THE CATEGORY OF SINGULARITIES AS A CRYSTAL
AND GLOBAL SPRINGER FIBERS

D. ARINKIN AND D. GAITSGORY

ABSTRACT. We prove the ‘Gluing Conjecture’ on the spectral side of the categorical geo-
metric Langlands conjecture. The key tool is the structure of crystal on the category of
singularities, which allows to reduce the conjecture to the question of homological triviality
of certain homotopy types. These homotopy types are obtained by gluing from a global
version of Springer fibers.

CONTENTS

Introduction

0.1. The goal: the Gluing Conjecture

0.2. The automorphic side of Langlands duality
0.3. The methods: crystal structure

0.4. The methods: global Springer fibers

0.5. Contents

0.6. Conventions

0.7.  Acknowledgements

1. The category of singularities as a crystal

1.1. Recollections: singular support

1.2.  Recollections: sheaves of categories

1.3. Recollections: the de Rham prestack

1.4. Statement of the result

1.5. Upgrade to a relative crystal of categories
1.6. Extension to algebraic stacks

2. Proof of Theorem 1.4.2

2.1. Idea of the proof

2.2.  Abstract setting for Theorem 1.4.2

2.3. Plan of this section

2.4. Construction of the sheaf of categories

2.5. A functor to the category of global sections
2.6. The case of ind-coherent sheaves

2.7.  Proof of Proposition 2.5.6, Step 1

2.8. Proof of Proposition 2.5.6, Step 2

2.9. Proof of Proposition 2.5.6, Step 3

2.10. Compatibility of monoidal actions

3. Relative crystals

3.1. Relative crystals as a tensor product

3.2. Relative crystals with prescribed singular support

Date: May 12, 2015.

O O N N

12
13
14
14
15
16
18
19
20
22
22
23
23
24
25
27
27
29
29
30
32
32
35



2 D. ARINKIN AND D. GAITSGORY

3.3. Proof of Theorem 3.2.9, Step 1

3.4. Proof of Theorem 3.2.9, Step 2

4. A paradigm for gluing

4.1. Gluing and lax limits: a reminder

4.2.  Gluing of IndCoh

4.3. The setting for the main theorem

4.4. Gluing for D-modules

5. Proof of Theorem 4.4.5

5.1. A criterion for fully faithfulness

5.2.  Proof of Theorem 4.4.5, Step 0

5.3. Proof of Theorem 4.4.5, Step 1

5.4. Proof of Theorem 4.4.5, Step 2

6. Gluing for D-modules and homological contractibility
6.1. D-modules on prestacks

6.2. Explicit description of the left adjoint: a digression
6.3. Full faithfulness as homological contractibility

7. Reduction to a homological contractibility statement
7.1. What do we need to show?

7.2. Reduction to another contractibility statement

7.3. Proof of Proposition 7.2.4, Step 1

7.4. Proof of Proposition 7.2.4, Step 2

8. Schubert stratification

8.1. Conventions regarding roots

8.2.  Some Weyl group combinatorics

8.3. Proof of Theorem 7.2.5: setting up the induction
8.4. Verifying Case w =1

8.5. Verifying Case w # 1

9. A proof via the Grothendieck-Springer correspondence
9.1. Making the nilpotent vary

9.2. Interpretaion via the Springer theory

9.3. Proof of Proposition 9.2.4

References

INTRODUCTION

39
40
43
43
45
46
47
49
49
51
53
54
95
56
58
60
62
62
65
67
68
69
69
71
72
74
75
77
77
78
78
80

0.1. The goal: the Gluing Conjecture. The goal of this paper is to prove the ‘Gluing
Conjecture’ ([Ga3, Conjecture 9.3.7]), which constitutes one of the main steps towards the
proof of the categorical geometric Langlands conjecture. We give a precise statement of the

result in Sect. 4.3 of the present paper. Here we describe it more informally.

0.1.1. Let X be a smooth and complete curve, and G a reductive group over an algebraically
closed ground field k of characteristic 0. We work on the spectral side of geometric Langlands

for G, which concerns the stack LocSys that classifies G-local systems on X.

As was suggested in [AG], the category on the spectral side of geometric Langlands is a
certain modification of the category of quasi-coherent sheaves on LocSys,. Namely, it is the
full subcategory of IndCoh(LocSys;), consisting of objects whose singular support is contained
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in the global nilpotent cone. We refer the reader to [AG, Sect. 11], where the precise meaning
of these words is explained.

The resulting category is denoted IndCohyip,, (LocSyse); the categorical geometric Lang-
lands conjecture predicts an equivalence between IndCOhNilpglob (LocSys) and the category
D-mod(Bung) of D-modules on the stack Bung that classifies principal G-bundles on X (here
G is the Langlands dual group of G).

The category IndCohnilp,,, (LocSysg) contains the usual category QCoh(LocSys) of quasi-
coherent sheaves as a full subcategory.

The Gluing Conjecture aims to express IndCohNHpglob (LocSys(;) in terms of the categories
QCoh(LocSysp), where P runs through the set of standard parabolic subgroups of G (including
P = @). Essentially, the goal is to compensate for the modification

QCoh(LocSysg) ~ IndCohNﬂpglob (LocSys¢)

by considering all parabolic subgroups of GG, and working with usual quasi-coherent sheaves on
the corresponding moduli stacks.

0.1.2. More precisely, for a standard parabolic P, there is a natural map

(0.1) LocSysp — LocSysg

induced by the embedding P — G. We consider the category of quasi-coherent sheaves on
LocSysp, equipped with a connection along the fibers of (0.1); denote this category temporarily
by QCoh(LocSysp)conn / LocSys¢ -

Below we make a brief digression to explain what exactly we mean by such a category. As this
may appear too technical for an introduction, the reader may choose to skip the explanation,
take the existence of a well-defined category QCoh(LocSysp)conn / LocSys ., on faith, and proceed
to Sect. 0.1.4.

0.1.3. First off, it is impossible to makes sense of ‘quasi-coherent sheaves on a stack equipped
with a connection along a fibration’ without resorting to derived algebraic geometry!. So, for
the rest of the introduction, when we say ‘scheme’ (reps., ‘algebraic stack’, ‘prestack’), we mean
a derived scheme (reps., derived algebraic stack, prestack within derived algebraic geometry).

It is more natural to consider ind-coherent sheaves first. Given a map of prestacks f : Z — Y,
we let IndCoh(Z)conn sy be the category of ind-coherent sheaves on Z equipped with a connection
along the fibers of f, which we define to be

IndCoh(Z)conn y := IndCoh(Zar x Y).
Yar
Here IndCoh(W) is the category of ind-coherent sheaves on a prestack W (which is defined for
any prestack locally almost of finite type, see [Gal, Sect. 10]), and Wyg is the de Rham prestack
corresponding to a prestack W (see Sect. 1.3).
Pullback along the map Z — Zgr X Y defines a functor
dR

IndCoh(Zgr x Y) — IndCoh(Z),
Yar

which can be viewed as the functor of forgetting the connection.

Suppose now that Z is a quasi-smooth algebraic stack (a.k.a. derived locally complete inter-
section); see [AG, Sect. 8.1] for the definition. For example, Z = LocSysp is quasi-smooth. We

LUnless some very stringent smoothness conditions are satisfied, such as the map being smooth and schematic.
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then define the full subcategory QCoh(Z)conn /y C INdCoh(Z)conn sy of quasi-coherent sheaves
on Z equipped with a connection along the fibers of f by the condition that it fits into the
following pullback diagram of categories:

QCoh(Z)conn ;y — IndCoh(Z)conn sy

! l

QCoh(Z) —=%5  IndCoh(2).

Here 2y is the tautological functor of embedding QCoh into IndCoh of [Gal, Sect. 1.5] (ex-
tended to algebraic stacks in [Gal, Sect. 11.7.3]). Note that the essential image of Zz is the
full subcategory of objects with zero singular support, see [AG, Corollary 8.2.8].

0.1.4. Returning to the situation of LocSys, the assignment

P~ QCoh(LocSysp) conn / LocSysg

can be viewed as a diagram of categories, indexed by the poset Par(G) of standard parabolics
of G.

Hence, we can talk about the category
(0.2) Glue(QCoh(LocSysp)conn / LocSysg » P € Par(G)),

obtained by gluing the categories QCoh(LocSysp)conn / LocSysg- Lhe definition of the operation
of gluing is reminded in Sect. 4.1.

The name ‘gluing’ is motivated by the following example: given a stratified topological space
Y = agA Y, for a finite poset A, there is an equivalence between the category Shv(Y') of sheaves
on Y and the glued category Glue(Shv(Y,),a € A), see Example 4.1.7.
Informally, an object of (0.2) is a collection of objects
Fp € QCoh(LocSysp)conn / Locsys,  for all P € Par(G),
plus a homotopy-coherent system of compatibility maps (but not necessarily isomorphisms)

Fp, |Locsysp1 — Fp, forall P, C Ps.

0.1.5. For every P, pullback defines a functor
IndCoh(LocSys) — IndCoh(LocSysp)conn / LocSys,, -
Consider the composition
IndCohnilp,,,, (LocSys) = IndCoh(LocSysg) —
— IndCoh(LocSys p)conn / Locsyse — QC0h(LocSys p)conn / LocSyse »
where the last arrow is the right adjoint to the inclusion
QCoh(LocSysp)conn / Locsysg — IndCoh(LocSysp)conn / Locsysc, -

As P € Par(Q) varies, we obtain a functor
(0.3) IndCohyip,,, (LocSyse) — Glue(QCoh(LocSysp)conn / Locsyse I € Par(G)).

The Gluing Conjecture reads:
Conjecture 0.1.6. The functor (0.3) is fully faithful.

As was mentioned earlier, the goal of the present paper is to prove this conjecture.
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0.2. The automorphic side of Langlands duality. Let us now explain the counterpart of
the Gluing Conjecture on the automorphic side of the categorical geometric Langlands conjec-
ture.

As the contents of this subsection play a motivational role only, the reader may skip it and
proceed to Sect. 0.3.

0.2.1. On the automorphic side of the categorical Langlands conjecture, we are dealing with
the category D-mod(Bungs). As explained in [Ga3, Sect. 8], the category is equipped with the
functor of extended Whittaker coefficient

W-coeff'gjg : D-mod(Bung) — Whit™" (G, G),
where Whit™*(G, G) is the extended Whittaker category.
Recall that the category Whit™"(G, G) is obtained by gluing:
Whit™* (G, G) ~ Glue(Whit(G, P), P € Par(G)),

where for a parabolic P, we denote by Whit(@, P) the P-degenerate Whittaker category (see
[Ga3, Sect. 7]).

For example, for P = G, the category Whit(G,G) is the usual (that is, non-degenerate)
Whittaker category of [Ga3, Sect. 5], and for P = B, the category Whit(G, B) is the principal
series category I(G, B) of [Ga3, Sect. 6].

0.2.2. In [Ga3] there were formulated several ‘quasi-theorems’ that jointly provide a canonically
defined fully faithful functor

Glue(QCoh(LocSysp)conn / LocSys» P € Par(G)) —
Glue(Whit(G, P), P € Par(G)) ~ Whit™" (G, G).

Assuming the quasi-theorems hold, we obtain a diagram
Glue(QCoh(LocSysp)conn / LocSys» P € Par(G)) ——— Whit™" (G, G)
(0.4) (0A3)T TW—coeff‘g‘fG-
IndCOhNi]pglob (LocSysg) D-mod(Bung).
The categorical Langlands conjecture claims that there exists an equivalence
L¢ : IndCohnip,,, (LocSys) — D-mod(Bung;)
complementing (0.4) to a commutative diagram.

In [Ga3], the following strategy for proving the categorical Langlands conjecture is suggested.
First, one would show that the vertical arrows of (0.4) are fully faithful. Then, one would
identify the essential images of IndCohnip,, , (LocSysg) and D-mod(Bung) in Whit™* (G, G)
by using some explicit generators of both categories.

2By ‘quasi-theorems’ we mean plausible statements within reach of current methods.
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0.2.3. Thus, one of the key steps in the proof of the categorical Langlands conjecture is to show
that the vertical arrows in (0.4) are fully faithful. At this point, we do not know whether the
functor W—coeffecx)t(; (the right vertical arrow of the diagram) is fully faithful for an arbitrary
group G; for G = GL,, it is a theorem, established in [Be].

On the other hand, the full faithfulness of the functor (0.3) (the left vertical arrow) is precisely
the Gluing Conjecture, which we prove in the present paper.

0.3. The methods: crystal structure. We derive the Gluing Conjecture from a topological
statement. Informally, the key idea is to study both sides ‘microlocally.” The word ‘microlo-
cally’ refers here to the correspondence between ind-coherent sheaves on a quasi-smooth scheme
(or a stack) Y and conical subsets in the ‘scheme of singularities’ Sing(Y"). We then relate cer-
tain categories obtained by gluing categories of ind-coherent (and quasi-coherent) sheaves to
homotopy types obtained by gluing conical subsets of schemes of singularities. In particular,
this applies to the category (0.2): as a result, the Gluing Conjecture reduces to homological
triviality of certain homotopy types. Let us provide some details.

0.3.1. In [AG, Sect. 2.3], we explain how to associate to a quasi-smooth scheme Y a classical
scheme of singularities Sing(Y") equipped with a G,,-action. The scheme Sing(Y") measures how
far Y is from being smooth.

The main construction of the paper [AG] assigns to an object F € IndCoh(Y) its singular
support, denoted SingSupp(F), which is a conical Zariski-closed subscheme of Sing(Y").

It is technically easier for us to work with the category of singularities IndCoh(Y") instead of
IndCoh(Y"), where

IndCoh(Y) := IndCoh(Y)/QCoh(Y).

To an object F € IndCoh(Y') we can attach its singular support P SingSupp(F), which is now
a closed subscheme of the projectivization P Sing(Y") of Sing(Y'), see also [Ste].

A key observation, articulated in Sect. 1 of the present paper is that the assignment
F ~~ P SingSupp(F)
[e]
can be upgraded to a certain categorical structure: IndCoh(Y) is in fact a crystal of categories

over PSing(Y) (Theorem 1.4.2). Here is a reformulation of this statement:

Theorem 0.3.2. There exists a canonical action of the (symmetric) monoidal category

D-mod(PSing(Y")) on IndCoh(Y").
In other words, this theorem says that IndCoh(Z) can be ‘localized’ onto P Sing(Z).

0.3.3. The Gluing Conjecture concerns categories of sheaves with connection along fibers of a

morphism. Let us define versions of the categories IndCoh(Z), QCoh(Z), and IndCoh(Z) for
sheaves with connection.

Let f: Z — Y be a map of schemes. Consider the category
IndCOh(Z)Conn/y = IndCOh(ZdR YX Y),
dR

introduced above.
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In Sect. 3.1 (Proposition 3.1.2), we show that this category identifies with

QCoh(Zgr x Y) & IndCoh(Y),
Yar QCoh(Y)

and therefore contains

QCoh(Zyr x Y)=~QCoh(Zaqr x Y) ® QCoh(Y)
Yar Yar QCoh(Y)

as a full subcategory.

We are interested in the quotient IndCoh(Zgr Y2<RY) /QCoh(Zar Y>d<RY), which can be thought
of as a version of the category of singularities.

Assume now that Y is quasi-smooth. In this case, we show in Sect. 3.1 (Proposition 3.1.8),
that the above quotient can be expressed in terms of IndoCoh(Y) by a topological operation using

the above-mentioned crystal structure on IndCoh(Y’). Namely, we have
(0.5) IndCoh(Zgr x Y)/QCoh(Zgr X Y) ~ D-mod(Z xP Sing(Y)) ® IndCoh(Y).
Yar Yar Y D-mod (P Sing(Y"))
The word ‘topological’ refers to the fact that we are dealing with D-modules rather than
(quasi)-coherent sheaves.
0.3.4. Assume now that in the above situation the scheme Z is quasi-smooth as well. Recall

from [AG, Sect. 2.4] that in this case we have a canonically defined map

Sing(f) : Z X Sing(Y') — Sing(Z),

called the singular codifferential of f.
Furthermore, recall the category

QCoh(Z)conn /v C IndCoh(Zgr Y>< Y).
dR

We have:

QCOh(ZdR X Y) C QCOh(Z)Conn/y - IndCoh(ZdR X Y),
YdR YdR,

where all the inclusions are, generally speaking, strict.
The key point for us is that the quotient
QCOh(Z)COIm/y/QCOh(ZdR X Y) C IndCoh(ZdR X Y)/QCOh(ZdR X Y)
Yar Yar Yar
can be described explicitly in topological terms using the equivalence (0.5). Namely, in Theo-
rem 3.2.9 we prove:
Theorem 0.3.5. Under the identification (0.5), the full subcategory
QCOh(Z)Conn/y/QCOh(ZdR X Y) - IndCoh(ZdR X Y)/QCOh(ZdR X Y)
YdR. YdR, YdR,

corresponds to

D-mod(P(Sing(f)~'({0}))) N IndCoh(Y) C

D-mod(Z x PSing(Y)) ® IndCoh(Y).
Y D-mod (P Sing(Y"))
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In particular, we have a canonical equivalence:

(0.6) QCoh(Z)conn /v /QCoh(Zar Y>< Y) ~
~ Dmod(B(Simg(/) " ({0}) & IndCoh(Y).

0.3.6. We have now set up an abstract framework for handling Conjecture 0.1.6. For simplicity,
we work with schemes rather than stacks.

Let Z; Ky bea diagram of quasi-smooth schemes, indexed by some category I. Suppose
that the maps f; are proper. Let N C Sing(Y’) be a fixed conical Zariski-closed subset. For
each ¢ € I, we consider the composition

IndCohy(Y') < IndCoh(Y') — IndCoh(Z;)conn /v —+ QC0h(Z;)conn /v -
Taken together, these functors yield a functor
(0.7) IndCohn(Y') — Glue(QCoh(Z;)conn /v, € I).
We want to determine whether (0.7) is fully faithful.
In Theorem 4.4.5 we prove the following sufficient condition.

Theorem 0.3.7. Suppose the following two conditions hold:

(1) The corresponding functor

QCoh(Y) — lim QCoh(Z; qr x Y)
7 Y.

dR

1s fully faithful.
(2) the corresponding functor
(0.8) D-mod(P(N)) — Glue (D-mod(P(Sing(f;) " ({0}))),i € I)
18 fully faithful.

Then the functor (0.7) is fully faithful as well.

Let us note that in the formation of the category Glue (D-mod(P(Sing(f;)~*({0}))),i € I),
the functors

D-mod(P(Sing(f;) ' ({0})) — D-mod(P(Sing(f;)~*({0}))
for an arrow ¢ — j in I are not mere pullbacks, but rather are given by pull-push along the
correspondence

Zi x P(Sing( fi)71({0}) —— P(Sing(f;)*({0})
P(Sing(f;) " ({0}).

0.3.8. Finally, assume that in the above situation, the schemes Z; are proper over Y. In this
case, in Corollary 6.3.8 we show that the question of full faithfulness of the functor (0.8) can
be reduced to that of homological contractibility of certain homotopy types.

Namely, for a k-point v € N let W, ,, denote the preimage of v under the map
Sing(f;)~'({0}) <= Z; x Sing(Y') — Sing(Y).
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For an arrow ¢ — j in the category of indices I, the schemes W;, and W; , are related by
the correspondence
Z,L' X ij —_— Wiﬂ,
Zj

l

Wi
In Sect. 6.3.3 we show how such a data gives rise to a prestack, denoted Wgiyed,,. Namely,
Walued,v is the prestack colimit over the category of strings

g =11 — - —>ip, NEN, ijGI
of the diagram of schemes that assigns to a string as above the scheme

Zio X Wi" e
Z

We will prove:

Theorem 0.3.9. The functor (0.8) is fully faithful if and only if for every v not in the zero-
section, the prestack Wgiued,» %5 homologically contractible, i.e., the map

C* (WGlued,V) —k
s an isomorphism.

Here C, stands for homology (with coefficients in k). Note that if a prestack W is the colimit
of schemes

W = colim W,

acA
then its homology can be computed as

C.(W) = c(cl)éign C.(W).

If the ground field k is C, we can assign to W the homotopy type

WP = colim WP
acA

(here the colimit is taken in the co-category of spaces, and for a scheme W, we denote by WP
the underlying analytic space). In this case we have

C.(W) = C,(W'P).

So, the homology C.(Waiyed,r) appearing in Theorem 0.3.9 is indeed the homology of a
canonically defined homotopy type.

0.3.10. The above discussion applies to the case when Y is a quasi-smooth algebraic stack rather
than a scheme, and Z;’s are quasi-smooth algebraic stacks proper and schematic over Y.

The upshot is that the question of fully faithfulness of the functor
IndCohn(Y') — Glue(QCoh(Z;)conn /v »i € 1)

is equivalent to that of homological contractibility, as stated in Theorem 0.3.9.

0.4. The methods: global Springer fibers.
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0.4.1. Recall that our goal is to show that the functor (0.3) is fully faithful. According to
Sect. 0.3.10, this follows from homological contractibility of certain homotopy types constructed
using the maps

LocSysp L0C>S<yS Sing(LocSys;) —— Sing(LocSysp)
G

l

Sing(LocSysg).

Namely, fix a k-point Nilpg,,. We can think of such a point as a pair (o, A), where o is a
G-local system on X, and A is a horizontal section of the vector bundle g, associated with the
adjoint representation.

is that of

Then, the corresponding scheme W;, of Sect. 0.3.8 for ¢ = P and v = (0, A)
(P) denotes the

reductions of o to P for which A is contained in the sub-bundle u(P),, where u
Lie algebra of the unipotent radical of P. We denote this scheme by

A
Spr;,unip :
In addition, we consider the schemes
(0.9) Spr}’;ﬁnip c Sprp®  Spr%,

where Spr% is that of reductions of o to P, and Spr;’A is the subscheme that corresponds to
those reductions for which A is contained in p,.

All three of the above schemes can be viewed as global versions of the Springer fiber.

0.4.2. For P, C P,, the schemes Spr‘;funip and Spr}’;’funip are related by the correspondence

o o, A o, A
SprPl Sp>r<“ SprPgmnip — SprPl,unip
Pa
o, A
SprPg,unip

and the colimit described in Sect. 0.3.8 yields a prestack, denoted Spr‘é’fﬁed’unip.
Combining the results of Sect. 0.3, we obtain that Conjecture 0.1.6 follows from the next

result (it appears in the paper as Theorem 7.1.8):

Theorem 0.4.3. For any (o, A) with a nilpotent A, the prestack Sprg’fﬁed — homologically
contractible.

0.4.4. Although Theorem 0.4.3 is a concrete statement, it involves the prestack Spr"dfﬁed unip’

which is defined by a complicated procedure using correspondences. However, in Sect. 7, we
show that Theorem 0.4.3 is equivalent to a statement about simpler objects.

Namely, let Sprglﬁed be the colimit of the diagram of schemes
P SprCIQ’A,
taken over the poset of standard proper parabolics of G (where Spr‘;;A is as in (0.9)).

We show, assuming that Theorem 0.4.3 holds for proper Levi subgroups of G, that Theo-
rem 0.4.3 is equivalent to the next assertion (it appears in the paper as Theorem 7.2.5):

Theorem 0.4.5. For any (o, A) with a non-zero nilpotent A, the prestack Spré’lﬁed is homo-
logically contractible.
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0.4.6. Theorem 0.4.5 is an essentially combinatorial statement that is proved in Sect. 8. The
idea of the proof is the following:

By the Jacobson-Morozov Theorem, the section A defines a reduction of ¢ to a canonically
defined parabolic Py. This reduction gives rise to a stratification of each Sprj,’;A by elements of
the Weyl group that measure the relative position of a given reduction to P with the canonical
reduction to Fp.

For each w € W, let
o,A,<w o,A,<w o, A
SprGlued - SprGlued C SprGlued
be the corresponding substacks. Consider also

o,A,<w o,A,<w o, A,<w

SprGlued /SprGlued = SprGlued U pt .

o A, <w
PrGlued

We prove, by an analysis of the Weyl group combinatorics, that the prestack

o,A,<w o, A, <w
SPrued  / SPGlued

is homologically contractible for every w.

This implies Theorem 0.4.5 by induction on the length of w.
0.5. Contents. The present paper is naturally divided into three parts.

0.5.1. In Part 1 we discuss the crystal structure on the category of singularities of a quasi-
smooth scheme or algebraic stack, and its corollaries.

In Sect. 1 we state the main result of Part I, Theorem 1.4.2, which says that for a quasi-
smooth scheme Z, there exists a canonically defined crystal of categories over P Sing(Z), denoted

IndCoh(Z)~, such that the category of singularities of Z, denoted
IndCoh(Z) := IndCoh(Z)/QCoh(Z),
is recovered as the category of global sections of IndCoh(Z)™.

As was mentioned above, this theorem can be viewed as saying that IndCoh(Z) can be
‘localized’ onto P Sing(Z). Due to the 1-affineness property of de Rham prestacks, this theorem
can be equivalently phrased as saying that the (symmetric) monoidal category

D-mod(P Sing(Z)) := QCoh(P(Sing(Z))4r)

acts on IndoCoh(Z).

In Sect. 2 we prove Theorem 1.4.2. Let us emphasize that it is naturally proved in the ‘crystal
of categories’ formulation, rather than in the ‘action of the category of D-modules’ one.

In Sect. 3 we study the category IndCoh(Z)conn /v, defined for a morphism Z — Y, and its
various subcategories that can be described in terms of the crystal structure.
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0.5.2. In Part II of the paper we state our main result, Theorem 4.3.4, and reduce it to the
assertion that certain homotopy types are homologically contractible, namely, Theorem 7.1.8.

In Sect. 4 we recall the general paradigm of gluing of DG categories and state Theorem 4.3.4,
which says that the Gluing Conjecture holds. In addition, we state Theorem 4.4.5, which says
that a certain fully faithfulness condition purely at the level of D-modules implies a fully
faithfulness result for ind-coherent sheaves.

It is fair to say that Theorem 4.4.5 contains the main idea of the present paper: it allows us
to reduce the Gluing Conjecture to the question of homological contractibility.

Sect. 5 is devoted to the proof of Theorem 4.4.5.

In Sect. 6 we reformulate the condition of Theorem 4.4.5 (the pullback functor to the category
obtained by gluing certain categories of D-modules is fully faithful) as homological contractibil-
ity of certain prestacks.

0.5.3. In Part III of the paper we prove Theorem 7.1.8, which verifies the required homological
contractibility condition for the Gluing Conjecture.

In Sect. 7 we introduce global Springer fibers, state Theorem 7.1.8, and show that it is
equivalent to a simpler homological contractibility statement (Theorem 7.2.5).

In Sect. 8 we prove Theorem 7.2.5 using an analysis of Weyl group combinatorics and Schu-
bert strata.

Finally, in Sect. 9, we give an alternative proof of a special case Theorem 7.2.5, using the
Springer correspondence.

0.6. Conventions.

0.6.1. DG categories and co-categories. This paper uses the language of co-categories. For ex-
ample, the main result, Theorem 4.3.4, concerns the lax limit of co-categories. Our conventions
regarding oo-categories follow those of [AG]. In particular, the reader does not need to know
how the theory of co-categories is constructed, but rather how to use it.

The primary object of study in this paper is DG categories (e.g., Theorem 4.3.4 says that
a certain functor between DG categories is fully faithful). Again, the conventions pertaining
to DG categories follow those of [AG]. Thus, all DG categories are assumed to be presentable,
and in particular cocomplete (i.e., containing arbitrary direct sums); all functors are assumed
continuous (i.e., preserving colimits).

0.6.2. We let DGCateont denote the (0o, 1)-category of (presentable) DG categories and con-
tinuous functors. This (0o, 1)-category has a natural symmetric monoidal structure, given by
tensor product

Cl, Cy; — Ci®Cs,.

Thus, we can talk about monoidal DG-categories (i.e., algebra objects in DGCatcont with
respect to the above (symmetric) monoidal structure), and modules over them.

Given a monoidal DG category O, we denote by O - mod the category of O-modules. Thus,
C € O-mod means that C is a DG category equipped with an action of O

O®C—C.
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0.6.3. Derived algebraic geometry. This paper concerns quasi-coherent and ind-coherent sheaves
on derived stacks. This puts us in the framework of derived algebraic geometry.

Our conventions regarding derived algebraic geometry follow those of [AG].

By a prestack we mean an arbitrary contravariant functor form the oo-category of affine DG
schemes that that of co-groupoids. (In particular, we say ‘prestack’ rather than ‘DG prestack.”)
By an ‘algebraic stack’ we mean a derived algebraic stack. For a prestack Y there is a canonically
defined category QCoh(Y) of quasi-coherent sheaves on Y.

All DG schemes and prestacks considered in this paper are locally almost of finite type. For
such schemes and prestacks, one has the theory of ind-coherent sheaves. The key tenets of this
theory are recorded in [Gal]. However, the main construction of this theory, namely that of the
I-pullback, does not as yet appear in the published literature. A book-in-progress that contains
this, as well as some other fundamental constructions of this theory, is available in the form of
[GR2].

The following notation is used throughout the paper: for a prestack Y (assumed as always
to be locally almost of finite type) there is a canonically defined object

wy € IndCoh(Y),
the dualizing sheaf. We have a canonically defined functor
Ty : QCoh(Y) — IndCoh(Y), F— FRwy.
0.6.4. Sheaves of categories. In Part 1 of the paper, we use the notion of sheaf of categories

over a prestack and some fundamental results about it (such as the notion of 1l-affineness, its
implications and its criteria). The reader is referred to [Ga2, Sects. 1 and 2| for a summary.

0.7. Acknowledgements. We are grateful to S. Raskin for carefully reading the first draft of

this paper and providing valuable comments.

The research of D.A. is partially supported by NSF grant DMS-1101558. The research of
D.G. is partially supported by NSF grant DMS-1063470.
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Part I: Crystals and singular support.

1. THE CATEGORY OF SINGULARITIES AS A CRYSTAL

Let Z be an affine DG scheme almost of finite type. In this section, we study the singularity
category of Z

IndCoh(Z) := IndCoh(Z)/QCoh(Z).

[e]
The category IndCoh(Z) obviously ‘lives over’ Z, in the sense that its objects can be tensored
by quasi-coherent sheaves on Z.

In this section we show that if Z is quasi-smooth, then the category IndCoh(Z) has a richer
structure. Namely, it 'lives over’ the relative de Rham prestack of Sing(Z), where the latter is
the classical scheme measuring how far Z is from being smooth.

1.1. Recollections: singular support.

1.1.1. Let Z be an affine quasi-smooth DG scheme. Consider the DG categories IndCoh(Z)
and QCoh(Z). Recall that according to [AG, Sect. 4.2.4], there is a canonically defined fully
faithful functor

Ez : QCoh(Z) < IndCoh(Z),
which admits a (continuous) right adjoint, denoted ¥ .

We identify QCoh(Z) with the full subcategory =z(QCoh(Z)) C IndCoh(Z) using the func-
tor Z5.

Remark 1.1.2. Recall there is another canonically defined functor
Tz :QCoh(Z) — IndCoh(Z), Fr— FQRuwz,

where wz € IndCoh(Z) is the dualizing sheaf. Fortunately, when Z is quasi-smooth, the functors
Ez and Yy differ by tensoring by a line bundle. Hence their essential images in IndCoh(Z)
coincide.

1.1.3. Define the singularity category of Z to be the quotient DG category

IndCoh(Z) := IndCoh(Z)/QCoh(Z).
Note that IndCoh(Z) identifies with the full subcategory * QCoh(Z)* C IndCoh(Z) (which
equals ker(Uyz)).

Recall also that IndCoh(Z) is naturally a module category over QCoh(Z), and both functors

Ez and Uy are compatible with the QCoh(Z)-actions. Hence, IndCoh(Z) also acquires a
natural structure of QCoh(Z)-module category.

3Here and elsewhere, for a full subcategory C/ C C, we denote by (C)L C C its right orthogonal, i.e., the
full subcategory consisting of objects that receive no non-zero maps from objects of C’.
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1.1.4. Recall (see [AG, Sect. 2.3]) that to the DG scheme Z one attaches the classical scheme
Sing(Z) equipped with

e a G,,-action,

e a projection Sing(Z) — Z,

e a zero section °Z — Sing(Z).

By a slight abuse of notation, we denote the image of the zero section by {0} C Sing(Z).
The action of G,, on Sing(Z) — {0} is free. Put
PSing(Z) := (Sing(Z) — {0})/Gyn,.
1.1.5. The main construction of the paper [AG] (namely [AG, Defn. 4.1.4], essentially borrowed
from [BIK]) assigns to an object F € IndCoh(Z) a Zariski-closed conical subset
SingSupp(F) C Sing(Z).

Conversely, a Zariski-closed conical subset N C Sing(Z) yields a full subcategory
IndCohx (Z) := {F| SingSupp(F) € N} C IndCoh(Z).

The following is [AG, Theorem 4.2.6]:
Theorem 1.1.6. The full subcategories IndCoh(Z) oy and QCoh(Z) of IndCoh(Z) coincide.

1.1.7. From Theorem 1.1.6 we obtain that to an object F € IndCoh(Z) we can assign a Zariski-
closed subset
P SingSupp(F) C PSing(Z2).

Conversely, a Zariski-closed conical subset N C P Sing(Z) yields a full subcategory
IndCohn(Z) := {F | P SingSupp(F) € N} C IndCoh(Z).
1.2. Recollections: sheaves of categories.

1.2.1. Recall the notion of a quasi-coherent sheaf of categories over a prestack introduced in
[Ga2, Sect. 1.1]. For a prestack Y, a quasi-coherent sheaf of categories € over Y consists of the
following data:

e A QCoh(S)-module Cg, € QCoh(S)-mod for every (S,y) € (Schaﬁ)/g;

e An identification of QCoh(S’)-modules

G/ r ChS/ ® 6
57 = QCoh( )QCoh(S) i

for every morphism S’ ER S, where (S,y) € (Schaﬂ)/y and ¢y =yo f;

e A homotopy-coherent system of compatibilities between the identifications for higher-
order compositions.

Denote the category of quasi-coherent sheaves of categories over Y by ShvCat(Y).

1.2.2. If € € ShvCat(Y), the category of global sections of € is defined as

r'y,e):= lim e
(S,y)EPreStk /y

Y

It is a DG category equipped with a natural action of the (symmetric) monoidal category
QCoh(Y) (see [Ga2, Sect. 1.2]); indeed, QCoh(Y) acts on each term Cg,,.
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1.2.3. The category ShvCat(Y) is naturally enriched over DGCatcont. Using this structure, we
can think of of I'(Y, C) as the DG category of maps from QCoh y to €, where QCoh /y is the
unit sheaf of categories given by

(QCoh,y)s,y = QCoh(S) for all (S,y) € (Sch™") y.
Note that T'(Y, QCoh /y) ~ QCoh(Y).

1.2.4. Recall (see [Ga2, Sefinition 1.3.7]) that a prestack Y is said to be I-affine if the above
functor

I'(Y,—) : ShvCat(Y) — QCoh(Y)- mod

is an equivalence of categories.

1.2.5. For future reference, recall the following constructions. Let g : Z — Y be a map of
prestacks. In this case, we have a tautologically defined functor

cores, : ShvCat(Y) — ShvCat(Z),
given by restriction: for (S, z) € (Sch*™) /2 we have
(coresy(€))s,» = Cg goz-
Note that cores,(QCoh ) ~ QCoh ;.
Slightly abusing the notation, we sometimes write
I'(Z,€) :=T'(Z,coresy(C)) for € € ShvCat(Y).
We sometimes write for (S,y) € (DGSChaH)/y and € € ShvCat(Y)
IL'(S,C) :=Cg,y.
1.2.6. The above functor cores, admits a right adjoint, which we denote by
coind, : ShvCat(Z) — ShvCat(Y).
It can be explicitly described as follows:

(coindy(C))s,y =T'(S ; Z,C) for all (S,y) € (Schf’“cf)/xd7

see [Ga2, Sect. 3.1.3]. Here € € ShvCat(Z)
By adjunction and using Sect. 1.2.3, we have
I'(Y, coind,(C)) ~ I'(Z, C).
1.3. Recollections: the de Rham prestack.

1.3.1. Recall (see e.g., [GR1, Sect. 1.1.1]) that the de Rham prestack Yar of a prestack Y is
defined by
Maps(S, Yar) = Maps(*S,Y), S € DGSch*T .
We have a tautological projection
PY.dR 9 — Yar-

For this paper, we only consider Yqr for prestacks Y of locally (almost) finite type?. In this
case, it is shown in [GR1, Proposition 1.3.3] that Y4r is classical and also locally almost of finite
type.

4The word ‘almost’ is parenthesized because Y4r only depends on the classical prestack underlying Y.
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The basic fact concerning Y4gr is a canonical equivalence of categories

QCoh(Y4r) ~ D-mod(Y),
which, properly speaking, must be taken as the definition of the category D-mod(Y).

1.3.2. The main object of study in this paper is sheaves of categories over prestacks of the form
Yar. They can be alternatively called ‘crystals of categories over Y.’

Let us now list several useful facts about crystals of categories. The first is the following (see
[Ga2, Theorem 2.6.3]):

Proposition 1.3.3. Let Y be a (DG) scheme of finite type. Then Yar is 1-affine.

Remark 1.3.4. We should warn the reader that not all prestacks one encounters in practice
are l-affine. For example, although it is shown in [Ga2, Theorem 2.2.6] that a quasi-compact
algebraic stack Y is 1-affine under some mild technical assumptions, the de Rham prestack Yqgr
is typically not 1-affine (see [Ga2, Proposition 2.6.5]).

1.3.5. For the rest of this subsection we fix a prestack Y and a closed embedding i : Z — Y.

Note that by the finite type assumption, the complementary open embedding j : Y — Y is a
quasi-compact morphism.

We have the following assertion (see [Ga2, Sect. 4]):

Proposition 1.3.6. Consider the maps

. . o
, dR
Zar 2 Yar L Yar.

(a) The functor
coind,,, : ShvCat(Zqr) — ShvCat(Y4r)

is fully faithful. Its essential image consists of those objects that are annihilated by the functor
cores;,, .

(b) For € € ShvCat(Yqr), the functor
I'(Yar, €) = I'(Zar, C)

induces an equivalence
ker (F(‘éde €) = I'(Yar, G)) — I'(Zag, C).

1.3.7. From now on, we use claim (b) of Proposition 1.3.6 to identify I'(Z4gr,C) and
ker (I‘(%}dR, C) = I'(Yar, G)) Thus, we consider T'(Zqg, €) as a full subcategory

F(ZdR, 6) C I‘(lddR, 6)

We also have the following (tautological) assertion:

Lemma 1.3.8. If in the situation of Proposition 1.3.6(b) the prestack Yar is I-affine, then the
full subcategory

F(Z’dR7 e) C F(ydfh e)

consists of objects annihilated by the monoidal ideal

ker (QCOh(%dR) — QCOh(ZdR)) - QCOh(HdR).
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1.4. Statement of the result. Return now to the setup of Sect. 1.1. Thus, Z is an affine
quasi-smooth DG scheme. The notion of singular support provides natural assignments

F € IndCoh(Z) ~ PSingSupp(F) C PSing(2)
and
N C PSing(Z) ~ IndCohx(IndCoh(Z)) C IndCoh(Z)
(see Sect. 1.1). The goal of this section is to refine the assignments to a richer structure.

1.4.1. Consider the prestack (PSing(Z))qr. We will prove:
Theorem-Construction 1.4.2. There exists a canonically defined object
IndCoh(Z)~ € ShvCat((P Sing(Z))dar),
equipped with an identification
T'((PSing(Z))dr, IndCoh(Z)~) ~ IndCoh(Z).
This construction has the following properties:

(a) For a Zariski-closed subset N C PSing(Z), the full subcategory IndCohx(Z) C IndCoh(Z)
coincides with

T (Nar, IndCoh(Z)™) € T((PSing(Z))ar, IndCoh(Z)™).

(b) The action of QCoh(Zar) on T'((P Sing(Z))dR,IndoCOh(Z)N) coming from the (symmetric)
monoidal functor
QCOh(ZdR) — QCOh((P Sing(Z))dR)

and the natural action of the latter on T'((PSing(Z))ar, IndCoh(Z)™) identifies with the action
of QCoh(Zar) on IndCoh(Z) coming from the (symmetric) monoidal functor
QCOh(ZdR) — QCOh(Z)7
and the action of the latter on IndCoh(Z) C IndCoh(Z2).
Remark 1.4.3. Note that Theorem 1.4.2 relates the category of singularities
IndCoh(Z) := IndCoh(Z)/QCoh(Z)

and the projectivization P Sing(Z) of Sing(Z). It would be interesting to find a similar structure
on IndCoh(Z) itself.

1.4.4. According to Lemma 1.3.8 and Proposition 1.3.3, Theorem 1.4.2 is equivalent to the

following:

Corollary 1.4.5. The category IndCoh(Z) carries a canonically defined action of the (sym-
metric) monoidal category QCoh((PSing(Z))ar) such that:

(a) For a Zariski-closed subset N C PSing(Z), the full subcategory IndCohn(Z) C IndCoh(Z)
coincides with the full subactegory of objects annihilated by the monoidal ideal

ker(QCoh((PSing(Z))ar) — QCoh(Ngr)).

(b) The action of QCoh(Zyr) on Ind%]oh(Z) coming from the (symmetric) monoidal functor
QCOh(ZdR) — QCOh((IFD Sing(Z))dR)
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identifies with the action of QCoh(Zgr) on IndCoh(Z) coming from the (symmetric) monoidal
functor

QCOh(ZdR) — QCOh(Z)
and the action of QCoh(Z) on IndoCoh(Z) C IndCoh(Z2).

1.5. Upgrade to a relative crystal of categories. We postpone the proof of Theorem 1.4.2
until Sect. 2. Let us state a slight refinement of the theorem concerning the structure of a
relative crystal of categories on the category of singularities. This refined structure naturally
allows us to extend the theory from the case of an affine DG scheme Z to that of an algebraic
stack.

1.5.1. Consider the (classical reduced) scheme P Sing(Z), and the prestack
(]P Sing(Z))dR ZX Z.

dR

Informally, this prestack can be thought of as the ‘relative’ de Rham stack of P Sing(Z) over
the base Z. Let (id xpqgr,z) denote the tautological map

(P Sing(Z))ar By Z — (PSing(Z))ar-

dR

Consider the corresponding functor

coind ig xp, ») : ShvCat((PSing(Z2))ar P Z) — ShvCat((PSing(Z))ar)-

Proposition-Construction 1.5.2. There exists a canonically defined object
IndCoh(Z)~" € ShvCat((PSing(Z))ar x Z),
Zar

equipped with an identification
coind jq Xde,Z)(IndCoh(Z)N’rel) ~ IndCoh(Z)".
Let us now derive Proposition 1.5.2 from Theorem 1.4.2.

1.5.3. First, we claim:

Lemma 1.5.4. The prestack (PSing(Z))ar X Z is I-affine.

dR

Proof. We can realize P Sing(Z) as a closed subscheme of Z x P". Hence, we have a map
(]P Sing(Z))dR X 4 — (Pn)dR X Z7
Zar

which is a closed embedding. Hence, by [Ga2, Corollary 3.2.7], it suffices to show that (P™)4g X Z

is 1-affine. However, the latter follows from [Ga2, Corollary 3.2.8].
O

1.5.5. By Lemma 1.5.4, we obtain that in order to prove Proposition 1.5.2, we need to extend
the action of the (symmetric) monoidal category QCoh((IPSing(Z))qr) on IndCoh(Z) to that
of the (symmetric) monoidal category

QCoh((PSing(Z))ar % Z).

Zar

We now claim:
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Lemma 1.5.6. For any map of DG schemes almost of finite type Z' — Z, the functor
QCoh(Z)R) ® QCoh(Z) = QCoh(Zir x Z)
QCoh(Z, Z4r

oh(Zar)

is an equivalence.

Proof. Follows from [Ga2, Proposition 3.1.9].

In particular, we obtain that the symmetric monoidal functor
QCoh((PSing(Z))ar) o ® QCoh(Z) — QCoh((PSing(Z))ar Z>< Z)

oh(Zar) dR

is an equivalence.

Now, the action of QCoh((PSing(Z))aqr X Z) on Ind%]oh(Z) is obtained by combining
z

dR
Lemma 1.5.6 and the compatibility statement Theorem 1.4.2(b).
O(Proposition 1.5.2)

1.6. Extension to algebraic stacks.

1.6.1. Let now Z be a quasi-smooth algebraic stack with an affine diagonal (see [AG, Sect.
8.1.1] for the definition).

Let Sing(Z) be the corresponding (classical) algebraic stack, constructed in [AG, Sect. 8.1.5],
and consider the corresponding stack P Sing(Z).

£

1.6.2. Consider the category IndCoh(Z), the subcategory QCoh(Z)
quotient category

IndCoh(Z), and the

IndCoh(Z) := IndCoh(Z)/QCoh(Z),
which identifies with the full subcategory
QCoh(Z)* = ker(¥y : IndCoh(2) — QCoh(Z)) C IndCoh(Z).

The constructions of Sect. 1.1.7 and [AG, Sect. 8.2] generalize to define for every F €
Ind%]oh(Z) the Zariski-closed subset
P SingSupp(F) C P Sing(2),
and for a Zariski-closed subset N C P Sing(Z), the full subcategory

IndCohx(2) C IndCoh(2).
1.6.3. We claim:

Proposition 1.6.4. There exists a canonically defined object
IndCoh(2)~"! € ShvCat((P Sing(2))ar X Z),
Zar
equipped with the following system of identifications:

(a) For an affine DG scheme Z equipped with a smooth map Z — Z, we have a canonical
identification

r (((PSing(Z))dR x Z) x 7, Ind%]oh(Z)N) ~ IndCoh(Z),

Zar Z

as categories equipped with an action of QCoh(Z).
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(b) For a smooth map g : Z1 — Zs of affine DG schemes smooth over Z, the diagram

T (((IP’Sing(Z))dR x z) >Z<Z2,IndoC0h(Z)~> . IndCoh(Z,)

dR

| Jo

T (((PSing(Z))dR x Z) ;Zl,lnd%}oh(Z)N) . TndCoh(Zy)

Zdr

commutes.
Proof. The proof is completely formal:

Let (DGSChaH)Smooth/Z be the category of affine DG schemes Z equipped with a smooth
map to Z. By [Ga2, Theorem 1.5.7], in order to construct IndoCoh(Z)N’”’l, it is sufficient to

construct an assignment

7 € (DGSch™ ) ootn /2 ~» IndCoh(2)™"!| ; € ShvCat <((IP> Sing(2))ar X z) x Z>
dR

equipped with a coherent system of identifications
§: 71— Zy ~ coresi xg(IndCoh(Z)™"|z,) ~ IndCoh(2)™"!|z,.
Given Z € (DGSChaH)smooth /2, We set
IndCoh(2)™"!|; := IndCoh(Z)™".
Note that

((IP’ Sing(Z))ar X Z) X Z ~ (PSing(Z))ar Ry Z.

It remains to construct an identification
(1.1) cores;q x ,(IndCoh(Zy)~*!) =~ IndCoh(Z; )~

for a morphism g : Z1 — Z5 in (DGSchaH)Smooth/Z. Since (PSing(Z))qr X Z is l-affine, an
Zar
identification (1.1) amounts to an identification

I‘((]P’Sing(Zg))dR x Zg,Ind%]oh(Zg)N’rel) ©  QCoh(Z)) ~
(Z2)ar QCoh(Z2)

:I‘((]P’Sing(Zl))dR x Zl,IndoCoh(Zl)N’rel)

(Z1)ar

in QCoh ((]P> Sing(Z1))ar X Zl> -mod.

Z1)ar
Since

F((IPSing(Zi))dR x ZZ-,IndOCoh(ZZ-)N’rel>:Ind(éoh(Zi),

(Z:i)ar

it remains to construct an identification

mdCoh(Z:) ®  QCoh(Zy) ~ IndCoh(Z;).
QCoh(Z)

Such identification is given by the functor g', see [Gal, Corollary 7.5.7]. O
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1.6.5. We now claim:

Proposition 1.6.6. There exists a canonical identification
r ((PSing(Z))dR x 2, Indcoh(Z)N»fel) ~ IndCoh(Z).
Zar
Moreover, for a Zariski-closed subset N C P Sing(2), the full subcategory

IndCohx(2) C IndCoh(2)
equals

T <NdR x Z,IndoCoh(Z)N) cr ((IPSing(Z))dR x Z,Indocoh(Z)~>.
Zdr Zdr

Proof. Follows by combining Theorem 1.4.2(a) and [AG, Proposition 8.3.4].

2. PROOF OF THEOREM 1.4.2
2.1. Idea of the proof. Before we give the proof, let us explain informally its main idea.
2.1.1. To specify a sheaf of categories € over (P Sing(Z))ar, we need to assign a category I'(S, C)
to any affine DG scheme S equipped with a map
red§ s P Sing(2).

In the case of the sheaf € = IndCoh(Z)"~, we take I'(S,IndCoh(Z)™) to be a certain full
subcategory in

QCoh(S) ® IndCoh(Z).

2.1.2. Namely, for an object F € QCoh(S) ® IndCoh(Z) we can talk about its singular support,
which is a closed subset in S x Sing(Z), conical with respect to the G,,-action on the second
factor. Note that if F € QCoh(S) ® QCoh(Z), then its singular support is contained in S x {0}.
Hence, to an object of

QCoh(S) ® IndCoh(Z)
we can attach its singular support, which is a closed subset of S x P Sing(Z).
Now, let
I'(S,IndCoh(Z)™) € QCoh(S) ® IndCoh(Z)
be the full subcategory of objects whose singular support is contained (set-theoretically) in the

graph of the given map "S5 — P Sing(2).

2.1.3. To prove that the above construction works, we need to do two things:

(i) Show that the assignment S ~ I'(S,IndCoh(Z)™) is indeed a sheaf of categories. This is
not difficult.

(ii) Show that a naturally constructed functor IndCoh(Z) — I'(IPSing(Z),IndCoh(Z)™) is an
equivalence. To do so, we will reduce to the case when Z is a global complete intersection and
use some explicit analysis.
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2.1.4. Rather than giving the proof specifically for IndCoh(Z), below we do it in an abstract
setting, by isolating the relevant pieces of structure.

Namely, instead of IndCoh(Z) we have an arbitrary DG category C, and the role of the Es-
algebra of Hochschild cochains (whose action on IndCoh(Z) gives rise to the notion of singular
support), we use an arbitrary Eq-algebra A.

2.2. Abstract setting for Theorem 1.4.2.

2.2.1. Let C be a DG category, equipped with an action of an Eg-algebra A (see [AG, Sect.
3.5] for what this means). Let A be a commutative finitely generated algebra, graded by even
non-negative integers, equipped with a grading-preserving homomorphism

A= H*(A) :== @ H"(A).

According to [AG, Sect. 3.5] (by the construction going back to [BIK]), to any ¢ € C we
can attach its support, denoted supp 4(c), which is a conical Zariski-closed subset of Spec(A).

Vice versa, to a conical Zariski-closed subset N C Spec(A4) we assign the full subcategory
Cy C C,

consisting of objects with support in N.

2.2.2. Let A° be the degree 0 component of A. The projection Spec(A4) — Spec(A°) admits a
canonically defined section Spec(A®) — Spec(A), because we can identify A® with the quotient
algebra of A by the ideal A>9.

Let {0} denote the subset of Spec(A) equal to the image Spec(A°) under the above section.
Let Cyoy be the corresponding full subcategory of C. Define

C = C/Cyy.

We can also think of C as the kernel of the co-localization functor C — Cyq;, right adjoint
to the tautological embedding; this is the same as (C{O})J- c C.

2.2.3. Consider the scheme Proj(A). The assignment
ce C ~» suppy(c) C Spec(A)

gives rise to an assignment
ce C Psupp 4 (c) C Proj(A).
Vice versa, to a Zariski-closed subset N C Proj(A) we assign the full subcategory
Cx = {c € C|Psupp 4(c) c N} c C.

2.3. Plan of this section.
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2.3.1. In Sect. 2.4, we attach a certain sheaf of categories €4 € ShvCat(Proj(A)qr) to the data
(C, A, A) as above.

In Sect. 2.5, we show that C4 comes equipped with a functor
(2.1) C — I'(Proj(A)ar, Ca).

More generally, for a Zariski-closed subset N C Proj(A), there is a functor

(22) CN — I‘(NdR,GA).

We then provide additional conditions on the triple (C, A, A) (in Sect. 2.5.5) that guarantee
that the functor (2.2), and in particular (2.1), is an equivalence. The proof of this claim
(Proposition 2.5.6) occupies Sections 2.7-2.9.

2.3.2. In Sect. 2.6 we apply this discussion to

C := IndCoh(Z), A := HC(Z), A :=T(Sing(Z), Osing(2))-

In the above formula, HC(Z) is the Eg-algebra of Hochschild cochains on Z, or, which is the
same, the Ep-center of the DG category IndCoh(Z), see [AG, Appendix F].

The resulting sheaf of categories category C4 is the sought-for

IndCoh(Z)™ € ShvCat((P Sing(Z))ar)-

The equivalence (2.2) proves point (a) of Theorem 1.4.2.

2.3.3. To establish point (b) of Theorem 1.4.2, we study the interaction of the construction
(C,A,A) ~ Cy

with some pre-existing monoidal actions; this is done in Sect. 2.10.
2.4. Construction of the sheaf of categories.

2.4.1. For S € DGSch® consider the category
QCoh(S) ® C.
The action of A on C and the action of the E-algebra I'(S, Og), viewed as a Eq-algebra,
on QCoh(S) give rise to the action of the Eg-algebra I'(S, 0g) ® A on QCoh(S) ® C.
Note that we have a canonical map of commutative algebras

Ag = H°(T(S,05)) ® A — H*(T(S,05) ® A).
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2.4.2. Consider the corresponding categories (QCoh(S) ® C){oy € QCoh(S) ® C and
QCoh(S) ® C/(QCoh(S) ® C){}-

By [AG, Proposition 3.5.7], we have
(QCoh(S) ® C) oy = QCoh(S) ® Cyoy,
as full subcategories in QCoh(S) ® C.

Hence,

QCoh(S) ® C/(QCoh(S) ® C) 0y ~ QCoh(S) @ C.

Note that Proj(As) ~ S x Proj(A). Thus, to a Zariski-closed subset N’ C S x Proj(A), we
can attach the full subcategory

o]

(QCoh(S) ® C)w © QCoh(S) @ C.

2.4.3. Assume now that S is equipped with a map to Proj(A)gr, i.e., "9 is equipped with a
map f to Proj(A).

Define
F(S, GA) = (QCOh(S) ® C)Graphfa
where Graph, is the Zariski-closed subset of S x Proj(A) equal to the graph of the map f.

2.4.4. For a map S; — S2 we have a tautological identification

QCoh(S1) ® (QCoh(S:) @ C)) ~ QCoh(S:) ® C.
QCoh(S2)

It is easy to see that under this identification we have an inclusion

(2.3) QCoh(S) w0ls (QCoh(S2) ® C)araph,, C (QCoh(S1) @ C)craph,, »

where f5 : 749, — Proj(A) and f; is the composition of 4S8; — ™45, and f,.
We claim:
Lemma 2.4.5. The inclusion (2.3) is an equality.

Proof. Follows by combining [AG, Proposition 3.5.5 and Lemma 3.3.12]. O
2.4.6. From Lemma 2.4.5 we obtain that the assignment
(Sv f) ~ (QCOh(S) X C)Graphf
defines an object of ShvCat(Proj(A)q4r)-
We denote this object by C4. Thus by definition,

o

F(Sv GA) = (QCOh(S) ® C)Graphf
for any (S, f) € (DGSChaH)/proj(A)dR-

2.5. A functor to the category of global sections.
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2.5.1. For (S, f) € (DGSch™™) ) proj(a)uns we define a functor

(2.4) C— (QCOh(S) X C)Graphf = F(S, CA)
as follows.
It is the composition of the tautological functor
C = QCoh(S)® C, ¢ Os®c,

followed by the co-localization functor

QCoh(S) ® C — (QCoh(S) ® C)Gmphf,
which is right adjoint to the tautological embedding

(QCoh(S) ® C)Graphf — QCoh(S) ® C.

2.5.2. The functors (2.4) are clearly compatible under the maps S; — Sy in the category
(DGSChaH)/ Proj(A)gr

Hence, they give rise to a functor
(25) C— ].1(PI"Oj(A)dR7 GA)
2.5.3. Let now N C Proj(A) be a Zariski-closed subset. Consider the corresponding full sub-
category
Cy C C.
On the other hand, consider Ngr C Proj(A4)qr. By Sect. 1.3.7, the category I'(Ngr,Ca)

is naturally a full subcategory of I'(Proj(A)ar,Ca). The following assertion results from the
construction (see Proposition 1.3.6(b)):

Lemma 2.5.4. The essential image of the subcategory Cn C C wunder the functor (2.5) is
contained in T'(Nqr,Ca) C T'(Proj(A)ar, Ca).

Thus, from Lemma 2.5.4, for every N as above, we obtain a functor
(2.6) Cy — I‘(NdR,GA).

2.5.5. Imposing additional conditions. We now return to the general setting of Sect. 2.2 and
make the following additional assumption on the pair (A, A):

Suppose there exists an Eq-algebra B, equipped with a homomorphism

B — A,
such that:
e B is equipped with a grading such that BsMf is classical (here (—)™f is as in [AG,
Sect. 3.6.1]);

e The resulting map B := H*(B) — H*(A) can be factored as
B— A— H*(A),
where B — A is a surjection modulo nilpotents.

We claim:

Proposition 2.5.6. Under the above assumptions on the pair (A, A), the functor (2.6) is an
equivalence.
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We prove Proposition 2.5.6 in Sections 2.7-2.9.

2.6. The case of ind-coherent sheaves. In this subsection we deduce Theorem 1.4.2 from
Proposition 2.5.6.

2.6.1. Let Z be an affine quasi-smooth DG scheme. In the setting of Sect. 2.2 we take

C =IndCoh(Z), A:=HC(Z), A:=T(Sing(Z),Oging(z))-

In this case Proj(A) = P Sing(Z). The construction of Sect. 2.4 defines a sheaves of categories
C4 over (PSing(Z))qr; this is the sought-for IndCoh(Z)™.

2.6.2. The functor (2.5) gives rise to a functor

(2.7) Ind%]oh(Z) -T ((IP’ Sing(Z))dR,Ind%]oh(Z)N> .
Furthermore, for a Zariski-closed subset N C P Sing(Z) we obtain a functor

(2.8) IndCohy(Z) — T (NdR, Ind%oh(Z)~> .

To prove Theorem 1.4.2(a), we need to show that the functor (2.8), and in particular, (2.7)
is an equivalence. We do so by reducing to the situation when Proposition 2.5.6 becomes
applicable.

2.6.3. First, we notice that the fact that (2.8) is an equivalence can be checked Zariski-locally
on Z. Hence, can (and will) assume that Z is a global derived complete intersection. This means
that Z fits into a Cartesian square

Z —— U
(2.9) | |
pt —— V,
where U is smooth, and V is a vector space.
We claim that in this case the additional assumptions of Sect. 2.5.5 are satisfied.
Indeed, for Z fitting into the diagram (2.9), we take B to be the Eo-algebra
I'(U, 0y) @ Sym(V[-2)),

see [AG, Sect. 5.3.2]. The required pieces of structure on B are described in [AG, Formula
(5.9) and Sect. 5.4], respectively.

2.7. Proof of Proposition 2.5.6, Step 1. Let (A, A) and (B, B) be as in Sect. 2.5.5. Let us
prove that (2.5) is an equivalence in the special case (A, A) = (B, B).
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2.7.1. According to [AG, Sect. 3.6.2], the category é has a natural structure of module over
QCoh(Proj(B)).

Let €5 denote the object of ShvCat(Proj(B)) equal to

Locp,,j(s)(C),
where Locp,,j(p) is the left adjoint functor to
I'(Proj(B), —) : QCoh(Proj(B))-mod — ShvCat(Proj(B)),
see [Ga2, Sect. 1.3.1]. Explicitly, for an affine DG scheme S mapping to Proj(B), we have

T(S,€y) = QCoh(S) ®  C.
QCoh(Proj(B))

2.7.2. Recall that pgr proj(p) denotes the tautological map Proj(B) — Proj(B)ar. The key
observation is provided by the following lemma:

Lemma 2.7.3. There exists a canonical isomorphism
~ 3 /
Cp ~ comddeYij(B) (C%)

in ShvCat(Proj(B)4r); under this identification, the composed map

C — I'(Proj(B),C) ~ I‘(Proj(B)dR,coinddeYij(B)(GjB)) ~ I'(Proj(B)ar, Cn)
identifies with (2.10).

Proof. Fix S N Proj(B), and let (S x Proj(B))éraphf be the formal completion of S x Proj(B)
along the graph of f, i.e.,

(S x Proj(B))sapn, = (S X Proi(B)) __ x  (Graph,)an.
(SxProj(B))ar

The sheaf of categories coind,,, ;... 5 (C) assigns to (S, f) as above the category

o

Coh ( (S x Proj(B))A ® C.
QCo (( roj( ))Graphf) QCoh(Proj(B))

which tautologically identifies with

QCoh ((S x Proj(B))gmphf) cons ey (QCONS) @ O) =

~ QCoh(S x Proj(B))Graph, ® (QCoh(S) ® C).
QCoh(SxProj(B))

Now, the latter category identifies with (QCoh(S) ® C)araph, by [AG, Corollay 3.6.5].
O

2.7.4. From Lemma 2.7.3, we obtain that in order to prove that (2.5) is an isomorphism, it
suffices to show that the map
C — I'(Proj(B), Cp) = I'(Proj(B), Locp,jp) (C))

is an isomorphism.

However, the latter follows from the fact that Proj(B) is 1-affine, being a quasi-compact DG
scheme, see [Ga2, Theorem 2.1.1].
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2.8. Proof of Proposition 2.5.6, Step 2. Suppose now that for (A, A) as in Sect. 2.5.5, the
map (2.5) is an equivalence.

2.8.1. Applying the construction of Sects. 2.4-2.5 to (B, B), we obtain
Cp € ShvCat(Proj(B)),

and a functor

o

(2.10) C — I'(Proj(B)ar, CB)-

2.8.2. By assumption, the homomorphism B — A induces a map g : Proj(A) — Proj(B), which
is moreover a closed embedding of the underlying classical reduced schemes.

Consider the corresponding map gqr : Proj(A)ar — Proj(B)4r and the resulting adjoint
pair of functors functor

cores,, . : ShvCat(Proj(B)ar) = ShvCat(Proj(A)4r) : coindg,y, .

Tautologically, we have:
coresy, (Cp) ~ Ca.
Moreover, under this identification, the composed map
C - I'(Proj(B)ar,Cr) — I'(Proj(A)4r, cores,,, (€r)) ~ I'(Proj(A)dr,Ca)

identifies with (2.5).

By adjunction, we obtain a map in ShvCat(Proj(B)4r):
(2.11) Cp — coind,,, (Ca).

We claim:

Lemma 2.8.3. The map (2.11) is an isomorphism.

Proof. Clearly, Psuppg(c) C Proj(A) C Proj(B) for any ¢ € C. Hence the restriction of Cp to
Proj(B)ar — Proj(A)ar

vanishes. Now the claim follows from Proposition 1.3.6(a). O

2.8.4. As we showed in Step 1 of the proof, the functor (2.10) is an equivalence. Since
I'(Proj(B)dr, coindg,, (C4)) ~ I'(Proj(A)ar, Ca),

Lemma 2.8.3 implies that (2.5), as claimed.
2.9. Proof of Proposition 2.5.6, Step 3.

2.9.1. To complete the proof, it remains to show that the functor

Cx — I'(Ngr,Ca)

of Sect. 2.6 is an equivalence.
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2.9.2. Let N’ be the conical Zariski-closed subset of Spec(A) such that N’ O {0} and N = P(N').
Consider the corresponding full subcategory C’ := Cy» C C. We have an equality

C' =Cy
of full subcategories of C.

Consider the corresponding sheaf of categories €4 over Proj(A)qr. We have a canonical
identification
I‘(Proj(A)dR, G/A) >~ F(NdR, GA),
such that the diagram

CN _— I‘(NdR,GA)
¢ — T(Proj(A)ar, )
comimutes.

As shown on Step 2 of the proof (applied to C’), the bottom arrow of this diagram is an
equivalence. Hence, the top arrow is an equivalence as well. This completes the proof.

2.10. Compatibility of monoidal actions.

2.10.1. We now enhance the setting of Sect. 2.2 to include certain pre-existing monoidal actions.
Suppose A is a commutative (i.e., Es) algebra and A — A is a homomorphism of Eo-algebras.
Assume that
e A is connective, i.e., H"(A) = 0 for n > 0;

e We are given a factorization of the homomorphism H°(A) — H°(A) as

HO(A) = A° — HO(A).

The homomorphism A — A and the action of A on C define an action of Aon C. In
particular, the (symmetric) monoidal category A-mod = QCoh(Spec(A)) acts on C, and hence

o
on C.

2.10.2. Thus, on the one hand, the category QCoh(Spec(A)qr) acts on C via the (symmetric)
monoidal functor

QCoh(Spec(A)ar) — QCoh(Spec(A)) = A-mod — A-mod

(where the first arrow corresonding to the tautological projection Spec(fl) — Spec(fl)dR), and
the action of A-mod on COI ccC.

On the other hand, we have the (symmetric) monoidal functor

QCoh(Spec(A)ar) = QCoh(Spec(H* (A))ar) — QCoh(Spec(A”)ar) — QCoh(Proj(A)ar).
while QCoh(Proj(A)qr) acts on T'(Proj(A)gr,€a)-

We claim:
Proposition 2.10.3. The functor (2.5) intertwines the above actions of QCoh(Spec(A)qr) on
C and T'(Proj(A)ar, Ca), respectively.
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2.10.4. We apply Proposition 2.10.3 as follows. We take A= I'(Z,0), which is equipped
with a canonical map to HC(Z). The conclusion of Proposition 2.10.3 in this case implies the
compatibility statement in Theorem 1.4.2(b).

The rest of this subsection is devoted to the proof of Proposition 2.10.3.

2.10.5. The action of QCoh(Spec(A)ar) on I'(Proj(A)ar, €4) amounts to a compatible family
of actions of QCoh(Spec(A)qr) on the categories

I'(S,€a) = (QCoh(S) ® C)arapn,,
for (S, f) € (DGSch™™) )/ proj(a)um-
For every (S, f), the action in question is obtained as the composition
QCoh(Spec(A)ar) =~ QCoh(Spec(H°(A))ar) — QCoh(Spec(A®)qr) —
— QCoh(Proj(A)ar) — QCoh(S) — QCoh(S) ® A-mod
and the action of QCoh(S) ® A-mod on (QCoh(S) ® (OJ)Gmph ;» obtained from the monoidal

functor QCoh(S) ® A-mod — QCoh(S) ® A-mod.
We need to show that the functor

C — (QC0h(S) ® C)Grapn,

of (2.4) intertwines the above action with the action of QCoh(Spec(A)ar) on C, obtained from
QCoh(Spec(A)ar) — QCoh(Spec(A)) = A-mod,
and the action of A-mod on é C C, obtained from the monoidal functor A-mod — A-mod.

Tautologically, the functor (2.4) intertwines the action of QCoh(Spec(ﬁ)dR) on C with its
action on (QCoh(S) ® C)araph, obtained from the composition
QCoh(Spec(A)ar) — QCoh(Spec(A)) = A-mod 2~ QCoh(S) ® A-mod
and the action of QCoh(S) ® A-mod on (QCoh(S) ® é)gtaphf obtained from the monoidal
functor QCoh(S) ® A-mod — QCoh(S) ® A-mod.

2.10.6. Note, however, that the action of QCoh(S) ® A-mod on (QCoh(S) ® C)Graph, factors
through

QCoh(S) ® A-mod = QCoh(S) ® QCoh(Spec(A)) ~
~ QCoh(S x Spec(A)) — QCoh((S x Spec(ﬁ))éraphf),
where (S x Spec(ﬁ))émphf~ is the formal completion of S x Spec(A) along the graph of the

composed map, denoted ]7

red g Proj(A) — Spec(A°) — Spec(H®(A)) — Spec(A).

Now, the required assertion follows from the commutativity of the next diagram:
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(S x Spec(ﬁ))émphf — 9 x Spec(A) —225  Spec(A)

l l

S % Spec(.AN) L N S AN Spec(.AN)dR.

3. RELATIVE CRYSTALS

Let f: Z — Y be a map of DG schemes almost of finite type. We are interested in the
category
IndCoh(ZdR X Y)

Yar
Objects of this category can be viewed as ind-coherent sheaves on Z equipped with a con-
nection along the fibers of the map Z — Y. When the map is smooth, the words ‘connection
along the fibers’ can be understood literally. In general, the definition requires the language of
de Rham prestacks.

When Z is quasi-smooth, one can use singular support to construct subcategories of
IndCoh(Zgr x Y). In this section we study the interaction of this construction with the
Y,

dR
crystal structure on the category of singularities studied in Sect. 1.

3.1. Relative crystals as a tensor product. Let f : Z — Y be a map of DG schemes almost
of finite type. Let us describe the category IndCoh(Zqr x Y) in terms of IndCoh(Y).
Yar

3.1.1. First, we claim:

Proposition 3.1.2. The functor

(3.1) QCoh(Zgr x Y) ® IndCoh(Y) — IndCoh(Zgr X Y),
Yar QCOh(Y) Yar

induced by the QCoh(Y')-linear functor
(far x id)" : IndCoh(Y") — IndCoh(Z4r x Y),

Yar

is an equivalence.

3.1.3. Proof of Proposition 3.1.2, Step 0. First, it is easy to see that the assertion is Zariski-local
with respect to Z. Hence, we can assume that the map f can be factored as

N
where 7 is a closed embedding, and Z’ is of the form W x Y.

Let Z <% Z' be the embedding of the complementary open.

3.1.4. Proof of Proposition 3.1.2, Step 1. We claim that the assertion of the proposition holds
for Z'. Indeed, we have:
Z(IIR X Y ~ WdR X K
Yar
and hence

QCoh(Zijr x Y) ® IndCoh(Y) ~ QCoh(Wgr) ® IndCoh(Y).
Yar QCoh(Y)

Similarly,
IndCoh(Zijz x Y) =~ IndCoh(Wyr) ® IndCoh(Y).

Yar



THE CATEGORY OF SINGULARITIES AS A CRYSTAL 33

Now, the functor

QCoh(Ziy x Y) ® IndCoh(Y)— IndCoh(Ziz x Y)
Yar QCoh(Y) Yar

identifies with
Ty, ®1Id : QCoh(Wyr) ® IndCoh(Y) — IndCoh(Wyr) ® IndCoh(Y),
which is an equivalence by [GR1, Proposition 2.4.4].

3.1.5. Proof of Proposition 3.1.2, Step 2. Note that the map Zqr x Y — Zjp x Y is an
Yar Yar

isomorphism from Zqg x Y to its own formal completion inside Zjp x Y.
Yar Yar

Hence, we have a localization sequence
QCoh(Zgr x Y) = QCoh(Zjr x Y)=QCoh(Zqr x Y),
Yar Yar Yar

which gives rise to the localization sequence

QCoh(Zgr x Y) ® IndCoh(Y)= QCoh(Zjr x Y) ® IndCoh(Y)=
Yar QCoh(Y) Yar QCoh(Y)

= QCoh(Zar x Y) ®  IndCoh(Y).
Yar QCoh(Y)

Similarly, we have a localization sequence

IndCoh(Zgr x Y) = IndCoh(Z)g x Y) = IndCoh(Zyr x Y).
Yar Yar Yar

Combined with the fact that

QCoh(Zijr x Y) ® IndCoh(Y)— IndCoh(Z)z x Y)
Yar  QCoh(Y) Yar

is an equivalence, this implies that (3.1) is fully faithful.

o o
Applying this to Z, we obtain that the functor (3.1) for Z is conservative. Comparing
the localization sequences, this implies that the functor (3.1) is essentially surjective for Z, as

required.
O(Proposition 3.1.2)

3.1.6. Assume now that Y is quasi-smooth. Consider the category

QCoh(Zar x Y) ® IndCoh(Y),
Yar QCoh(Y)

appearing on the left-hand side of the equivalence in Proposition 3.1.2. It contains as a full
subcategory
QCOh(ZdR X Y) ~
Yar
~QCoh(Zyr x V) ® QCoh(Y) & QCoh(Zar x ¥Y) © IndCoh(Y).
Yar  QCoh(Y) Yar  QCoh(Y)
The resulting embedding

QCoh(Zgr x Y) = QCoh(Zygr x Y) ® IndCoh(Y) ~IndCoh(Zsr X Y)
Yar Yar QCoh(Y) Yar
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differs from the canonical embedding Yz, x vy (given by the action of the left-hand side on
Yar
Wz x v) by tensoring by the pullback of wy. In particular, the two embeddings have the
Yar
same essential image.

Set
IndCoh(Zar x V) :=IndCoh(Zar x Y)/QCoh(Zsr x Y).
Yar Yar

Yar

We view it as a full subcategory of IndCoh(Zqr x Y') by identifying it with

Yar

QCOh(ZdR YX Y)J‘ C IndCoh(ZdR X Y)
dr

Yar
In terms of the equivalence of Proposition 3.1.2, we have

IndCoh(Zar x Y) = QCoh(Zag x Y) @ IndCoh(Y),
YdR Y;lR QCoh(Y)

as full subcategories of

md(Zag x Y)=~IndCoh(Zur x Y¥) ® IndCoh(Y).
YdR YdR QCOh(Y)

3.1.7. We now claim:

Proposition 3.1.8. There exist canonical equivalences

(32) IndCoh(Zur x Y) =~ QCoh((Z x PSing(Y))ar) ® IndCoh(Y) ~
YdR Y QCOh((P Sing(Y))dR)

~T ((Z X PSing(Y))dRJHdOCOh(Y)N)

3.1.9. Proof of Proposition 3.1.8. Let us show that we have a canonical isomorphism

QCOh(ZdR X Y) X Cy >~ QCOh((Z }); PSing(Y))dR)

®
Yar  QCoh(Y) QCoh((PSing(Y))ar)

for any Cy € QCoh((PSing(Y))ar x Y)-mod.
Yar

First, the fact Ygg is 1-affine implies that

QCoh(Zar) ®  QCoh(Y) — QCoh(Zyr X Y)
QCoh(Yar) Yar

is an isomorphism, see Lemma 1.5.6.

Hence,

QCoh(Zyr x V) ® Cy =~ QCoh(Zyr) & Cy.
Yar QCoh(Y) QCoh(Yar)

Next, we rewrite

QCOh(ZdR) ® Cy ~
QCoh(Yar)

:(QCoh(ZdR) ® QCoh((PSiﬂg(Y))dR))

®
QCoh(Yar) QCoh((P Sing(Y))dr)
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Now, the fact that both Zgg and Yy are l-affine implies that the functor

QCOh(ZdR) X QCOh((]P Sing(Y))dR) —
QCoh(Yar)

— QCOh(ZdR ij (]P) Sing(Y))dR) = QCOh((Z }>§ PSng(Y))dR)

is an equivalence.
Hence,

QCoh(Zgr) & Cy ~ QCoh((Z x PSing(Y))ar) X Cy,
QCoh(Yar) Y QCoh((PSing(Y))ar)

as desired.

Finally, the fact that

QCoh((ZxPSing(Y))ar) ndCoh(Y) — T ((Z X P Sing(Y))ar, IndoCoh(Y)N)

&
QCoh((PSing(Y))ar)

is an equivalence follows from the fact that both PSing(Y))qr and (Z x PSing(Y))qr are
1%

1-affine.
O

3.2. Relative crystals with prescribed singular support. Let f : Z — Y be as before.
We now assume that Z is quasi-smooth and that f has a perfect relative cotangent complex
(this is automatic if Y is also quasi-smooth).

In this subsection we show how conical subvarieties on Sing(Z) give rise to subcategories of
IndCoh(ZdR X Y)
Yar

3.2.1. The tautological map pqr,y,z : Z — Zar X Y gives rise to the forgetful functor
Yar

(par/v,z)" : IndCoh(Zgr x Y) — IndCoh(Z).

Yar

According to [GR2, Part II1.3, Proposition 3.1.2], the functor (pqr,y, 7)' is conservative and
admits a left adjoint, denoted (pqr,y, z)1dCoh  Informally, if one views ind-coherent sheaves
on Zgr X Y as (relative) D-modules for the morphism Z — Y, then (de/y,Z)indCOh is the

Y,

dR
induction functor from ind-coherent sheaves on Z to relative D-modules.

The composition ((par/v,z) o (Par,v,z) ") acquires a natural structure of a monad acting

on IndCoh(Z). Denote by
((de/Y,Z>! o (de/YA,Z)indCOh)'mOd(IndCOh(Z))
the category of modules over this monad. The Barr-Beck-Lurie theorem provides an equivalence

IndCoh(Zgr X Y) = ((paryv.z)' © (par/v.z)°")-mod (IndCoh(Z)).
dR

(The assumption that Z is quasi-smooth is not required for this equivalence.)
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3.2.2. Now fix a conical Zariski-closed subset N C Sing(Z). Let
IndCohN(ZdR X Y) C IHdCOh(ZdR X Y)
Yar Yar

denote the preimage of
IndCohx(Z) C IndCoh(Z)

under the functor (de/yz)!.

We claim:

Proposition 3.2.3. The functor (de/y’Z),Ik“dCOh sends IndCohn(Z) to IndCohn(Zar x V).

dR

Proof. The assertion of the proposition is equivalent to the fact that

((Par/v,2)" © (Par/v,2) 99",

viewed as a plain endofunctor of IndCoh(Z), preserves the full subcategory IndCohy(Z).
Recall that according to [GR2, Part 4.4, Theorem 11.3.2], ((par/v,z)' © (Par,v,z)de")
admits a filtration whose n-th associated graded is isomorphic to the functor

(3.3) Sym™(T(Z/Y)) ® —,

!
where Sym” is taken in the symmetric monoidal category (IndCoh(Z),®), and T(Z/Y) €
IndCoh(Z) is as in [GR2, Part III.1, Sect. 4.3.8].

Thus, it suffices to show that the functor (3.3) preserves the subcategory IndCohy (Z).

Let T*(Z/Y) € QCoh(Z) be the cotangent complex of Z. The assumption that T*(Z/Y)
be perfect implies that T(Z/Y) € IndCoh(Z) is canonically isomorphic to

YT2((T(Z2/Y))"),

where (T*(Z/Y))Y € QCoh(Z) is the monoidal dual of T*(Z/Y’), and where Y is as in [GR2,
Part I1.3, Sect. 3.2.5].

Therefore,
Sym™(T(Z/Y)) = Yz (Sym"((T*(Z/Y))")).

where Sym” is now taken in the symmetric monoidal category (QCoh(Z),®). Hence, the
functor (3.3) is given by

Sym"((T*(2/Y))") ® —,

where ® denotes the action of QCoh(Z) on IndCoh(Z), and therefore preserves IndCohy(Z),
see [AG, Lemma 4.2.2]. O

3.2.4. As a corollary of Proposition 3.2.3, we obtain:
Corollary 3.2.5. There exists a canonical equivalence

IndCohy(Zar X Y) =~ ((paryv.2)" © (par,v,z)4°°")-mod (IndCohn (Z)),
dR

commuting with the forgetful functors to IndCohy (7).
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3.2.6. Let us now assume that Y is quasi-smooth as well. Let N C Sing(Z) be a Zariski-closed
conical subset that contains the zero-section. We have

QCOh(ZdR X Y) CIndCOhN(ZdR X Y),

Yar Yar

as follows from the commutative diagram

TZdR,YX Y
QCoh(Zgr x V) ——=— IndCoh(Zgr x Y)
Yar Yar
QCoh(Z) Lz IndCoh(Z).
Let us denote by
(3.4) IndCohn(Zar x Y)
Yar

the quotient
IHdCOhN(ZdR X Y)/QCOh(ZdR X Y),
Yar Yar

considered as a full subcategory of

IdCoh(Zar x Y) C IndCoh(Zag x Y).
Yar Yar

3.2.7. Recall now the map
Sing(f) : Z X Sing(Y") — Sing(Z2),
see [AG, Sect. 2.4.1]. For {0} C N C Sing(Z) as above, consider the closed subset

Sing(f)"'(N) c Z x Sing(Y).

Consider the corresponding closed subset

P(Sing(f)"'(N)) c Z % P Sing(Y').

Consider the corresponding full subcategory
(3.5) r <(]P’(Sing(f)1(N)))dR,IndCoh(Y)”> c’r <(Z X PSing(Y))dR,IndCoh(Y)N) ,
or, which is the same,

(3.6) QCoh ((B(Sing(f)~(N)))ar) oo, )Ind%joh(Y) -

C QCoh((Z x PSing(Y))ar) ® IndCoh(Y).
v QCoh((PSing(Y))ar)
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3.2.8. Using Proposition 3.1.8, we identify

(3.7) IndCoh(Zar x Y)~T ((Z x PSing(Y))dR,Indocoh(Y)N)
Y

Yar

or, equivalently,

(3.8) IndCoh(Zgr x Y) ~ QCoh((Z x PSing(Y))ar) ® IndCoh(Y).
Yar Y QCoh((PSing(Y))dr)

We claim:

Theorem 3.2.9. The full subcategory
IndCOhN(ZdR X Y) C IndN(ZdR X Y)
Yar Yar

of (3.4) corresponds under the identifications (3.7) and (3.8) to the full subcategory
r ((P(Sing(f)_l(fN)))dR,IndoCoh(Y)N> cr ((Z X IPSing(Y))dR,Ind%Joh(Y)N>
Y

from (3.5), or, equivalently, to the full subcategory

QCoh ((P(Sing(f) ™ (N)))ar) ® IndCoh(Y) c
QCoh((PSing(Y))ar)
C QCoh((Z x PSing(Y))ar) ® IndCoh(Y).
Y QCoh((PSing(Y))ar)

from (3.6).

3.2.10. An example. Let us take N = {0}. In this case we have the following three full subcat-
egories of IndCoh(Zgr X Y). The largest is IndCoh(Zgr x Y) itself.
Yar

dR
The smallest is
QCOh(ZdR X Y) CIHdCOh(ZdR X Y)

Yar Yar
The middle category is IndCohyy (Zar X Y), i.e., the preimage of QCoh(Z) C IndCoh(Z)
dR
under the forgetful functor

IndCoh(Zgr x Y) — IndCoh(Z).

Yar

In terms of the identification

IndoCoh(ZdR x Y) =IndCoh(Zar x Y)/QCoh(Zgr x Y) ~
Yar Yar

Yar

~ QCoh((Z x PSing(Y))ar) ® IndCoh(Y').
Y QCoh((PSing(Y))ar)
of Proposition 3.1.8, the subcategory
IndCoh{o}(ZdR X Y) C IndCoh(ZdR X Y)
Yar Yar

corresponds to subscheme

P(Sing(/)" ({0)) € Z x PSing(¥).
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3.3. Proof of Theorem 3.2.9, Step 1. We first show that the assertion of the theorem holds
when f:Z — Y is a closed embedding.

3.3.1. Note that in this case Zgr x Y is the formal completion Y2 of Y along Z. In particular,
Yar

IndCoh(Zar R Y') identifies with the full subcategory
dR

IndCoh(Y)z C IndCoh(Y),
consisting of objects that are set-theoretically supported on Z C Y.
Recall that the categories IndCoh(Z) and IndCoh(Zgr x Y') are related by a pair of adjoint
functors o
(de/Y,Z)}kndCOh : IndCoh(Z) = IndCoh(Zar Y?fr{ Y): (de/Y,Z)!
(the induction functor and the forgetful functor). Under the equivalence

IndCOh(ZdR X Y) ~ IHdCOh(Y)Z,
Yar

they are identified with the pair of adjoint functors
findCeh : TndCoh(Z) = IndCoh(Y) 7 ¢ f'lindcon(yv), -

Under the identification of (3.1), the full subcategory

QCoh(Zgr x Y) ® IndoCoh(Y) CQCoh(Zgr x Y) @ IndCoh(Y)
Yar QCoh(Y) Yar QCoh(Y)

corresponds to

IndCoh(Y)z N IndoCoh(Y) C IndCoh(Y)z ~ IndCoh(Zgr x Y).
Yar

Furthermore, the diagram

QCoh(Zig x Y) ® IndCoh(y) Fropesitions1s, p ((Z xPsmg(y))dR,IndOcoh(Y)~>
Y

Yar QCoh(Y) ~
IndCoh(Y)z N IndCoh(Y) T ((IP Sing(Y))ar, Ind%]oh(Y)N>
Ind%]oh(Y) L Ind%?oh(Y)
commutes.
3.3.2. Set

M := Sing(f)"*(N) c Z X Sing(Y) C Sing(Y).
Let PM denote the corresponding Zariski-closed subset of P Sing(Y).
Then, by Theorem 1.4.2(a),

T <]P’MdR,Ind%Joh(Y)N) cTr <(Z x ]P’Sing(Y))dR,Indc()Joh(Y)N) C IndCoh(Y)
Y
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identifies with the full subcategory of IndCoh(Y") equal to

IndCohpat(Y) = IndCoh(Y) N IndCohy(Y)

Therefore, in order to establish the assertion of the theorem, it is sufficient to show that

IndCohM(Y) = IndCOhN(ZdR X Y),

Yar

as subcategories of IndCoh(Zgg X Y) =~ IndCoh(Y) .

Yar

3.3.3. Thus, we need to show that IndCohy(Y) C IndCoh(Y)z equals the preimage of
IndCohy(Z) under the functor f': IndCoh(Y)z — IndCoh(Z).

We note that the inclusion
IndCohy(Y) C (f')~!(IndCohx(Z))
follows from [AG, Proposition 7.1.3(a)].

For the opposite inclusion, by Corollary 3.2.5, it suffices to show that the essential image of
IndCohy(Z) under the functor

fIndCeh . TndCoh(Z) — IndCoh(Y)

is contained in IndCohy¢(Y). However, this follows from [AG, Proposition 7.1.3(b)].

3.4. Proof of Theorem 3.2.9, Step 2. We now consider the case of a general morphism
f:Z-=Y.

3.4.1. Tt is easy to see that the assertion of the theorem is Zariski-local on Z. Hence, we can
assume that the morphism f factors as

zhy %y,

where Z — Y is a closed embedding, and g is smooth. Furthermore, we can assume that Y is
isomorphic to Y x W with W smooth.

By Step 1, we know that the statement of the theorem holds for the morphism Z — Y.

3.4.2. Consider the (forgetful) functor
(3.9) (id xg)' : IndCoh(Zgr x Y) — IndCoh(Zgr x Y').

Yar dR
By definition,
IndCohN(ZdR X Y) - IndCoh(ZdR X Y)

Yar Yar

is the preimage under (3.9) of
IHdCOhN(ZdR X YI) C IndCoh(ZdR X Y/)

Yd R Yd R
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3.4.3. The fact that g is smooth implies that
Sing(g) : Y’ X Sing(Y') — Sing(Y”)
is an isomorphism. In particular,

Z x Sing(Y) ~ Z x Sing(Y").
% v

Under this identification, the loci
Sing(f)*(N) € Z x Sing(Y) and Sing(f")"*(N) € Z x Sing(Y”)
Y Y/
correspond to one another.

Under the identifications of Proposition 3.1.8 for Y and Y”, respectively, the pullback functor

QCoh(Zix x Y) ® IndCoh(Y)— QCoh(Zur x Y') ® IndCoh(Y')
Yar  QCoh(Y) Yi.  QCoh(Y’)

corresponds to the functor

(3.10) QCoh((Z x PSing(Y))ar) ® IndCoh(Y) —
Y QCoh((P Sing(Y))ar)
— QCoh((Z x PSing(Y"))ar) ® IndCoh(Y"),
v/ QCoh((PSing(Y"))ar)

Hence, we obtain that in order to prove the theorem, it suffices to show that the preimage of
(3.11)  QCoh((P(Sing(f")~*(N)))ar) ® IndCoh(Y") €
QCoh((PSing(Y”))ar)

C QCoh((Z x PSing(Y"))ar) ® IndCoh(Y”).
Y’ QCoh((PSing(Y”))ar)

under the functor (3.10) equals
(3.12)  QCoh((P(Sing(f)~*(N)))ar) ® IndCoh(Y) C
QCoh((PSing(Y))ar)
C QCoh((Z x PSing(Y))ar) ® IndCoh(Y).
Y QCoh((PSing(Y))ar)
Le., it suffices to show that the functor
QCoh((P(Sing(f) ™! (N)))ar)™ ® IndCoh(Y) —
QCoh((PSing(Y))ar)

— QCoh((P(Sing(f) ™" (N)))ar)* ® TndCoh(Y")
QCoh((PSing(Y’))ar)

is conservative.
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3.4.4. Since g is smooth, the functor ¢' induces an equivalence
QCoh(Y’)  ® IndCoh(Y) — IndCoh(Y”).
QCoh(Y)
Hence,
QCoh((P(Sing(f) ™' (N)))ar)™ ® IndCoh(Y”)

QCoh((PSing(Y"))ar)

is obtained from

QCoh((P(Sing(f)~"(N)))ar)* ® IndCoh(Y)

QCoh((PSing(Y))ar)

by the procedure

— & QCoh(Y").
QCoh(Yjz) ®  QCoh(Y)
QCoh(YgR)

Now, we claim that for any C € QCoh(Y ; x Y)-mod, the resulting functor
Yar

(3.13) C—C ® QCoh(Y")
QCoh(Ylr) ®  QCoh(Y)
QCoh(Y4R)

is conservative.
To show this, it is enough to prove that the pullback functor
(3.14) QCoh(Yir) ®  QCoh(Y)— QCoh(Y")
QCoh(Yar)

admits a left adjoint, which is comatible with the action of QCoh(YJR) ®  QCoh(Y), and
QCoh(Yar)

whose essential image generates QCoh(YjR) ® QCoh(Y) as a DG category.
QCoh(Yar)

dR

Indeed, such a left adjoint implies the existence of a left adjoint to (3.13), whose essential
image generates generates C.

3.4.5. To establish the required property of (3.14), we use the assumption that Y/ =Y x W
with W smooth.

We write

QCoh(Yir) ®  QCoh(Y) ~ QCoh(Y) ® QCoh(Wyr)
QCoh(Yar)

and
QCoh(Y") ~ QCoh(Y) ® QCoh(W).
Thus, our assertion follows from the fact that the forgetful functor
QCoh(Wyr) — QCoh(W)

does admit a left adjoint with the required properties.
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Part II: Gluing.

4. A PARADIGM FOR GLUING

In this section we formulate the main result of this paper, Theorem 4.3.4.
4.1. Gluing and lax limits: a reminder.

4.1.1. Let I be an index oo-category, and let
i—=Cy (a:i—j)— (Py:C;— Cy).
be a functor I — DGCatcon.
Let C; be the corresponding co-Cartesian fibration over I. The lax limit
lax-lim C;
il
is the object of DGCatcont equal to the category of all (i.e., not necessarily co-Cartesian)
sections I — Cj of the projection C; — 1.

We have a fully faithful embedding
lim C; — lax-lim C;
iel i€l
that corresponds to taking co-Cartesian sections.

4.1.2. Objects of la}fél}m C,; can be concretely described as follows: An object of la)i(éllim C; is
a collection
c;€C; foralliel,
equipped with a family of morphisms (but not necessarily isomorphisms)
®,(c;) = c; foralla:i—j,

compatible with compositions of a’s, and endowed with a homotopy-coherent system of com-
patibilities for multi-fold compositions.

An object as above belongs to 12161111 C, if and only if the above maps ®,(c;) — ¢; are all
isomorphisms.
4.1.3. Unwinding the definitions, for a given D € DGCat oy, the datum of a functor
F:D— lai;éllim C;
consists of a collection of functors
F,:D—C; foralliel

equipped with a compatible family of natural transformations (but not necessarily isomor-
phisms)
®,0F; = F; foralla:i—j.

In particular, by taking D = Vect, we obtain the description of objects of 1ax—llim C,, given
1€

above.
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4.1.4. We think of 1ax—1jim C,; as glued from the categories C; using the functors ®,,.
1€
For this reason, we also denote

lax—llim C; =: Glue(C;, i € I).
1€

Remark 4.1.5. The category Glue(C;, i € I) can be defined in a more general situation. Namely,
we do not need

i+ CZ‘, I — DGC&tcont
to be a functor, but only (either left or right) laxz functor. I.e., we do not need to have an

isomorphism between ®, o ®3 and ®,.3, but only a morphism in one direction.

We do not need this more general set-up in the present paper.

4.1.6. Ezample. Let Y be a topological space, and let Yj ri> Y be an open subset and Y; <i> Y
be the complementary closed. Let I be the category 0 — 1, and set
Co = Shv(Yp), C; = Shv(Yy), ®oy =i’ 0.
Then the functor
Shv(Y) — Glue(Cy, i € I), T+ (§'(F),i'(F),i' 0 ji 0 §'(F) = i'(F))
is an equivalence. The inverse functor sends

(Fo, F1,i' 0 j1(Fo) — F1) = Cone (ir(ker(i' o j1(Fo) — F1)) — 5i(Fo)) -

4.1.7. Ezample. Example 4.1.6 can be generalized to arbitrary stratified topological spaces, but
this requires taking lax limits over lax functors, as in Remark 4.1.5. Namely, let Y = [J, .4 Ya
be a stratification of a topological space Y indexed by a finite poset A. Thus, the subspaces

Y, C Y are disjoint and locally closed, and
?a - U Y, CY
a’>a

for all a € A. Denote the embedding Y, < Y by ¢,.

For every pair a;,as € A with a1 < as, consider the functor

Dy yay = L!a2 0 tgy 1 Shv(Yy, ) — Shv(Yg,).
For a triple a1,a2,a3 € A with a1 < as < ag, the adjunction between Lih and tq,, yields a
natural transformation
((I)az—mg o (I)al—mg) — (I)al—mg-

In this way, we obtain a lax functor I — DGCatcon (here I is the category corresponding to

the poset A) sending a € A to the category Shv(Y,). Similarly to Example 4.1.6, there is a
natural equivalence between the resulting glued category and Shv(Y').

4.1.8. For every ip € I we let ev,, denote the natural evaluation functor
lax-lim C; — C,,.
iel
The functor ev;, admits a left adjoint, denoted ins;,. Explicitly, for ¢;, € C;, and ¢ € I, we

have

ev; oins;, (¢;y) =~ ael\ggginéo ) D, (ciy)-
I s

Remark 4.1.9. The latter expression for ev; oins;, is a feature of lax limits of DG categories; it
is false for usual limits.
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4.1.10. Subcategories. Let i — C; be as before. Suppose now that for every ¢ € I we chose a
full subcategory

C. cC,.
These subcategories define a full subcategory C; C Cj.

Assume that the following condition holds: for every (a : 4 — j) € I, the functor @, sends
C; to C’. In this case, the composition

C,—C;—1
is a co-Cartesian fibration, and hence gives rise to a functor

i— C;, I — DGCateont -

Consider the corresponding category

laxélim C; =: Glue(C}, i € I).

K3

By construction, we have a canonical fully faithful functor
(4.1) Glue(Cj, i € I) — Glue(C,, i € I),
that commutes with the evaluation functors ev;,.

Finally, assume that in the above setting, each of the embeddings C} < C; admits a continu-
ous right adjoint. In this case, it is easy to show that the functor (4.1) also admits a continuous
right adjoint.

The resulting right adjoint Glue(C;, i € I) — Glue(Cl, ¢ € I) also commutes with the
evaluation functors ev;,.

4.2. Gluing of IndCoh.

4.2.1. Consider the following set-up. Let Y be an algebraic stack. Let I be an index category,
and let

P2, (aii—g) = (fa:25 = Zy).

be an I°P-diagram of algebraic stacks over Y. We denote by f; the corresponding morphisms

We assume that Y and all Z; are quasi-smooth.
4.2.2. We consider
i IndCoh((Zi)ar x Y¥), (a:i—j)— ((fa)ar X idy)'

dR

as a functor I — DGCatcgng.

Let now
N; C Sing(Z;)
be conical Zariski-closed subsets. We assume that for every « : ¢ — j the map

Sing(fa) : 2; x Sing(2:) - Sing(2,)
sends Z; x N; to Nj.
Zi

Consider the corresponding full subcategories

IndCOhNi((Zi)dR 1d>< 9) C IndCoh((Zj)dR X H)

Yar
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According to [AG, Lemma 8.4.2], the above condition on f, implies that the functor

((fa)ar x idy)
sends IndCohy, ((Zi)ar x Y) to IndCohuy, ((Z;)ar 1d>< Y).

Yar dR
4.2.3. We consider the corresponding pair of adjoint functors

(4.2) Glue(IndCohuy;, ((Z4)ar ‘dx Y), i € I) 2 Glue(IndCoh((Z;)ar % Y),i € I).

dR

The functors ((fi)ar x idy)' define a functor
IndCoh(Y) — linIlIndCoh((Zi)dR x Y).
1€

Yar

Thus, for a given conical Zariski-closed subset N C Sing(Y) we obtain the functor

(4.3) IndCohn(Y) — IndCoh(Y) — helrll IndCoh((Z;)ar x Y) —

Yar

— Glue(IndCoh((Z;)ar x Y), ¢ € I) = Glue(IndCohx;, ((Z;)ar X Y), i € I),

Yar Yar
where the last arrow is the right adjoint from (4.2). This functor is our main object of interest.
Remark 4.2.4. Note that the image of (4.3) is usually not contained in the full subcategory
lim IndCOhNi((Zi)dR X 9) C Glue(IndCohNi((Zi)dR X 9)7 1€ I)
icl Yar Yar

4.3. The setting for the main theorem.

4.3.1. We now consider a particular case of the above situation. Let G be a reductive group.

We let I°P be the category corresponding to the poset Par(G) of standard parabolics in G
(i.e., the set of subsets of vertices of the Dynkin diagram of G).

Given a curve X, we let Y := LocSys.; be the algebraic stack of G-local systems on X. We
consider the functor

P € Par(G) — Zp := LocSysp .
We take
N := Nilpy,;, C Sing(LocSys)

to be the global nilpotent cone, see [AG, Sect. 11.1.1]. See also Sect. 7.1.3 for an explicit
description of Nilpyy,-

For every P € Par(G), we take Np C Sing(LocSysp) to be the zero-section {0}.
4.3.2. The following conjecture was made by us (it was recorded as [Ga3, Conjecture 9.3.7]):
Conjecture 4.3.3. The functor
IndCohnilp,,, (LocSys) — Glue(IndCoh oy ((LocSysp)ar X LocSyse), P € Par(G)°P)

(LocSys¢g)dr
of (4.3) is fully faithful.
The main result of this paper is:

Theorem 4.3.4. Conjecture 4.5.3 holds.

The rest of this paper is devoted to the proof of this theorem.
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4.4. Gluing for D-modules. In this subsection we formulate another gluing situation, in the
context of D-modules. We then state a result that says that (under certain circumstances) the
full faithfulness of the functor (4.3) is equivalent to the full faithfulness of a certain functor in
the context of D-modules.

4.4.1. In what follows, for a prestack Y locally almost of finite type we consider the category
D-mod(Y). By definition,

D-mod(Y) := QCoh(Yar),

and thus can be viewed as a symmetric monoidal category.

Recall also that according to [GR1, Proposition 2.4.4], the functor YTy, . defines an equiva-
lence

QCOh(% dR) — IDdCOh(% dR) .

For a morphism ¢ : Y; — Yo we denote by ¢i®' the corresponding pullback functor

D-mod(Y2) — D-mod(Y1).

By definition, g4®' identifies with either of the vertical arrows in the following diagram:

QCoh((Y1)ar) Jan, IndCoh((Y1)ar)

(ng)*T T(ng)!

QCoh((Ys)ar) —29%, TndCoh((Ys)ar).

If g is schematic and quasi-compact, we denote by gqr,« the corresponding direct image
functor

D-mod(Y;) — D-mod(Ys).

4.4.2. Let Y be a prestack locally almost of finite type. Let I be again an index category, and
let

i 2, (ai—g) = (f, 25— Z0).
be an I°P-diagram of algebraic stacks over Y. We denote by f/ the corresponding morphisms
Zi =Y.
We consider

i — D-mod(Z}), (a:i—7) (f] IR

«

as a functor I — DGCatcops.

Let now
M,; C Z;
be Zariski-closed subsets. We assume that for every « : i — j we have
(o)1) © M.
Let M be a Zariski-closed subset of Y’.
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4.4.3. We consider the corresponding pair of adjoint functors

(4.4) Glue(D-mod(M;), i € I) = Glue(D-mod(Z}), i € I).

The functors (/)% define a functor

D-mod(Y') — l.ienll D-mod(Z}).
7
Consider the composition

(4.5)  D-mod(M) < D-mod(Y’) — l.in} D-mod(Z}) <

1€

< Glue(D-mod(Z}), i € I) — Glue(D-mod(M;), i € I),
where the last arrow is the right adjoint from (4.4).

4.4.4. Consider again the setting of Sect. 4.2. Put
Y’ = PSing(Y) 7} = % x PSing(Y)
M =P(N) M; = P (Sing(fi) ' (N2)) C 2.
In Sect. 5 we prove:
Theorem 4.4.5. Assume that the maps f; : Z; — Y are schematic and proper. Assume also

that the following conditions hold:
(1) For every index i, we have {0} C N; and

Sing(fi) 7' (Ni) € Zi X N.

(2) The functor
QCoh(Y) — 1116151 QCoh((Z;)ar x Y)

Yar
1s fully faithful;
(3) The functor
D-mod(M) — Glue (D-mod (M;), i € I)
of (4.5) is fully faithful.
Then the functor
IndCohn(Y) — Glue(IndCohuy;, ((Z)ar X Y), i € 1)

Yar
of (4.3) is fully faithful.

Remark 4.4.6. In Sect. 6.3 we express condition (3) in Theorem 4.4.5 in more concrete terms:
it amounts to acyclicity of certain explicit objects of Vect, or, equivalently, to homological
contractibility of certain homotopy types.

Thus, Theorem 4.4.5 claims that a certain full faithfulness assertion for IndCoh is essentially
of topological nature. The proof of Theorem 4.4.5 is based on Theorem 3.2.9 from Part I of the

paper.

Remark 4.4.7. With a little extra work, one can show that Theorem 4.4.5 holds without the
condition that

Sing(f;) 7' (N) € Zs X N.
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4.4.8. We will apply Theorem 4.4.5 to deduce Theorem 4.3.4. We take I = Par(G)°P and
Y,2;, N, N; as in Sect. 4.3.1.

Note that condition (1) of Theorem 4.4.5 is trivially satisfied. Condition (2) is satisfied
because the category Par(G)°P has an initial object (the improper parabolic P = G), so

lim Coh((LocSys X LocSyss) >~ QCoh(LocSys ).
PEPM(G)UPQ (( yp)dR(LocsysG>dR, ysg) =~ QCoh(LocSys)

Thus, Theorem 4.3.4 follows from Theorem 4.4.5, combined with the following result:
Theorem 4.4.9. The functor
D-mod (P(Nilpg,,)) — Glue (D-mod (P(Mp)), P € Par(G)°P)

18 fully faithful, where

Mp C LocSysp  x  Sing(LocSysg)
LocSysg

is the preimage of {0} C Sing(LocSysp) under the map

LocSysp  x  Sing(LocSyse) — Sing(LocSysp).

LocSysg

We prove Theorem 4.4.9 in Part IIT of the paper.

5. PROOF OF THEOREM 4.4.5

5.1. A criterion for fully faithfulness.

5.1.1. Let (C;,®,) be as in Sect. 4.1.1. Let C} C C; be full subcategories such that
,(Cj) CcC), (a:i—j)el

Set él = (C/)* C C;. Assume that

o

®,(C;)) CCj, (a:i—j)el

Denote
C:=Glue(Cy, i € I), C :=Glue(Cl,icI), C:=Clue(Ci,icl).
Thus, we have a pair of full subcategories
C' < C+C.
We have an inclusion
Cc(C),

which, in general, is not an equality.
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5.1.2. Let now
Fi :D— C,’

be a family of functors as in Sect. 4.1.3.

Let D’ € D be a full subcategory, and set

D:= (D) cD.
We assume that for every ¢ € I, the functor F; satisifies:
Fl(D/) C C;, FZ(D) C Cz
These conditions imply that F restricts to well-defined functors

F':D’—)C’andlng)%(o}.

We claim:
Proposition 5.1.3. Assume that:
(a) Each of the functors F; admits a left adjoint, denoted FL, and
FA(C))cD forallicl.

(b) The functors F' and I% are both fully faithful.
Then F is also fully faithful.

5.1.4. The rest of this subsection is devoted to the proof of Proposition 5.1.3, which is rather
formal.

It is easy to see that the assumption that the functors F; each admits a left adjoint implies
that the functor F : D — C admits a left adjoint® (denoted F*), which satisfies

Floins; ~ FF forallieI,
where ins; is as in Sect. 4.1.8.
We will need the following:
Lemma 5.1.5. If
FE(C) C D forallicl,
then the diagram

T

T
O «— Q
Oe o Q°
[w]

|

commutes.

5In Sect. 6.2 we give a more explicit description of the functor FZ.
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Proof. 1t is enough to show that for every ¢ € I the diagram

D +——

C;, +— (031'
o
D +—— ]OD
However, the latter diagram identifies with
C;, +— (Oli
gl [
D +—— IO)

and the commutativity follows from the assumption.

5.1.6. Proof of Proposition 5.1.3. Tt suffices to check that for d’ € D’ and d € D, the map
(5.1) Homp(d,d’) — Homc(F(d'), F'(d"))

is an isomorphism.

Using Lemma 5.1.5, we can identify (5.1) with the map
Homp (d, d’) — Homp (F¥ o F(d),d’),

which comes from the co-unit of the adjunction

Since, the latter is an an isomorphism (F was assumed fully faithful), the assertion of the

proposition follows.
O

5.2. Proof of Theorem 4.4.5, Step 0.
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5.2.1. Tt is easy to see by descent that the property of the functor (4.3) to be fully faithful is
local in the smooth topology on Y. The same is true for conditions (2) and (3) in Theorem 4.4.5.

Hence, we can assume that Y =: Y and Z; =: Z; are DG schemes.

5.2.2. We prove Theorem 4.4.5 by applying Proposition 5.1.3. We take

D = IndCohn(Y), D’ =QCoh(Y), D =IndCoh(Y)N IndCohy(Y).

We take
Ci = IndCOhNi((Zi)dR X Y)

Yar

Recall the identification

IHdCOh((ZZ‘)dR X Y) ZQCOh((Zi)dR X Y) & IHdCOh(Y)
Yar Yar QCoh(Y)

of Proposition 3.1.2.

We take
C, = QCoh((Z;)ar x Y))=QCoh((Z))ar x Y)) ® QCoh(Y)C
Yar Yar QCoh(Y)
C QCOh((ZZ)dR X Y) ® IndCOh(Y) ~ IndCOh((Zi)dR X Y)

Yar QCoh(Y) Yar

We have:
C} € IndCohyo) (Z)ar x ¥) € IndCohx,((Z)ar_x ¥) = Cu.

dRr dRr

Thus,

Ci = (QCoh((Zi)dR xY) ® IndoCoh(Y)) n <IndCohNt((Zi)dR x Y)).
Yar QCoh(Y) Yar

The functors F; are the compositions

(5.2) dCohx(Y) < IndCoh(y) /P45
— IndCoh((Z;)ar x Y) — IndCohy, ((Zi)ar x Y),

Yar Yar

where the last arrow is the right adjoint to the embedding

IndCOhNi((Zi)dR X Y) ‘—)IHdCOh((Zi)dR X Y)
Yar

Yar
It is clear that the above functor sends D’ = QCoh(Y") to C, = QCoh((Z;)ar X Y)).
dR

In Steps 1 and 2 below we will verify that the above data satisfies the conditions of Propo-
sition 5.1.3.
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5.3. Proof of Theorem 4.4.5, Step 1. In this subsection we will show the following;:
(i) The above functor F; : D — C;

IndCOhN(Y) — IndCOhNi((Zl’)dR YX Y)
dR

admits a left adjoint.
(ii) The left adjoint in (i) sends C; to D', i.e.,

QCOh((Zi>dR X Y) CIndCOhNi((Zi>dR X Y)
Yar Yar

to
QCoh(Y) C IndCohxn(Y).

Note that (ii) is equivalent to the fact that F; sends D to C;.
(iii) The left adjoint in (i) sends C; to D.
5.3.1. First, we claim that the functor

IndCoh(Y) YY) 1 aCon((Z:)ar X Y)
dR
admits a left adjoint®. Indeed, we rewrite

IndCoh((Z;)ar X Y) ~QCoh((Z))ar X Y) & IndCoh(Y).
Yar Yar QCoh(Y)

So, it is enough to show that the functor

((fi)dR X ldy)* : QCOh(Y) — QCOh((Zl)dR X Y)

Yar

admits a left adjoint (it automatically commutes with the action of QCoh(Y"), because QCoh(Y)
is rigid as a monoidal category).

We write

QCoh((Z;)ar x Y) ~ QCoh((Z;)ar) ® QCoh(Y),
Yar QCoh(Yar)

see Lemma 1.5.6.

So, it is enough to show that the functor

(fi)ar : QCoh(Yar) — QCoh((Zi)ar)

admits a left adjoint, which commutes with the action of QCoh(Ygr).

We interpret the latter functor as

FI%Y Demod(Y) — D-mod(Z;).
Since f; is proper, the left adjoint in question is the functor
(fi)ar,+ : D-mod(Z;) — D-mod(Y).

The commutativity with the action of QCoh(Ygr) = D-mod(Y) is given by the projection

formula for (f;)ar, «-

6More conceptually, the left adjoint in question exists because the map (fi)ar X idy) is inf-schematic and
nil-proper, see [GR2, Part II1.3, Proposition 3.2.4].
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5.3.2. Now, the left adjoint to the functor (5.2) is given by the composition

) (((fi)dﬂdY)!)L

IndCohy;, ((Z;)ar X Y) < IndCoh((Z;)ar x Y IndCoh(Y).
Y, Y,

dR dR

We claim that the essential image of the above functor belongs to IndCohx(Y'). Indeed, by
Corollary 3.2.5, it suffices to show that the composition

IndCohy, (Z;) — IndCohu, ((Zi)ar X Y) <
Yar

) i L
5 IndCoh((Z)ar x V) WX 1 acon(y)
Yar
maps to IndCohy(Y'). However, the latter functor identifies with

\IndCoh
(f)s

IndCohy;, (Z;) < IndCoh(Z;) "' IndCoh(Y),
and the desired containment follows from condition (1) in Theorem 4.4.5 and [AG, Proposition
7.1.3(b)].
5.3.3. The fact that the left adjoint to (5.2) sends

QCOh((Zi>dR X Y) CIndCOhNi((Zi>dR X Y)
YdR, YdR,

to
QCoh(Y) C IndCohn(Y)
follows from the construction.

5.3.4. The fact that the left adjoint to (5.2) sends C; to IndCoh(Y") follows from the fact that
the functor left adjoint to ((f;)qr x idy)' sends

QCoh((Z)ar x Y) ® IndCoh(Y)
Yar QCoh(Y)

to IndCoh(Y'), which follows from the description of this left adjoint in Sect. 5.3.1.

5.4. Proof of Theorem 4.4.5, Step 2. In order to apply Proposition 5.1.3, we need to show
that the functors QCoh(Y) — C’ and IndCoh(Y) N IndCohn(Y) — C are both fully faithful.

5.4.1. The fact that QCoh(Y) — C' is fully faithful is given by condition (2) in Theorem 4.4.5.

5.4.2. It remains to show that the functor
o]

(5.3) IndCoh(Y) N IndCohn(Y) — C
is fully faithful.

We are now going to use the results from Part I of the paper. Namely, according to Theo-
rem 3.2.9, the functor

(o)

I — DGCateont, @+ C;
identifies with the functor

i D-mod (P (Sing(f;) ' (Ny))) ® IndCoh(Y).
D-mod(P Sing(Y"))

Similarly, by Theorem 1.4.2,

IndCoh(Y’) N IndCoh(Y) =~ D-mod(PN) ® IndCoh(Y).
D-mod(P Sing(Y"))
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5.4.3. We have the following general assertion:
Lemma 5.4.4. Suppose that in the setting of Sect. 4.1.1, the functor I — DGCateont
i—=Ci (aii—j)— P,

upgrades to a functgr I — O-mod, where O is a monoidal DG category. Then for a right
O-module category C, the functor

C @ Glue(Cy, i € 1) = Glue(C ®Ci iel)

is an equivalence.

Proof. Follows from Sect. 4.1.8.
O

Applying Lemma 5.4.4, we obtain that the functor (5.3) identifies with the functor obtained
from

(5.4) Fb-mod : D-mod(P(N)) = Glue (D-mod (P (Sing(f;) ™" (N;))) , i € I)
by tensoring over D-mod (P Sing(Y")) with IndoCoh(Y).

5.4.5. The functor Fp_,0q admits a left adjoint that commutes with the monoidal action of
D-mod(P Sing(Y')) (by the same argument as in Lemma 5.1.5); denote it by F5_ .. Hence, the
functor (5.3) also admits a left adjoint that can be identified with

L
Fomoa ® Idlndo(loh(Y) '

We need to show that the co-unit of the adjunction

(Fp-mod ® Idinacon(y))” © (Fp-moed ® Idmacen(y)) =
~ (FBmod @ Idindcon(v)) © (FD-mod ® Idinacon(v)) = (FBmoed © FD-mod) ® Idimacon(y)) — 1d
is an isomorphism.

For that, it is enough to know that F]%_mod oFp.moda — Id is an isomorphism, i.e., that Fp_oq
is fully faithful.

However, the latter is given by condition (3) in Theorem 4.4.5.

6. GLUING FOR D-MODULES AND HOMOLOGICAL CONTRACTIBILITY

For the rest of the paper we work within the usual (as opposed to derived) algebraic geometry.
The reason for this is that for a derived scheme Y, the map 'Y — Y gives rise to an isomorphism
('Y )qr — Yar (here 'Y denotes the classical scheme underlying Y), so the pullback functor
D-mod(Y) — D-mod(°'Y") is an equivalence.

From now on, our goal is to prove Theorem 4.4.9; that is, we need to verify condition (3) in
Theorem 4.4.5 in a particular situation. Condition (3) may appear somewhat obscure. In this
section, we restate it in more concrete terms as homological contractibility of certain homotopy

types.
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6.1. D-modules on prestacks. In this subsection we consider a simplified version of the set-
up of Sect. 4.4, namely, one where M; = Z, and where instead of the glued category we consider
the actual (strict) limit.

Strictly speaking, some of this material is not necessary for the sequel; it is included for
completeness and in order to familiarize the reader with the objects involved. For a more
comprehensive review of the theory, the reader is referred to [Gad, Sects. 1 and 7.4].

For the duration of the paper, we let Sch*®
of finite type.

denote the category of (classical) affine schemes

6.1.1. Recall that for a prestack Z, the DG category D-mod(2) is defined to be

lim  D-mod(9),
S€(Schyff)or

where the limit is formed using !-pullbacks as transition functors.

If Z is written as a colimit over I°P (where I is an index oco-category) as

(6.1) Z ~ colim Z;,

i€ Iop
where Z; € Sch, then the functor
I? = Schq, i+ Z;
is cofinal, and so the restriction map

D-mod(Z) — lim D-mod(Z;).

iel

is an equivalence.

6.1.2. A prestack Z is said to be a pseudo-scheme if it admits a presentation (6.1)

Z ~ colim Z;,

i€ 1P

where Z; € Sch, and the transition maps Z; — Z; are proper.
In this case, by [DrGa, Proposition 1.7.5], the evaluation functors
ev; : D-mod(Z) — D-mod(Z;)
admit left adjoints (to be denoted ins;), and the resulting functor

(6.2) colim D-mod(Z;) — D-mod(2),

i€ oP

is an equivalence. In the formation of the above colimit, for an arrow i 2 45 in I and the

corresponding map Z;, ELN Z;,, the functor
D-mod(Z;,) — D-mod(Z;,)

is (fa)ar, = (fa)ar,«- The functors D-mod(Z;) — D-mod(Z) in (6.2) are ins;.
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6.1.3. Suppose now that Z is a prestack over a scheme Y that admits a presentation (6.1) where
all Z; are proper over Y. We then say that Z is pseudo-proper over Y.

Let f (reps. f;) denote the map Z — Y (reps. Z; — Y). Consider the pullback functor
IR D-mod(Y) — D-mod(Z).

By Sect. 6.1.2, the functor f9%-' admits a left adjoint, to be denoted far,1, which is given in
terms of the equivalence (6.2) by the compatible family of functors

(fi)ar, = (fi)ar,+ : D-mod(Z;) — D-mod(Y).
That iS, de’! o insi ~ (fi)dR,I~
The properness assumption on the f;’s implies the following base-change property: for a
morphism of schemes Y’ 25 Y and the corresponding Cartesian square

70 9% 4 7

(6.3) f’l lf

y —2 5y,
the canonical map

(6.4) (f)ar, 0 (g2)" = g™ o faryy,

arising by adjunction from the isomorphism (gz )% o fdR! ~ (f)4R:! o gdR:! g an isomorphism.

6.1.4. We say that a prestack Z over a scheme Y is homologically contractible over Y if the
pullback functor
(£)*': D-mod(Y") — D-mod(Z)

is fully faithful.

Since 2 is pseudo-proper over Y, the functor fqgr, admits a right adjoint f4%'. Hence, 2 is
homologically contractible over Y if and only if the co-unit of the adjuntion

far, o A = Tdp mod(y)

is an isomorphism.

The endofunctor fgr, o IR of D-mod(Y) can be described explicitly as
(6.5) faryo fHH(F) = colim(fi)ar © (f:)(9).
Therefore, Z is homologically contractible over Z if and only if the natual map

(i.glli(gl(fi)dR,* o (fi)™(F) =7
is an isomorphism for every ¥ € D-mod(Y').

6.1.5. Assume for a moment that Y = pt, so that D-mod(Y) = Vect. Then the endofunctor
far o fAR! of Vect is given by tensor product with the object
farp(wz) = far, o f7 (k).

(As a side remark, fqr,i(wz) is defined even if Z is not pseudo-proper; this is due to the fact
that the value of wy on any S € Schy is wg, which is holonomic.)

Put
Jar1(wz) =: Ci(Z) € Vect .
We call C,.(Z) the homology of Z.
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Remark 6.1.6. When k = C, we can attach to Z a homotopy type Z!°P given by

2P .= colim SP.
S€Sch

Here S +— S*°P is the functor sending a scheme to the underlying analytic space, and the colimit
is taken in the co-category of spaces. The Riemann-Hilbert correspondence yields a canonical
isomorphism

C.(2) = CL (257, k),
where the right-hand side is the homology of the homotopy type Z°P.

We now claim:

Lemma 6.1.7. Let Z be pseudo-proper over Y. Then the following conditions are equivalent:
(i) The prestack Z is homologically contractible over Y ;

(ii) The prestack Z is universally homologically contractible over Y: for any morphism of
schemes Y' —'Y, the fiber product Z' := Z x Y is homologically contractible over Y';
Y

(iii) The map
fart(wz) 2 fary o f (wy) = wy
is an isomorphism;
(iv) For every field extension k' D k and every k'-point y of Y, the prestack Z,, = Spec(k’) 1>§ Z

is homologically trivial over Spec(k’);
(v) For every field extension k' D k and every k'-point y of Y, the k'-prestack Z,, has trivial
homology: the natural map
Ci(Zy) = K
s an isomorphism.

Proof. We have (ii) = (i) = (iii) for tautological reasons. The implication (iii) = (v) follows
from base change (Sect. 6.1.3). The equivalence (iv) < (v) follows from Sect. 6.1.5. Let us
prove that (iv) = (ii).

Note first that if for a scheme Y and F € D-mod(Y’), we have F = 0 if and only if for every
field extension ¥’ D k and every k’-point y of Y, the !-fiber of

K @ F € D-mod(k' @)
k k

at y is zero. Using the fact that the formation of F + fyr o f!(F) commutes with field
extensions (which follows, for instance, from the description of fqro f4%' as (6.5)), and the
base-change isomorphism (6.4), we obtain that (ii) is equivalent to each Z, being homologically

contractible, as claimed.
O

6.2. Explicit description of the left adjoint: a digression. Consider the general set-up
of Sect. 4.1.3. Thus, we have an index category I and an I-diagram of categories
i=Ci (1% ) = (C 2 Cy).
Let F be the functor
D — Glue(C,;, i € 1)
given by a lax-compatible family of functors F; : D — C,;. Let us assume that each of the
functors F; admits a left adjoint, which we denote FL.
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Let us give an explicit formula for the left adjoint of the functor

F:D — Glue(C;, i € ).

6.2.1. Consider the category String(I), whose objects are strings of objects of I:
(6.6) (ig = i1 — -+ — ip),

and whose morphisms are induced by order preserving maps [m] — [n]. In other words,
String(7I) is the co-Cartesian fibration in groupoids over A°P corresponding to the functor

A°P — 0o0-Grpd

given by the nerve of I.

6.2.2. There exists a canonically defined functor
Fémng : Glue(C;, @ € I) — Funct(String(1), D).
Namely, given an object
{i—=ci, (i = 7) = (Palci) = c;)} € Glue(Cy, i € 1),
the functor Fétring sends it to the functor String(I) — D that sends (6.6) to

FI @iy, (Ciy))-

6.2.3. Consider the composition functor

L
FString

(6.7) Glue(C;, i € I) 253 Funct(String(1), D) 25" D,
where the right arrow is the functor of colimit along String(7). We claim:
Proposition 6.2.4. The functor (6.7) is the left adjoint of the functor F.
Proof. We can factor F as a composition

D — Glue(D, i € I) — Glue(C;, i € I),
where Glue(D, ¢ € I) is formed using the constant functor
(6.8) I — DGCateont, ¢+ D.

This reduces the statement of the proposition to the case when C; = D, as in (6.8). We
then identify

Glue(D, i € I) ~ Funct(I, D),

and the assertion becomes equivalent to the usual expression of colimits along I via its nerve.
O
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6.3. Full faithfulness as homological contractibility. We return to the situation of
Sect. 4.4 (with a slightly simplified notation). Let Y =Y € Sch be a base scheme and
i (2 5 Y), (-5 5) - (2 I 7))
an I°P-diagram of schemes over it. Let M; C Z; be closed subschemes such that for every
i —» j we have
(fa)THMG) © My,

i.e., we have the diagrams
(fa) (M) —— M

'l
M.
6.3.1. We consider the category
Glue(D-mod(M;), i € I).
For every i, we let F; : D-mod(Y) — D-mod(M;) be the functor

dR,!

D-mod(Y) LN D-mod(Z;) — D-mod(M;),
where the second arrow is the !-pullback along the embedding M; — Z;.
The functors F; give rise to a functor
F: D-mod(Y) — Glue(D-mod(M,;), ¢ € I),
and we want to give an explicit criterion for full faithfulness of F.
6.3.2. Let us assume that all Z; are proper over Y.

In this situation, each of the functors F; admits a left adjoint, and we find ourselves in the
setting of Sect. 6.2. Hence the functor F admits a left adjoint given by (6.7).

Denote the left adjoint of F by
FL . Glue(D-mod(M;), i € I) — D-mod(Y).
The functor F is fully faithful if and only if the co-unit of the adjunction
FY o F' = Idp.mod(y)
is an isomorphism.

Let us describe the functor F¥ o F explicitly.

6.3.3. Consider the following prestack over Y, denoted Mgiyeq:
The prestack is the colimit over the category String(/°P) of the functor
String(I°P) — PreStk, (ip = i1 — -+ = in) — Zijy X M;, .
Z.

(Note that the categories String(7°P) and String() are naturally equivalent.) Denote by fagiued
the natural map
MGlued —Y.

Note that Mgueq is by definition pseudo-proper over Y. By the results of Sect. 6.1.3, the
functor (faiuea)™™" admits a left adjoint

(fGlued)dR,! : D—mOd(MGlued) — D—mOd(Y).
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6.3.4. From Proposition 6.2.4 we obtain:

Corollary 6.3.5. There is a canonical isomorphism of endofunctors of D-mod(Y') over
Idp-moa(y)+
FL o F > (faiued)dr.t © (famed) ™.

Hence, we obtain:

Corollary 6.3.6. The functor F is fully faithful if and only if the map fgiued s homologically
contractible, that is, if the functor (faiued) ™" is fully faithful.

6.3.7. Let k" D k be a field extension and let y be a k’-point of Y. Let Mqiyed,y be the fiber of
Malueda over y, that is,

Mciued,y = Spec(k’) X Maiued-
Y,
Explicitly,

MGlued,y = colim Spec(k’) x (Z.Z-O X Min>.
(i0—i1—+--—ip ) EString(I°P) v, Y .

Combining Corollary 6.3.6 and Lemma 6.1.7, we obtain:
Corollary 6.3.8. The functor
F : D-mod(Y) — Glue(D-mod(M;), i € I)

is fully faithful if and only if for every field extension k' D k and every k'-point y of Y, the
prestack Mgiuea,y s homologically contractible over k'; that is, the map

C*(MGlued,y) — kl

s an isomorphism.
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Part III: Springer fibers.

7. REDUCTION TO A HOMOLOGICAL CONTRACTIBILITY STATEMENT

The goal of the remainder of the paper is to prove Theorem 4.4.9 and thereby finish the
proof of Theorem 4.3.4. Recall that we work in the framework of usual (non-derived) algebraic
geometry, which suffices for the study of D-modules. In other words, all (DG) schemes/stacks
are replaced by the corresponding classical subschemes/substacks.

7.1. What do we need to show?

7.1.1. Recall the statement of Theorem 4.4.9. For any P € Par(G), we consider the stack of
P-local systems LocSysp. When P = G, we take the global nilpotent cone

Nilpy,1, C Sing(LocSysg)-
For every P € Par(G), we put

Zp :=LocSysp x  Sing(LocSys),
LocSysg

and let

Mp C LocSysp  x  Sing(LocSyss)
LocSysg

be the preimage of {0} C Sing(LocSysp) under the singular codifferential map
Zp = LocSysp  x  Sing(LocSys) — Sing(LocSysp).

LocSysq

Theorem 4.4.9 is the statement that the natural functor
D-mod (P(Nilp,)) = Glue (D-mod (P(Mp)), P € Par(G)°?)
is fully faithful.

7.1.2. According to Corollary 6.3.8, Theorem 4.4.9 is equivalent to homological contractibility
of the following prestacks. Let k' O k be a field extension, and let y be a k’-point of P(Nilp,,y,)-
Construct the prestack Mgiyed,y as follows.

Consider the category String(Par(G)). By definition, its objects are chains of standard
parabolic subgroups
(PBhCP C---CPh,) (n>0,P €Par(G)),
and morphisms are induced by order-preserving maps [m] — [n]. Now consider the functor
String(Par(G)) — Sch given by

(PhCc P C---CP,) > Spec(k) X (Zp, x P(Mp,)),
y,P(Nilpglub) Z Py

and put

MGlued v = colim Spec(k’ X Zp, x P(Mp)).
Glued,y (PyC Py C---CPy)€eStrings(Par(G)) P ( )y,]P’(Nilpglob)( o Zp, ( Pn))

Theorem 4.4.9 is equivalent to homological contractibility of prestacks Mgiyea,y for every &’
and y. Without loss of generality, we can replace k with its extension k’. Therefore, we need
to verify that Mgiued,y is homologically contractible for every k-point y of ]P’(Nilpglob).
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7.1.3. Let us now restate the above condition in explicit terms. First, recall the description of
k-points of the algebraic stack Sing(LocSyss) and of the substack

Nilpyop, C Sing(LocSysg),
see [AG, Sect. 11.1].

Namely, this groupoid of k-points Sing(LocSyss)(k) consists of pairs (o, A), where o is a
G-local system on X, and A is a horizontal section of the vector bundle g% associated with the
co-adjoint representation. We identify g* with g by means of a G-invariant bilinear form, and
thus think of A as a horizontal section of g,.

The sub-groupoid of k-points Nilpy,, (k) corresponds to pairs (o, A) with nilpotent A.

7.1.4. Given a k-point (0, A) of Nilp,,;, and a standard parabolic P € Par(G), we define
schemes

Spr?ﬁnip c Spr3? c Spré,
as follows.

A

Spr% is the scheme of reductions of o (as a local system) to the parabolic P, and Sprf,’)u]ﬂip

and Spr‘;,’A are its subschemes corresponding to the condition that A be a section of

w(P)y C go OF Py C go,

respectively, where u(P) denotes the Lie algebra of the unipotent radical U(P) of P.

7.1.5. For fixed o € LocSysq (k) as above, the diagram
P ~~ Spr%
identifies with the diagram of schemes

P ~» LocSysp x {o}.

LocSysg
For fixed (o, A) € Nilpg,,(k), the diagram
P~ Spr?ﬁmp

identifies with the diagram of schemes

P~Mp x {(o,A)},

Nilp,io1

where

Mp C LocSysp  x  Sing(LocSyse)

LocSysg

is as in Theorem 4.4.9.
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7.1.6. Note that
P~ SprUPJA

is a diagram in the usual sense: for any pair of standard parabolics P; C P, there is a morphism
between the corresponding schemes

Spr — Spr
On the other hand, in the diagram
P~~~ Spr Prunip?
the schemes
Spr? P1 anip  and SprP2 nip (P C P)

are connected by a correspondence:

o, A o,A
SprPl S X oA SprPg ,unip SprPl,unip
prp2
SpI‘P2 ,unip *

7.1.7. Explicitly, in the inclusion
Spr‘;l Sp X SprPg unip C Sp P1 ,unip’
P2
the left-hand side (resp. the right-hand side) parametrizes reductions of the local system o to

the parabolic P; such that A is a section of

uw(P2)y C go (resp. of u(P1)s C go)-

Let us now form the prestack

a

SprGlued un1p colim SpI‘Po

Spr
(POCPlC CP ,)EStrings(Par(G)) bt P,L,ump

Spr‘}én

Provided A # 0, a pair (0, 4) € (0, 4) € Nilpg,, (k) projects to a k-point y of P(Nilpg,y,),
and SprGlued unip identifies with the prestack Mgaiyed,y- We therefore see that Theorem 4.4.9 is
implied by the following assertion:

Theorem 7.1.8. Let (0, A) be a k-point of Nilpy.,. Then the prestack Sprg’fied,unip is homo-
logically contractible, that is, the trace map

A
C*(Sprglued,unip) =k
18 an isomorphism.
The rest of the paper is devoted to the proof of Theorem 7.1.8.

Remark 7.1.9. Note that Theorem 7.1.8 claims, in particular that for any such (o, A),
Sperlued unip 18 non-empty; this amounts to checking that Spr Pounip 7 () for some P € Par(G).
This easily follows from the Jacobson-Morozov Theorem, see Sect. 8.3.1.



THE CATEGORY OF SINGULARITIES AS A CRYSTAL 65

Remark 7.1.10. Note that in Theorem 7.1.8 we allow A = 0. The case A = 0 is not needed to
deduce Theorem 4.4.9, but it is used in the inductive step in the proof of Theorem 7.1.8. Note,
however, that the case A =0 in Theorem 7.1.8 is reasonably easy:

It is not hard to check (see Remark 7.2.2 below) that for A = 0, the prestack Spré’l‘ied unip
identifies with
SPréiueq := colim Spr%.

PePar(G)

Now, the category Par(G) has a final object (with P = G), and Sprg = pt. From here,
Sprélued = p‘D

7.2. Reduction to another contractibility statement. One difficulty with Theorem 7.1.8

is due to a rather complicated colimit used to define the prestack Sprg’lﬁed)unip. We shall now

replace Theorem 7.1.8 by an equivalent statement, namely Theorem 7.2.5, which is simpler
from the combinatorial point of view.

7.2.1. Denote by Par’(G) C Par(G) the subset of proper parabolics; thus
Par(G) = Par’(G) U {G}.
Consider the assignment
P~ Sprcl';’A
as a functor
Par’(G) — {Schemes}.
Set
o, A

SPrfieq = colim Spr}’;A.
PePar’ (G)

Remark 7.2.2. The stack Sprg’lﬁed is also equal to the (more complicated) colimit over
String(Par’(G)) of the functor

(PBhCP C---CPFR) HSpr;’;OA.
7.2.3. In Sects. 7.3 and 7.4, we prove:

Proposition 7.2.4. Assume the validity of Theorem 7.1.8 for all proper Levi subgroups of G.
Then for A # 0 there exists a naturally defined isomorphism

VA VA
C* (Sprglued,unip) = C* (Sprglued)'

Assuming Proposition 7.2.4, we obtain that Theorem 7.1.8 is equivalent to the following:
Theorem 7.2.5. Let (0, A) be a k-point of Nilpy,,, with A # 0. Then the prestack Sprg’lﬁed is

homologically contractible.

We prove Theorem 7.2.5 in Sect. 8. In Sect. 9 we give an alternative proof of Theorem 7.2.5
in the special case when o is the trivial local system.
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7.2.6. Both Theorems 7.1.8 and 7.2.5 have topological counterparts. Let us sketch these counter-
parts in case the reader finds their statement more transparent; they are not logically necessary
for the proof.

Let A be a nilpotent element of g, but instead of a local system o fix a family {g,} of
elements in G that centralize A.

For every P € Par(G) consider the corresponding partial flag variety Flp; we think of it as
the scheme classifying parabolics P’ in the conjugacy class of P. Let

{92},4 {g9a},A }

Sprianin C SPIp C Sprive

be the closed subschemes of Flp that correspond to P’ € Flp that satisfy the conditions
(9o € P, A€w(P), (9o € P, AEY), (9a € P),
respectively.

We can form the prestacks Spr‘é’fled’unip and Spr‘é’fled, and the assertions parallel to Theo-
rems 7.1.8 and 7.2.5 hold in this context as well. We leave it to the reader to verify that the
argument of this paper can be used to prove these topological counterparts of the theorems.

Note that when k£ = C, Theorems 7.1.8 and 7.2.5, as stated above, follow from their topo-
logical counterparts via the Riemann-Hilbert correspondence.

Namely, fix a base point x € X, and trivialize the fiber of o at . Then the monodromy of o
gives a homomorphism 71 (X, z) — G, and we take {g,} to be the images in G of some set of

A and

generators of w1 (X, z). Then the analytic spaces corresponding to the schemes Spr Pounip

g;‘ii’? (resp., Spr;’;A and Spr}g“}’A) are canonically identified.

Spr
7.2.7. Let us consider some examples of Theorem 7.2.5.

First, we consider the case of G = SLs, in which case Theorem 4.3.4 is already non-obvious.
But all of its complexity is contained in the reduction of Theorem 4.3.4 to Theorem 7.2.5, as
the latter is quite easy:

For G of rank 1, the poset Par’(G) consists of one element, namely, P = B. Since A # 0, the
scheme Spr%’A is a ‘fat point’: it is a nilpotent thickening of a point. Hence, it is homologically
contractible.

7.2.8. Consider now the case of G = SL3. We distinguish two cases: (a) when A is a regular
nilpotent; (b) when A is a sub-regular nilpotent.

In case (a), for all three parabolics, the corresponding schemes Spr‘;’A are again fat points.
So, the contractibility follows from the fact that the poset Par’(G)

PrOBCP
is contractible as a category (it has an initial object, namely B).
Case (b) is more interesting. The scheme Spr%’A has the shape
Z o 2,
i.e., its obtained by joining certain subschemes Z; and Z; along a common point. (To see

this, use the topological version described in Sect. 7.2.6, first with {g,} being trivial, and then
deduce the general case.)

The projection
Spr};’A — Spr‘l’glA
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maps Z; isomorphically onto its image, and it collapses Z5 onto the image of pt = Z; N Zs.
Similarly, the projection
Spr%’A — Sprj';’lA
maps Zy isomorphically onto its image, and it collapses Z; onto the image of pt = Z1 N Zs.

This description makes the statement of Theorem 7.2.5 manifest.

7.3. Proof of Proposition 7.2.4, Step 1.

o,A

7.3.1. Recall that the prestack Spr¢jj,.4 unip 18 the the following colimit over the index category

Strings(Par(G)) of chains of standard parabolic subgroups
(POCPl (@R CPn)
and morphisms are given by order-preserving maps [m]| — [n].

To each (Py C Py C --- C P,) € Strings(Par(G)) we attach the scheme

o o, A
SprP@ Sp?f(‘fp SprPn,unip .
n

In the above diagram, the P;’s are all standard parabolics. It is possible that P, = G, but in
this case Spr‘fg’iunip is empty, because A # 0. Thus we can work with chains of proper standard
parabolic subgroups

(Po,...,P,) € String(Par’ (Q)).

Let I; := String(Par’(@)) be the index category of chains of proper standard parabolic
subgroups. Denote by F; : I; — Sch the functor

(Po,...,Py) — Sprg, Sp>r<; Sprj’;’funip .
Thus
SP1&fucd unip = COlim F1(i).
7.3.2. We recall that by definition,
SPrGigea = colim F5(i),

where we put I := Par’(G) and
Fy: Iy — Sch: P Spry?.

7.3.3. Consider now the category I whose objects are collections
(7.1) (PhbC---CP,CP) (n>0;R,...,P,, PcPar’(Q@)).
A morphism

(Pfc---cPLcP)— (PPcC---CP%cCP?
is specified by an order-preserving map [n?] — [n!] and an inclusion P! C P2.

Define a functor F': I — Sch by
F:(PyCc---CP,CP)— Spr}’;ﬁunip Sp>r<% Sprf, ,

and put
A .
lued, mixed *

Sprg; = colim F (7).

iel
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7.3.4. We have canonical forgetful functors
JARiaNy RNy Y
By construction F ~ F; o ¢;. This isomorphism gives rise to a map

o, A o, A
(72) SprGlued,mixed - SprGlued,unip '

We claim that the map (7.2) is an isomorphism of prestacks. Indeed, this follows from the
fact that the functor ¢; is a co-Cartesian fibration with contractible fibers (each fiber has an
initial object, namely P = P,).

Thus, to prove Proposition 7.2.4, we need to construct a homological equivalence between
prestacks Spré’fied,mixed and Sprgfﬁed.
7.3.5. Note now that we have a canonically defined natural transformation
(7.3) F — Fyo0 ¢o.
Indeed, for any (Py C --- C P, C P) € I, we have a natural map

F(PyC -+ C P, CP)=Sprp’ o X Sprp, < Spip, =
Pre

Pp,

Spr?):FQ(P):F20¢2(P0C"'CP7LCP).

Hence, we obtain a map of prestacks

JA JA
(74) Sprélued,mixed - SpraGlued :
Let us prove that the map
A VA
(75) C*(Sprg}lued,mixed) - C*(Sprg}lued)7

induced by (7.4) is an isomorphism.
7.3.6. Let
Fi : Iy — Sch

denote the left Kan extension of the functor F along ¢2. By adjunction, the natural transfor-
mation (7.3) gives rise to a natural transformation

F/2 — FQ.

Composing with the functor
C, : Sch — Vect,

we obtain a natural transformation
(7.6) C,oFy — C, oF,
of functors Iy — Vect.

The map (7.5) is obtained from (7.6) by taking colimits over I5. Thus, in order to prove that
(7.5) is an isomorphism, it suffices to show that the map (7.6) is an isomorphism of functors
I> — Vect.

The latter will be done in Step 2, using Theorem 7.1.8 for proper Levi subgroups of G
(including the case A = 0).

7.4. Proof of Proposition 7.2.4, Step 2.
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7.4.1. Note that the functor ¢s is also a co-Cartesian fibration. Hence, the value of C, oF/, on
an object P € Par’(G) = I, is computed as the colimit of the functor C, oFy over the fiber of

¢9 over P. Le., it is the homology of the prestack equal to the colimit of the restriction of F to

. o, A
the above fiber. Denote this prestack by SprGlued’mixed’P‘

Note that we have a tautologically defined map

A o, A o, A
f . SprGlued,mixed,P - SprP .

We need to show that the above map f induces an isomorphism on homology. It suffices to
check that the trace map

(7.7) far, (wSPrgdlﬁed,mixed,P) - wSPr;’A

is an isomorphism in D—mod(Spr}’,’A).

7.4.2. The fact that (7.7) is an isomorphism can be checked at the level of -fibers at k-points
of Spr‘;,’A.

Fix a point op € Spr}’)’A(k:). Thus, op is a reduction of ¢ to P that is compatible with A.
Let M be the Levi quotient of P, and let (oar, Aar) be the resulting k-point of Nilpy,,, for the
group M. (Note that Aps may be zero.)

Note that Sprg’l‘ie d.mixed, p 18 @ colimit of schemes each of which is proper, and in particular,

maps properly to Spr}’;A. Hence, by proper base change, the !-fiber of de,!(wSpra,A ) at

Glued,mixed, P
op is isomorphic to the homology of the fiber of Sprgyed mixed,p OVer op; denote this fiber by

o, A
SprGlued,mixed,P,Up .

7.4.3. Thus, we have to show that the trace map
A
C*(Sprglued,mixed,P,o’p) — k
is an isomorphism.

However, we notice that there is a canonical isomorphism

oA ~ oM,AM
SprGlued,mixed,P,Up - SprGlued,unip ’

(the latter prestack taken for the reductive group M).

Hence, the required assertion follows from Theorem 7.1.8, applied to M.

8. SCHUBERT STRATIFICATION

The goal of this section is to prove Theorem 7.2.5.

8.1. Conventions regarding roots.
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8.1.1. Recall that we fixed a Borel subgroup B C G and a maximal torus T C B. Let A :=
Hom(T, G,,) be the character lattice of T'; it is a free abelian group, which we write additively.
The standard parabolics P C G are the parabolic subgroups containing B.

Let t C b C g be the Lie algebras of T, B, and G respectively. For every a € A, we denote
by go C g the corresponding root subspace; in particular, go = t. Let

R={aeA—-{0}:g,#0}
be the set of roots. Denote by S € RT C R the subsets of simple and positive roots with respect

to B. Thus,
b=t® P go-

a€eRt

We identify S and the set of the vertices of the Dynkin diagram of G.

8.1.2. We think of Par(G) as the poset of subsets J C S (ordered by inclusion) via J — Pj.
Explicitly, given J € Par(G), the Lie subalgebras

py = @{ga ;o € R USpan(J)}
my = @{ga : v € Span(J)}
u(Py) = @{ga :a € R — Span(J)}

correspond to Py, the standard Levi subgroup M, C Pj, and the unipotent radical U(P)) of P,
respectively. We denote by

Ry := RN Span(J)

the set of roots of M}, so that J C Rj is the set of simple roots.

8.1.3. Let N(T) C G be the normalizer of T. The Weyl group W = N(T)/T acts on A
preserving R. For any J € Par(G), denote by W; C W the subgroup generated by the reflections
around the roots in J. Thus, W is the Weyl group of Mj.

8.1.4. Given J € Par(G), we denote by
Fly = {P' C G : P’ is conjugate to P}

the flag variety of parabolic subgroups of type J. We have a natural isomorphism Fl; = G/P).
If J =0, then Py = B, and we write simply

FI=Fl,=G/B (J=0)
for the complete flag variety.
Whenever J C J in Par(G), we have a natural morphism

foj,JZFlj—)FlJ.
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8.1.5. Given two Borel subgroups B’, B” C G, we denote their relative position by w(B’, B") €
W. Explicitly, for B” = B being the fixed Borel, the equality w = w(B’, B) means that
B' = Ady(B), g€ BwB.
We then expand w to arbitrary pairs (B’, B”) € Fl x Fl by G-invariance.

More generally, suppose Jg,J € Par(G). The relative position of two parabolic subgroups
P’ € Fl),, P" € Fl; is given by the double coset

{w(B',B") € W: B" C P and B” C P" are Borel subgroups} € W, \W/W,.

This double coset contains a unique minimal element with respect to the Bruhat order on W;
we denote it by w(P’,P"”) € W. The condition that w € W is minimal in its double coset
W, wWj is equivalent to the condition

w(J) c RT and w™(Jg) C RT.

8.2. Some Weyl group combinatorics. In this subsection we fix Jo € Par(G) and the
corresponding standard parabolic subgroup Py := Pj,,.

8.2.1. Put
(8.1) W = {weW:w () CRT} = {w €W : w is minimal in W,,w}.
There is a unique maximal element w(, € W’; it is characterised by the property that
wy(RT)NRT =Ry, NRT.
Explicitly, w{, is the minimal element of the coset W wp, where wg € W is the longest element;
also, wowy € Wy, is the longest element of the Coxeter group W, .
8.2.2. Fix w € W, and consider the partition S = S% US} US,, given by
S :=Snw (Ry,)
SH:=Snw (R \Ry,)
S, :=SNw '(=RT\Ry,).

(For simplicity, the dependence of this partition on Jy is suppressed in the notation.) The
following properties of this partition are clear.

Lemma 8.2.3. Suppose w € W. Then

(1) S, =0 if and only if w € W,,, and

(2) S& =0 if and only if w € W;,wp. O
Corollary 8.2.4. Suppose w € W'. Then

(1) S, =0 if and only if w =e, and

(2) St =0 if and only if w = wy. O

8.2.5. Let now P’ be another parabolic subgroup (not necessarily a standard one). Consider
w(Py, P') € W. Clearly, w(Py, P') € W'. We need the following easy observation.

Lemma 8.2.6. Let U(Py) C Py be the unipotent radical, and let p’ and u(Py) be the Lie algebras
of P' and U(P,), respectively. Then w(Py, P') = wy if and only if p’ Nu(Py) = {e}.

Proof. Follows from Corollary 8.2.4(2). O
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8.2.7. Let us now fix J € Par(G), and consider the flag variety Fl;. For w € W, define the
Schubert stratum in Fl; as follows:

Fly :={P' € Fl; : w(Py, P') = w} C Fl;.
Also, put
FIT" := {P' € Fl : w(Py, P') < w} C Fly
and
FIS" := {P' € Fly : w(Py, P') < w} C Fl;.
(One again, we omit the parabolic subgroup Py from the notation.)
Remark 8.2.8. We emphasize that in the definition of F1y, the equality w(FPy, P') = w takes

place in W and not in W, \W/W; (and similarly for FI5* and FI7").
Hence, if w ¢ W/, then F1}" = ) and FlJSw = FI;". Also, FlfwU =Fl,.

8.2.9. Suppose J C J in Par(G). Consider the natural map f : Fl; — Fl;. Clearly,
FFIEY) CFIFY and  f(FI5") C FIT;
however, it is not true in general that f(F1j) C FI}.

Lemma 8.2.10. Fiz w € W (and recall that J € Par(G) is also fized).
(1) IfINS, #0, then FIy = 0.
(2) PutJ=1J\S{. Then the map f: Flj — Fly induces an isomorphism F1j ~ FIY .

Proof. (1) Indeed, if JNS,, # 0, then w(J) ¢ RT and w is not the minimal element of W, wW,.
(2) The inverse map sends P’ € Fl; to the parabolic subgroup (P’ N Py)U(P’) C P’, where
U(P') C P’ is the unipotent radical. O

8.3. Proof of Theorem 7.2.5: setting up the induction.

8.3.1. Recall that in Theorem 7.2.5 we fix a G-local system o and a non-zero horizontal section
Aof g,.

By the Jacobson-Morozov Theorem, A determines a canonical reduction of o to a standard
parabolic subgroup, which we denote Py. Moreover, A belongs to the nilradical of this reduction,
in the sense that A lies in u(Py), C go. (Here we abuse the notation slightly by writing o for the
reduction to Py.) Equivalently, the reduction corresponds to a point of Spr}’o’j‘unip. In particular,
since A # 0, we have u(Py) # 0 and hence Py # G.

Remark 8.3.2. For most of the argument, we only need to know that o is reduced to a proper
parabolic. The fact that A belongs to the nilradical of the reduction is used only in Sect. 8.5.6.

8.3.3. Set Py = Py,; that is, Jg is the type of the standard parabolic Py. Let us use the formalism
of Sect. 8.2 for this choice of Jg.

Each of the schemes Spr‘;’A comprising Spr‘é’fﬁed acquires a stratification by the set W/, where
W’ is given by (8.1); denote the corresponding subschemes by

g, A,<w

SpI‘ o, A, <w o, A w
P .

C Sprp D Spry

Explicitly, the stratification is determined by the relative position the reduction of o to P
(corresponding to a point of Spr;’A) and the fixed reduction of o to P.
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Consider the corresponding prestacks

A, <w . o, A,<w
Spri S = colim Spr%™
Glued PEPar'(G) P
Sprosw colim  Sprghsv
Glued PePar’ (G) P

o, Aw

(Note that the schemes Sprz™* do not form a diagram indexed by P € Par'(G).)
Consider also the quotients

Spr‘;’A’Sw / Spr‘;’AKw = Spr}'D’A’Sw U pt

o,A, <
Spry w
and
0,A,<w 0, A, <w | __ o,A,<w
SprGlued /SprGlued T SprGlued al,_z|4,<w pt,
PrGlued

the latter being the same as

. <
colim Spr?;A’*w /Spr;’;A’<w,
PEPar'(G)

since the category Par’(G) is contractible (having an initial object).
In what follows we also use the notation
Spry <Y .= SprZA =Y for P = Py,

etc.

8.3.4. We need to show that the trace map

A
C*<Sprglued) =k
is an isomorphism.
We will prove that for every w € W/, the trace map

A<

(8.2) C.(Sprgrg”) — k

g, A, <w

is an isomorphism. (That is, Sprl;,.q" is a homologically contractible k-prestack.) Applying
this to w = wy,, we obtain the desired result.

8.3.5. The proof that (8.2) is an isomorphism uses the following two statements, proved in
Sections 8.4 and 8.5, respectively:
Case w = 1: the trace map
AL
C*<Sprglued) =k
is an isomorphism;
Case w # 1: For any 1 # w € W/, the trace map
A< A,
C*(Sprg}luedw / Sprg}luejw) —k

is an isomorphism.

Let us show how the combination of these two statements implies that (8.2) is an isomor-

phism. This will be completely formal.

We argue by induction on the poset W’. The base of the induction is the statement in Case
w = 1. Let us now perform the induction step, so take w # 1.
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We have a push-out square of prestacks

o, A, <w o, A, <w o,A,<w
SprGlued SprGlued / SprGlued

| I

o, A, <w
SprGlued pt .

and hence a cofiber square in Vect:
A< A< A<
Cu(Spréiued ) — Cu(SPrGiuca /SPrGiued )
A
C.(Sprgig”) —— C.(pt) ~ k.
Taking into account the statement in Case w # 1, it suffices to show that the trace map
VA,
Cu(Sprging”) — k
is an isomorphism. This is done below.

8.3.6. Consider the prestack

colim Spr& s
w1 <w Glued

We have an isomorphism

: o0,A,<w; 0,A,<w
colim Sprgj 5" — SPrgjned o
wi<w

and hence an isomorphism
C. (gﬂglgg} Spr‘é’ﬁ.;ﬁ”l) = Cu(Spriina”).
Hence, it remains to show that the trace map
C, (?ﬁliril Spré’lﬁ’cjw1> — k
is an isomorphism. We have

; A< ~ ; A<
C* (?u?li%)l SprUGlucdw1> - ?u?lg}ul C* (Sprélucdwl)'
Now, by the induction hypothesis, for every w; < w, the trace map

C.(Spr&smny 5 k

is an isomorphism. Hence, the assertion follows from the fact that the index category, i.e., w;
with wy < w, is contractible (it contains an initial element w; = 1).

8.4. Verifying Case w = 1.
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8.4.1. Let us show that the prestack Sprg’l‘ﬁ’ q itself is isomorphic to pt. By definition,

e

SprZl = colim  Spryt?
Glued JePar’' (G) J

Let My denote the Levi quotient of Py. Let Par(Mp) be the poset of all standard parabolics
of My. We identify Par(My) with the poset of all subsets of Jo (including Jy itself).
The inclusion
(8.3) Par(My) < Par’(G)
admits a right adjoint, given by
J=JnJo.
Note now that for any J C S, the map
Flj,,, — F1
is an isomorphism. Indeed, this is a special case of Lemma 8.2.10(2). Therefore, the map

a,A,l
JNJo

a,A,1

Spr — Spr

is an isomorphism as well.
8.4.2. We have the following general assertion:

Let I be an index category, and I’ ﬁ) I a full subcategory such that the inclusion ¢ admits
a right adjoint, which we denote by .

Let F: I — D be a functor with values in some oco-category D. Assume that for every i € I,
the co-unit of the adjunction

pop(i) =1
induces an isomorphism

Fogorp(i) = F(i).
Lemma 8.4.3. Under the above circumstances, the canonical map
colimF o ¢ — colimF
ier icl
18 an isomorphism. O

8.4.4. Applying Lemma 8.4.3 to (8.3) and the functor

J Sprj"A’l,
we see that Spr‘é’fﬁ’;i is isomorphic to the prestack
8.4 colim SprJ !
( ) e pT

Now, the index category of subsets of Jy has a final object (namely, J = Jg), and Sprj(;A’l = pt.
Hence, the colimit in (8.4) is isomorphic to pt.

8.5. Verifying Case w # 1.
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8.5.1. We need to show that for w # 1, the trace map

. o, A, <w o, A, <w
(8.5) nggllr(lg) C.(Spr] /SprP Yy = k

is an isomorphism. Consider the case of w # wy, first.

Put
Par! (G) := {J € Par’(G) |J c S® US,} C Par'(G).
Recall (see Sect. 8.2.2) that J C SO US,, means that for every simple root a € J, w(«) is either
negative, or a root of Rg.

8.5.2. We claim that the inclusion Par/ (G) < Par’(G) satisfies the conditions of Lemma 8.4.3
for the functor
J s Cu(Spr™=v / Sprg =y,

Indeed, note that the inclusion Par! (G) < Par’(G) admits a right adjoint given by
JsJ:=J\S}.

Now, we claim that for J and Jas above, the map

o,A,<w o,A,<w o,A,<w o,A,<w
Spr; /Spr] — Spr / Spr§

induces an isomorphism on homology.

This follows by Lemma 8.2.10(2) from the following general assertion:

Lemma 8.5.3. Let f : Y7 — Y3 be a proper map between schemes. Let Y] CY; fori = 1,2
be closed subschemes such that f(Y{) C Yy, and f induces an isomorphism Y1 \ Y{ — Y5\ Y3.
Then the induced map
C*(Yl [N pt) — C*(YQ L pt)
Yy Y3

18 an isomorphism.
Proof. Tt is enough to show that the map
Cone (€. (¥{) = C.(11)) = Cone (C. (1) — C,(Va)),
defined by f, is an isomorphism.
Let ¢; (resp. j;) denote the closed embedding Y/ < Y; (resp. the open embedding (V;\Y;) —
Y;). From the excision exact triangle
(ti)ar,«(wyy) = wy; = (Ji)ar,«(Wy;\v;)
we obtain an isomorphism
Cone (C.(Y]) = C.(Y3)) = (py,)ar.!((Ji)ar« (wyi\v7)),
where py, : Y; — pt is the projection to the point.
Now, the fact that f is proper and the assumption of the lemma imply that
far 1 ((F1)ar,«(Wy;\v7)) = (J2)dr + (Wyy\vy)s
implying the desired isomorphism.

O

Remark 8.5.4. The above argument involves the excision exact triangle. For this reason, it
does not imply that the prestack Sprj”A’Sw / Sprj”A’<w itself is isomorphic to pt (and we do

not know whether this is true).
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8.5.5. Thus, by Lemma 8.4.3, the colimit in (8.5) is isomorphic to the colimit

colim  C,(Spr?=Y /SprA<w
PePar’, (G) (Spr / Spr} ),

and it suffices to show that the trace map from the latter to k is an isomorphism. Let us show
that the prestack

) A< A<
(8.6) Peclgalrlﬂc) Spr{ =" /Spr{ =Y

itself is isomorphic to pt.

By the assumption that w # w{, and Corollary 8.2.4, the poset Par/, (G) contains a maximal
element, namely, J = S, USY . Hence, the colimit (8.6) is isomorphic to

o,A,<w / SprU,A,<w

Sprs; us9, SLUsY -

Now, by the assumption that w # 1 and Lemma 8.2.10(1), we have

o, A,<w g o, A,<w

Sprs;usg B prS;uSUw’
and so
o, A, <w o,A<w
SprS; us9, UL pt.

8.5.6. Finally, we consider the case of w = w(. We claim that in this case the prestack

. VA, <w), VA, <w))
colim  Spr] =" /SprH ="
PcPar’ (G)

is isomorphic to pt. In fact, we claim that for every J, we have

- )

Sprj”A’w6

and so

A, <wp JA,<wg
Spr =" /Spr{ St ~ pt .

Indeed, the fact that Sprj"A’w6 is empty follows from Lemma 8.2.6 and the fact that A is a
horizontal section of u(FPp)s, while A # 0 by assumption.

9. A PROOF VIA THE GROTHENDIECK-SPRINGER CORRESPONDENCE

In this section we give an alternative proof of Theorem 7.2.5 in the special case of the trivial
local system o.

9.1. Making the nilpotent vary.

9.1.1. As was mentioned above, in this section the local system is trivial. Hence, we can think

of A as a nilpotent element of the Lie algebra g, and Sprc;;A is thus the usual parabolic Springer
fiber

Sprs = {P' € Flp |Acyp'}.
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9.1.2. For an element P € Par(G), let
ap = {((E,Pl) € gxFlp |m€p'}Cg><F1p

be the parabolic Grothendieck-Springer variety. Denote by mp the tautological projection gp —
g, and put

Sp = (WP)dR,!(WFlp) € D—mod(g).

The assignment

P~ Sp
is a functor Par(G) — D-mod(g). Consider the colimit
SGlued := _colim  8p € D-mod(g).
PePar’ (G)

9.1.3. Let Nilp, <y g be the subvariety of nilpotent elements. Consider the object

i! (SGlued) € D-HlOd(l\Hlpg ) .

By construction, the assertion of Theorem 7.2.5 is equivalent to the following:
Proposition 9.1.4. The trace map
i!(SGlued) — WNilp,
is an isomorphism away from 0 € Nilp,.
9.2. Interpretaion via the Springer theory. In this subsection we recall some basic facts
about the Springer theory.
9.2.1. Put
S:= SB.

It is well known that 8[—dim(g)] lies in the heart of the t-structure (note that the usual
t-structure for D-modules corresponds to the perverse t-structure under the Riemann-Hilbert
correspondence), and that it carries a canonically defined action of W.

Here are some well-known facts regarding &:

Lemma 9.2.2.

(a) The trace map 8 — wy induces an isomorphism coinv(W, 8) — wy. Here coinv(W, 8) is the
D-module of coinvariants of the action of W on 8.

(b) Let anti-inv(W,8) be the sign isotopic component in 8. Then the I-restriction of
anti-inv(W, 8) to Nilp, vanishes outside of 0 € Nilp,,.

(¢) For a parabolic P = Py, we have Sp ~ coinv(Wy,8), and for J; C Jy the natural map
Sp, — 8p, is induced by the inclusion W), C Wy, .

9.2.3. In view of the above lemma, Proposition 9.1.4 follows from the next more precise result:
Proposition 9.2.4. There exists a canonical isomorphism in D—mod(Nilpg):

SGlued = coinv(W, 8) @ anti-inv(W, 8)[rk(g) — 1].
9.3. Proof of Proposition 9.2.4.
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9.3.1. In view of Lemma 9.2.2(c), the object 8giueq has the form

M ® 8,
k(W]

for M € Rep(W) equal to

colim kW] ® k.
JePar’/ (G) k[W;]

Thus, it remains to show that
(9.1 M ~ k & sign[rk(g) — 1],
viewed as representations of W.

9.3.2. Instead of proving the isomorphism (9.1) directly, let us provide a more elegant geometric
argument.

Consider the diagram of finite sets equipped with an action of W:
Consider the homotopy type

WGlued := colim W/WJ
JePar’ (G)

We have:
M= C*(WGlued)'

9.3.3. We claim that the geometric realization of Wgiyeq is W-equivariantly homotopy equiva-
lent to a (rk(g) — 1)-dimensional sphere in the Euclidean space

tr = AR
Z

Indeed, fix a generic point v € tg, and let B, be the convex hull of the orbit W~. For each
j=0,...,1k(g), the j-faces of the polytope B, are indexed by the union

]_[ W/W,.
=7

From this, we obtain a W-equivariant homotopy equivalence between B, and the geometric
realization of

colim W/W,
JePar(G)

and also between the boundary d(B.,) (which is homeomorphic to a sphere) and the geometric
realization of Waiyed-

The sign representation W — {£1} identifies with the action of W on the torsor of orienta-
tions of tg, and hence also on the torsor of orientations of 9(B,).

This implies the desired formula for C, (Wgiyed)-
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