorphism of functors

(1.3) g!
Y ◦ f IndCoh

∗ → (f ′)IndCoh
∗ ◦ g!

X, QCoh(X)⇒ QCoh(Y′).
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However, unlike the case of QCoh, for a general f , the functor f IndCoh
∗ is not the adjoint of

f ! on either side. In particular, the isomorphism (1.3) does not come by adjunction from some
a priori defined map. So, (1.3) is really an additional piece of data.

That said, if f is an open embedding, it is stipulated that f IndCoh
∗ should be the right adjoint

of f !, and in this case, the map → in (1.3) should come by adjunction from the isomorphism

(f ′)! ◦ g!
Y ' g!

X ◦ f !.

Also, it is stipulated that if f is proper, then f IndCoh
∗ should be the left adjoint of f !, and in

this case, the map ← in (1.3) should come by adjunction from the isomorphism

(f ′)! ◦ g!
Y ' g!

X ◦ f !.

(ii) If X = X ∈ Sch (more generally, X can be an inf-scheme), then the functor

IndCoh(X)⊗ IndCoh(X) ' IndCoh(X ×X)
∆!

X→ IndCoh(X)
ΓIndCoh(X,−)−→ Vect

defines the counit of a duality, thereby giving rise to an equivalence

DSerre
X : IndCoh(X)∨ → IndCoh(X).

In the above formula ΓIndCoh(X,−) is the functor

(pX)IndCoh
∗ : IndCoh(X)→ IndCoh(pt) = Vect,

where pX is the tautological projection X → pt.

1.5. To summarise, we can say that the category IndCoh(X) and the functor f IndCoh
∗ is guar-

anteed to be better behaved on a larger class of objects and morphisms (than QCoh and f∗).

But the nature of the relationship between pullbacks and push-forwards for IndCoh is quite
different from that of QCoh.

Finally, we should say that there will exist a natural transformation

QCoh∗PreStk |PreStklaft
=: QCoh∗PreStklaft

ΥPreStklaft−→ IndCoh!
PreStklaft

as (symmetric monoidal) functors

(PreStklaft)
op → DGCatcont .

The corresponding functor

ΥX : QCoh(X)→ IndCoh(X)

will, of course, not be an equivalence in general. However:

(a) If X = X ∈ Schaft, then ΥX is an equivalence if and only if X is a smooth classical scheme.

(b) If X = XdR, for X ∈ Schaft , the functor ΥXdR
is always an equivalence.

2. How to construct IndCoh?

One should say that it is quite a long way to construct IndCoh having the above pieces of
structure: it will take us all of Parts II and III of this book to do so. Here we will outline the
strategy of how this is done.
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2.1. In [Chapter II.1] we begin by constructing the category IndCoh(X) for an individual object
X ∈ Schaft.

We start with the usual category QCoh(X) and consider its (non-cocomplete) subcategory
Coh(X) ⊂ QCoh(X) consisting of bounded complexes with coherent cohomologies. We let
IndCoh(X) to be the ind-completion of of Coh(X).

We obtain that IndCoh(X) is a compactly generated category, equipped with a t-structure
and a tautologically defined t-exact functor

ΨX : IndCoh(X)→ QCoh(X)

that induces an equivalence on the eventually coconnective subcategories, i.e., the corresponding
functors

IndCoh(X)≥−n → QCoh(X)≥−n

are equivalences for any n.

Thus, IndCoh(X) begins life as a 1small modification’ of QCoh(X)–the two categories only
differ at −∞. But once we construct IndCoh as a full-fledged theory, it will be quite different
from QCoh, as was explained in Sect. 1 above.

2.2. Having defined the category IndCoh(X) for an individual object X ∈ Schaft we proceed
to defining the *-push forward functor

f IndCoh
∗ : IndCoh(X)→ IndCoh(Y )

for a morphism f : X → Y between schemes.

The functor f IndCoh
∗ is essentially inherited from QCoh: it is uniquely determined by the

requirement that it should be left t-exact and make the diagram

IndCoh(X)
ΨX−−−−→ QCoh(X)

f IndCoh
∗

y yf∗

IndCoh(Y )
ΨY−−−−→ QCoh(Y )

commute.

Furthermore, we show that the assigment

X  IndCoh(X), (X
f→ Y ) f IndCoh

∗

naturally extends to a functor

(2.1) IndCohSchaft
: Schaft → DGCatcont .

2.3. Our subsequent task is to construct the !-pullback functors for IndCoh, equipped with
base change isomorphisms (1.3) against *-push forwards.

When a map X
f→ Y is proper, we define f ! to be the right adjoint of f IndCoh

∗ , and when it
is an open embedding, we define f ! to be the left adjoint of f IndCoh

∗ .

In each of these cases, base change against *-push forwards is a property and not an additional
piece of structure, because the corresponding map in one direction1 comes by adjunction from
a tautological isomorphism.

1But the direction of the map is different for proper maps and open embeddings.
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For a general f , we decompose it as a composition

(2.2) f = f1 ◦ f2

with f1 an open embedding and f2 a proper map, and we wish to define f ! to be f !
2 ◦ f !

1. The
challenge is to show that definition is canonically independent of the decomposition (2.2), and
that it is functorial with respect to compositions of maps.

Furthermore, we need to show that f ! thus defined is equipped with base change isomor-
phisms (1.3), and that these isomorphisms are compatible with compositions etc. However,
before proving these compatibilities, we need to formulate them in the ∞-categorical level, and
this brings us to the paradigm of the category of correspondences.

2.4. In [Chapter II.2] we introduce, following a suggestion of J. Lurie, an (∞, 2)-category,
denoted Corr(Schaft)

proper.

Its objects are X ∈ Schaft. The (∞, 1)-category of morphisms between X0 and X1 has as
objects diagrams

X0,1
g−−−−→ X0

f

y
X1.

and as morphisms (i.e., 2-morphisms in Corr(Schaft)
proper) diagrams

X1,

X0Xt
0,1

Xs
0,1

gt

��

ft
//

gs

��

fs

))

h

��

where h is proper and the superscripts ‘s’ and ‘t’ stand for ‘source’ and ‘target’, respectively.

This (∞, 2)-category is equipped with 1-fully faithful functors

(2.3) Schaft → Corr(Schaft)
proper ← (Schaft)

op.

2.5. We refer the reader to the introduction to [Chapter II.2], where it is explained that a proper
way to encode IndCoh equipped with both functorialities (!-pullback and *-pushforward) is a
functor

(2.4) IndCohCorr(Schaft)proper : Corr(Schaft)
proper → DGCatcont,

whose restriction to Schaft (under the functor → in (2.3)) is the functor

IndCohSchaft
: Schaft → DGCatcont

of (2.1), and whose restriction to (Schaft)
op (under the functor ← in (2.3)) is the functor

IndCoh!
Schaft

: (Schaft)
op → DGCatcont,

encoding the !-pullback.
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Thus, in order to construct the theory of IndCoh on schemes, we need to extend the functor
(2.1) to a functor (2.4). We prove in [Chapter II.2, Theorem 2.1.4] that such an extension exists
and is unique.

2.6. Having thus constructed the theory of IndCoh on schemes, we need to extend it to
prestacks, so that is satisfies (i) from Sect. 1.4.

This is done by the procedure of right Kan extension on the suitable categories of correspon-
dences.

The extension from schemes to inf-schemes (resp., allowing inf-schematic maps between
prestacks instead of schematic ones) requires quite a bit more work, and will be the subject of
Part III of the book.

2.7. Finally, we show that the functor IndCohCorr(Schaft)proper has a natural symmetric monoidal
structure.

From here we formally deduce the Serre duality structure on IndCoh(X) for X ∈ Schaft,
mentioned in (ii) from Sect. 1.4.

2.8. By the construction of IndCoh(X) for a scheme X, it carries an action of the (symmetric)
monoidal category QCoh(X).

In [Chapter II.3] we formulate and prove how this structure is compatible with the functor
IndCohCorr(Schaft)proper of (2.4).

One consequence of this compatibility is the canonically defined natural transformation

ΥSchaft
: QCoh∗Schaft

→ IndCoh!
Schaft

that right-Kan-extends to the natural transformation

ΥPreStklaft
: QCoh∗PreStklaft

→ IndCoh!
PreStklaft

mentioned in Sect. 1.5.

NB: for a scheme X we have a pair of functors

IndCoh(X)
ΨX→ QCoh(X) and QCoh(X)

ΥX→ IndCoh(X).

We will show that these functors are mutually dual, where we identify

QCoh(X)∨ ' QCoh(X) and IndCoh(X)∨ ' IndCoh(X)

via the functors Dnaive
X and DSerre

X , respectively.

We note also that whereas the functor

ΥX : QCoh(X)→ IndCoh(X)

is defined for any prestack X, the functor ΨX is not ; the latter is really a feature of schemes (or,
more generally, Artin stacks). So, the functor ΨX that was so necessary for the initial stages
of the development of IndCoh in a sense loses its significance further along the development of
the theory.


