THE 2-CATEGORY THEORY OF QUASI-CATEGORIES

EMILY RIEHL AND DOMINIC VERITY

Abstract. In this paper we redevelop the foundations of the category theory of quasi-categories (also called ∞-categories) using 2-category theory. We show that Joyal’s strict 2-category of quasi-categories admits certain weak 2-limits, among them weak comma objects. We use these comma quasi-categories to encode universal properties relevant to limits, colimits, and adjunctions and prove the expected theorems relating these notions. These universal properties have an alternate form as absolute lifting diagrams in the 2-category, which we show are determined pointwise by the existence of certain initial or terminal vertices, allowing for the easy production of examples.

All the quasi-categorical notions introduced here are equivalent to the established ones but our proofs are independent and more “formal”. In particular, these results generalise immediately to model categories enriched over quasi-categories.

Contents

1. Introduction 2
1.1. A generalisation 3
1.2. Outline 4
1.3. Acknowledgments 5
2. Background on quasi-categories 6
2.1. Some standard simplicial notation 6
2.2. Quasi-categories 8
2.3. Isomorphisms and marked simplicial sets 11
3. The 2-category of quasi-categories 14
3.1. Relating 2-categories and simplicially enriched categories 15
3.2. The 2-category of quasi-categories 16
3.3. Weak 2-limits 20
3.4. Slices of the category of quasi-categories 29
3.5. A strongly universal characterisation of weak comma objects 32
4. Adjunctions of quasi-categories 36
4.1. Terminal objects as adjunctions 38
4.2. Basic theory 41
4.3. The universal property of adjunctions 42
4.4. Fibred adjunctions 46

Date: 2nd March 2015.

2010 Mathematics Subject Classification. Primary 18G55, 55U35, 55U40; Secondary 18A05, 18D20, 18G30, 55U10.
1. Introduction

Quasi-categories, also called ∞-categories, were introduced by J. Michael Boardman and Rainer Vogt under the name “weak Kan complexes” in their book [1]. Their aim was to describe the weak composition structure enjoyed by homotopy coherent natural transformations between homotopy coherent diagrams. Other examples of quasi-categories include ordinary categories (via the nerve functor) and topological spaces (via the total singular complex functor), which are Kan complexes: quasi-categories in which every 1-morphism is invertible. Topological and simplicial (model) categories also have associated quasi-categories (via the homotopy coherent nerve). Quasi-categories provide a convenient model for (∞, 1)-categories: categories weakly enriched in ∞-groupoids or topological spaces. Following the program of Boardman and Vogt, many homotopy coherent structures naturally organise themselves into an (∞, 1)-category and hence a quasi-category.

For this reason, it is desirable to extend the definitions and theorems of ordinary category theory into the (∞, 1)-categorical and specifically into the quasi-categorical context. As categories form a full subcategory of quasi-categories, a principle guiding the quasi-categorical definitions is that these should restrict to the classically understood categorical concepts on this full subcategory. In this way, we think of quasi-category theory as an extension of category theory—and indeed commonly use the same notion for a category and the quasi-category formed by its nerve.

There has been significant work (particularly if measured by page count) toward the development of the category theory of quasi-categories, the most well-known being the articles and unpublished manuscripts of André Joyal [5, 7, 6] and the books of Jacob Lurie [11, 12]. Other early work includes the PhD thesis of Joshua Nichols-Barrer [15].

Our project is to provide a second generation, formal category theory of quasi-categories, developed from the ground up. Each definition given here is equivalent to the established one, but we find our development to be more intuitive and the proofs to be simpler. Our hope is that this self-contained account will be more approachable to the outsider hoping
to better understand the foundations of the quasi-category theory he or she may wish to use.

In this paper, we use 2-category theory to develop the category theory of quasi-categories. One motivation for developing the foundational definitions and theorems in this style is that our methods then apply representably to other simplicial categories whose hom-spaces are quasi-categories, about which more below. The starting point is a (strict) 2-category of quasi-categories $q\text{Cat}_2$ defined as a quotient of the simplicially enriched category of quasi-categories $q\text{Cat}_\infty$. The underlying category of both enriched categories is the usual category of quasi-categories and simplicial maps, here called simply “functors”. We translate simplicial universal properties into 2-categorical ones: for instance, the simplicially enriched universal properties of finite products and the hom-spaces between quasi-categories imply that the 2-category $q\text{Cat}_2$ is cartesian closed. Importantly, equivalences in the 2-category $q\text{Cat}_2$ are precisely the (weak) equivalences of quasi-categories introduced by Joyal, which means that this 2-category appropriately captures the homotopy theory of quasi-categories.

Aside from finite products, $q\text{Cat}_2$ admits few strict 2-limits. However, it admits several important weak 2-limits of a sufficiently strict variety with which to develop formal category theory. Weak 2-limits in $q\text{Cat}_2$ are not unique up to isomorphism; rather their universal properties characterise these objects up to equivalence, exactly as one would expect in the $(\infty, 1)$-categorical context. We show that $q\text{Cat}_2$ admits weak cotensors by categories freely generated by a graph (including, in particular, the walking arrow) and weak comma objects, which we use to encode the universal properties associated to limits, colimits, adjunctions, and so forth.

A complementary paper [21] will showcase a corresponding “internal” approach to this theory. The basic observation is that the simplicial category of quasi-categories $q\text{Cat}_\infty$ is closed under the formation of weighted limits whose weights are projectively cofibrant simplicial functors. Examples include Bousfield-Kan style homotopy limits and a variety of weighted limits relating to homotopy coherent adjunctions.

More specifically, we show that any adjunction of quasi-categories, a 2-categorical definition introduced here, can be extended to a homotopy coherent adjunction, by which we mean a simplicial functor whose domain is a particular cofibrant simplicial category that we describe in great detail. Unlike previous renditions of coherent adjunction data, our formulation is symmetric: in particular, a homotopy coherent adjunction restricts to a homotopy coherent monad and to a homotopy coherent comonad on the two quasi-categories under consideration. As a consequence of its cofibrancy, various weights extracted from the free homotopy coherent adjunction are projectively cofibrant simplicial functors. We use these to define the quasi-category of algebras associated to a homotopy coherent monad and provide a formal proof of the monadicity theorem of Jon Beck. More details can be found there.

1.1. A generalisation. In hopes that our proofs would be more readily absorbed in familiar language, we have neglected to state our results in their most general setting, referencing only the simplicially enriched full subcategory of quasi-categories $q\text{Cat}_\infty$. Nonetheless, a
key motivation for our project is that our proofs apply to more general settings which are also of interest.

Consider a Quillen model category that is enriched relative to the Joyal model structure on simplicial sets and in which every fibrant object is also cofibrant. Then its full simplicial subcategory of fibrant objects may be made into what we might call a quasi-categorical context. Weak equivalences and fibrations between fibrant objects will play the role of the equivalences and isofibrations here. Examples of Quillen model categories which satisfy these conditions include the model category of quasi-categories itself and any model category of complete Segal spaces in a suitably well behaved model category. The canonical example \([7, 18]\) is certainly included under this heading but we have in mind more general “Rezk spaces” as well. Given a well-behaved model category \(M\), the localization of the Reedy model structure on the category \(M^{\Delta^{op}}\) whose fibrant objects are complete Segal objects is enriched as a model category over the Joyal model structure on simplicial sets.

1.2. Outline. Our approach to the foundations of quasi-category theory is independent of the existing developments with one exception: we accept as previously proven the Joyal model structure for quasi-categories on simplicial sets and the model structure for naturally marked quasi-categories on marked simplicial sets. So that a reader can begin his or her acquaintance with the subject by reading this paper, we begin with a comprehensive background review in section 2, where we also establish our notational conventions.

In section 3, we introduce the 2-category of quasi-categories \(q\text{Cat}_2\) and investigate its basic properties. Of primary importance is the particular notion of weak 2-limit introduced here. Following \([8]\), a strict 2-limit can be defined representably: the hom-categories mapping into the 2-limit are required to be naturally isomorphic to the corresponding 2-limit of hom-categories formed in \(\text{Cat}\). In our context, there is a canonical functor from the former category to the latter but it is not an isomorphism. Rather it is what we term a smothering functor: surjective on objects, full, and conservative. We develop the basic theory of these weak 2-limits and prove that \(q\text{Cat}_2\) admits certain weak cotensors, weak 2-pullbacks, and weak comma objects.

In section 4, we begin to develop the formal category theory of quasi-categories by introducing adjunctions between quasi-categories, which are defined simply to be adjunctions in the 2-category \(q\text{Cat}_2\). It follows immediately that adjunctions are preserved by pre- and post-composition, since these define 2-functors on \(q\text{Cat}_2\). We also see that any equivalence of quasi-categories extends to an adjoint equivalence, and that any adjunction between Kan complexes is automatically an adjoint equivalence. We describe an alternate form of the universal property of an adjunction which will be a key ingredient in the proof of the main existence theorem of \([21]\). Finally, we show that many of our adjunctions are in fact fibred, meaning that they are also adjunctions in the 2-category obtained as a quotient of the simplicial category of isofibrations over a fixed quasi-category. Any map between the base quasi-categories defines a pullback 2-functor, which then preserves fibred equivalences, fibred adjunctions, and so forth.

In section 5, we define limits and colimits in the quasi-categorical context in terms of absolute right and left lifting diagrams in \(q\text{Cat}_2\). A key technical theorem provides an
equivalent definition as a fibred equivalence of comma quasi-categories. We prove all of the expected results relating limits and colimits to adjunctions: that right adjoints preserve limits, that limits of a fixed shape can be encoded as adjoints to constant diagram functors provided these exist, that limits and limit cones assemble into right Kan extensions along the join functor, and so on. As an application of these general results, we give a quick proof that any quasi-category admitting pullbacks, pushouts, and a zero object has a “loops–suspension” adjunction. This forms the basis for the notion of a stable quasi-category.

We conclude section 5 with an example particularly well suited to our 2-categorical approach that will reappear in the proof of the monadicity theorem in [21]: generalizing a classical result from simplicial homotopy theory, we show that if a simplicial object in a quasi-category admits an augmentation and “extra degeneracies”, then the augmentation is its quasi-categorical colimit and also encodes the canonical colimit cone. Our proof is entirely 2-categorical. There exists an absolute left extension diagram in Cat involving Δ and related categories and furthermore this 2-universal property is witnessed equationally by various adjunctions. Such universal properties are preserved by any 2-functor—for instance, homming into a quasi-category—and the result follows immediately.

Having established the importance of absolute lifting diagrams, which characterise limits, colimits, and adjunctions in the quasi-categorical context, it is important to develop tools which can be used to show that such diagrams exist in qCat. This is the aim of section 6. In this section, we show that a cospan \(B \xrightarrow{f} A \xleftarrow{g} C \) admits an absolute right lifting of \(g \) along \(f \) if and only if for each object \(c \in C \), the slice (or comma) quasi-category from \(f \) down to \(gc \) has a terminal object. In practice, this “pointwise” universal property is much easier to check than the global one encoded by the absolute lifting diagram.

To illustrate, we use this theorem to show that any simplicial Quillen adjunction between simplicial model categories defines an adjunction of quasi-categories. The proof of this result is more subtle than one might suppose. The quasi-category associated to a simplicial model category is defined by applying the homotopy coherent nerve to the subcategory of fibrant-cofibrant objects—in general, the mapping spaces between arbitrary objects need not have the “correct” homotopy type. On account of this restriction, the point-set level left and right adjoints do not directly descend to functors between these quasi-categories so the quasi-categorical adjunction must be defined in some other way.

We conclude this paper with a technical appendix proving that the comma quasi-categories used here are equivalent to the slice quasi-categories introduced by Joyal [5]. It follows that the categorical definitions introduced in this paper coincide with the definitions found in the existing literature.

1.3. Acknowledgments. During the preparation of this work the authors were supported by DARPA through the AFOSR grant number HR0011-10-1-0054-DOD35CAP and by the Australian Research Council through Discovery grant number DP1094883. The first-named author was also supported by an NSF postdoctoral research fellowship DMS-1103790.

We would also like to extend personal thanks to Mike Hopkins without whose support and encouragement this work would not exist.
2. BACKGROUND ON QUASI-CATEGORIES

2.0. Observation (size). In this paper matters of size will not be of great importance. However, for definiteness we shall adopt the usual conceit of assuming that we have fixed an inaccessible cardinal which then determines a corresponding Grothendieck universe. We shall refer to the members of that universe simply as sets and refer to everything else as classes. A category is small if it has sets of objects and arrows; a category is locally small if each of its hom-sets is small. We shall write \(\mathbf{Set} \) to denote the large and locally small category of all sets and functions between them.

When discussing the existence of limits and colimits we shall implicitly assume that these are indexed by small categories. Correspondingly completeness and cocompleteness properties will implicitly reference the existence of small limits and small colimits.

2.1. Some standard simplicial notation.

2.1.1. Notation (simplicial operators). As usual we let \(\Delta_+ \) denote the algebraists’ (skeletal) category of all finite ordinals and order preserving maps between them and let \(\Delta \) to denote the topologists’ full subcategory of non-zero ordinals. Following tradition, we write \([n]\) for the ordinal \(n + 1\) as an object of \(\Delta_+\) and refer to arrows of \(\Delta_+\) as simplicial operators. We will generally use lower case Greek letters \(\alpha, \beta, \gamma: [m] \to [n]\) to denote simplicial operators. We will also use the following standard notation and nomenclature throughout:

- The injective maps in \(\Delta_+\) are referred to as face operators. For each \(j \in [n]\) we use the \(\delta^n_j: [n - 1] \to [n]\) to denote the elementary face operator distinguished by the fact that its image does not contain the integer \(j\).
- The surjective maps in \(\Delta_+\) are referred to as degeneracy operators. For each \(j \in [n]\) we use \(\sigma^n_j: [n + 1] \to [n]\) to denote the elementary degeneracy operator determined by the property that two integers in its domain map to the integer \(j\) in its codomain.
- We also use the notations \(\varsigma^n_n: [n] \to [0]\) and \(\iota^n_{-1}: [-1] \to [n]\) to denote the unique such simplicial operators.

Unless doing so would introduce an ambiguity, we will tend to reduce notational clutter by dropping the subscripts of these elementary operators.

2.1.2. Notation ((augmented) simplicial sets). Let \(s\mathbf{Set}\) denote the the functor category \(\mathbf{Set}^{\Delta^{op}}\), the category of all simplicial sets and simplicial maps between them.

If \(X\) is a simplicial set then \(X_n\) will denote its value at the object \([n] \in \Delta\), called its set of \(n\)-simplices, and \(X_\alpha: X_m \to X_n\) will denote the function obtained by applying \(X\) to the simplicial operator \(\alpha: [n] \to [m]\). Furthermore, if \(f: X \to Y\) is a simplicial map then we use the notation \(f_n: X_n \to Y_n\) to denote its component at \([n] \in \Delta\).

It is common to think of simplicial sets as being right \(\Delta\)-sets, in which case we might also use the (right) action notation \(x \cdot \alpha\) to denote the element of \(X_n\) obtained by applying \(X_\alpha\) to an element \(x \in X_m\). Exploiting this notation, we see that the functoriality of a simplicial set \(X\) may be expressed in terms of the familiar action axioms \((x \cdot \alpha) \cdot \beta = x \cdot (\alpha \circ \beta)\) and
Let \(sSet_{+} \) denote the category of all augmented simplicial sets, that is to say the functor category \(\text{Set}^{\Delta^{op}} \). We shall adopt the same notational conventions for augmented simplicial sets.

2.1.3. **Recall** (augmentation). We will occasionally need to pass from simplicial sets to augmented simplicial sets and back again, so we should recall that there is a canonical forgetful functor \(sSet_{+} \rightarrow sSet \) constructed by pre-composition with the inclusion functor \(\Delta \hookrightarrow \Delta_{+} \). We do not name this functor, preferring instead to allow context to determine whether an augmented simplicial set should be regarded as being a simplicial set by forgetting its augmentation.

Left and right Kan extension along \(\Delta \hookrightarrow \Delta_{+} \) provides left and right adjoints to this forgetful functor. These are both fully faithful. The left adjoint gives a simplicial set \(X \) the initial augmentation \(X \rightarrow \pi_{0}X \) by its set of path components. The right adjoint gives \(X \) the terminal augmentation \(X \rightarrow * \) by the singleton set. We say that an augmented simplicial set is initially (resp. terminally) augmented if the counit (resp. unit) of the appropriate adjunction is an isomorphism.

Each \((-1)-\)simplex \(x \) in an augmented simplicial set \(X \) is associated with a terminally augmented sub-simplicial set consisting of those simplices whose \((-1)-\)face is \(x \). These components are mutually disjoint and their disjoint union is the whole of \(X \), providing a canonical decomposition of \(X \) as a disjoint union of terminally augmented simplicial sets.

2.1.4. **Notation** (some important (augmented) simplicial sets). Recall that if \(X \) is a (possibly augmented) simplicial set then a subset \(Y \subseteq X \) is said to be a simplicial subset of \(X \) if it is closed in there under the action of \(\Delta \) (or \(\Delta_{+} \) where appropriate). If \(S \) is a subset of \(X \) then there is a smallest simplicial subset of \(X \) which contains \(S \), and we call this the simplicial subset of \(X \) generated by \(S \).

Now we should establish notation for some important (augmented) simplicial sets.

- The standard \(n \)-simplex \(\Delta^{n} \) (for \(n \in \mathbb{N} \)) is defined to be the contravariant representable on the ordinal \([n] \in \Delta_{+} \). In other words, \(\Delta_{m}^{n} \) is the set of simplicial operators \(\alpha: [m] \rightarrow [n] \) which are acted upon by pre-composition.
- The boundary of the standard \(n \)-simplex \(\partial \Delta^{n} \) is defined to be the simplicial subset of \(\Delta^{n} \) consisting of those simplicial operators which are not degeneracy operators. This the simplicial subset of \(\Delta^{n} \) which is generated by the set of its \((n-1)-\)dimensional faces.
- The \((n, k)\)-horn \(\Lambda_{m}^{n,k} \) (for \(n \in \mathbb{N} \) and \(0 \leq k \leq n \)) is the simplicial subset of \(\Delta^{n} \) generated by the set \(\{ \delta_{i}^{n} \mid 0 \leq i \leq n \text{ and } i \neq k \} \) of \((n-1)-\)dimensional faces. In other words, we take all except for the \(k \text{th} \) \((n-1)-\)dimensional face to be generators of the \((n, k)\)-horn. Alternatively, we can describe \(\Lambda_{m}^{n,k} \) as the simplicial subset of those simplicial operators \(\alpha: [m] \rightarrow [n] \) for which \(\text{im}(\alpha) \cup \{k\} \neq [n] \).
- We say that \(\Lambda_{m}^{n,k} \) is an inner horn if it is the case that \(0 < k < n \) and otherwise we say that it is an outer horn (that is when \(k = 0 \) or \(k = n \)).
Notice here that we have overloaded our notation above to refer interchangeably to objects of sSet or sSet_+. There is no ambiguity since in each case the underlying simplicial set of one of these objects in sSet_+ is simply the corresponding object in sSet. Observe also that as an augmented simplicial set each of the objects above is terminally augmented.

When $\alpha: [n] \to [m]$ is a simplicial operator we use the same symbol to denote the corresponding simplicial map $\alpha: \Delta^n \to \Delta^m$ which acts by post-composing with α. In particular, $\delta_i^n: \Delta^{n-1} \to \Delta^n$, $\sigma_i^n: \Delta^{n+1} \to \Delta^n$, $\varsigma_n: \Delta^n \to \Delta^0$ and $\iota_n: \Delta^{-1} \to \Delta^n$ denote the simplicial maps corresponding to the simplicial operators introduced in 2.1.1 above.

2.1.5. **Notation** (faces of Δ^n). It is sometimes useful to identify a simplex in the standard n-simplex Δ^n simply by naming its vertices. In this context, we use the notation $\{v_0, v_1, v_2, \ldots, v_m\}$ to denote simplicial operator $[m] \to [n]$ which maps $i \in [m]$ to $v_i \in [n]$. Let $\Delta\{v_0, v_1, \ldots, v_m\}$ denote the smallest simplicial subset of Δ^n which contains the face $\{v_0, v_1, \ldots, v_m\}$.

More generally, in the case where X is a simplicial set whose simplices are determined by their vertices, in the sense that if $x, x' \in X$ are simplices with the same 0-faces then $x = x'$, we shall adopt the convention of annotating an n-simplex of X by listing its 0-faces in order $\{x_0, x_1, \ldots, x_n\}$. The nerves of pre-ordered sets have simplices which are determined by their vertices and the class of all such simplicial sets is closed under product and subset. Indeed, any simplicial set in this class may be obtained, up to isomorphism, as a simplicial subset of a nerve of a pre-ordered set.

2.1.6. **Notation** (internal hom). Like any presheaf category, the category of simplicial sets is cartesian closed. We write Y^X for the exponential, equivalently the internal hom or simply hom-space, from X to Y. By the defining adjunction and the Yoneda lemma, an n-simplex in Y^X is a simplicial map $X \times \Delta^n \to Y$. Its faces and degeneracies are computed by pre-composing with the appropriate maps between the representables.

2.2. **Quasi-categories.**

2.2.1. **Definition** (quasi-categories). A quasi-category is a simplicial set A which possesses the right lifting property with respect to all inner horn inclusions $\Lambda^{n,k} \hookrightarrow \Delta^n$ ($n = 2, \ldots$, $0 < k < n$). A simplicial map between quasi-categories will be called a functor. We write \mathbf{qCat} for the full subcategory of sSet consisting of the quasi-categories and functors.

2.2.2. **Recall** (the homotopy category). Let Cat denote the category of all (small) categories and functors between them. There is an adjunction

$$
\begin{array}{c}
\text{Cat} \\
\downarrow^N \\
\text{sSet}
\end{array}
\xleftarrow{h} \xrightarrow{\perp}
$$

given by the nerve construction and its left adjoint. Indeed, since the nerve construction is fully faithful, we shall usually regard Cat as being a full subcategory of sSet and elide explicit mention of the functor N. The nerve of any category is a quasi-category, so we may equally well regard Cat as being a reflective full subcategory of \mathbf{qCat}.

When A is a quasi-category, hA is sensibly called its homotopy category; it has:
• **objects** the 0-simplices of A,
• **arrows** equivalence classes of 1-simplices of A which share the same boundaries, and
• **composition** determined by the property that $k = gf$ in hA if and only if there exists a 2-simplex a in A with $a \cdot \delta^0 = g$, $a \cdot \delta^1 = f$ and $a \cdot \delta^1 = k$.

To emphasise the analogy with categories, we draw a 1-simplex f of A as an arrow with domain $f \cdot \delta^1$ and codomain $f \cdot \delta^0$. With these conventions, a 2-simplex a of A witnessing the identity $k = gf$ in hA takes the form:

![Diagram](https://via.placeholder.com/150)

Identity arrows in hA are represented by degenerate 1-simplices. Hence, the composition axiom defines what it means for a parallel pair of 1-simplices $f, f' : x \to y$ to represent the same morphism in hA: this is the case if and only if there exist 2-simplices of each of (equivalently, any one of) the following forms

![Diagrams](https://via.placeholder.com/150)

(2.2.3)

In this case, we say that f and f' are **homotopic relative to their boundary**.

Importantly, both of the functors h and N are **cartesian**, preserving all finite products.

Herein we shall use the terms **model category** and **model structure** to refer specifically to closed model structures in the sense of Quillen [16].

2.2.4. *Recall* (the model category of quasi-categories). The quasi-categories are precisely the fibrant-cofibrant objects in a model structure on simplicial sets due to Joyal. For our purposes here, it will be enough to recall that Joyal’s model structure is completely determined by the fact that it has:

• **weak equivalences** which are are those simplicial maps $w : X \to Y$ for which each functor $h(A^w) : h(A^Y) \to h(A^X)$ is an equivalence of categories for all quasi-categories A,
• **cofibrations** which are simply the injective simplicial maps. In particular all objects are cofibrant in this model structure, and
• **fibrations between fibrant objects** which are those functors of quasi-categories which possess the right lifting property with respect to:
 – all inner horn inclusions $\Lambda^{n,k} \hookrightarrow \Delta^n$ $(n = 2, \ldots, 0 < k < n)$, and
 – (either one of) the monomorphisms $\Delta^0 \hookrightarrow \mathbb{I}$, where \mathbb{I} denotes the **generic isomorphism category** $\bullet \cong \bullet$.

We will call the fibrations between fibrant objects **isofibrations**.

The Joyal model structure is combinatorial and cartesian.
2.2.5. Recall (Leibniz constructions). Recall that if we are given a bifunctor \(\otimes : \mathcal{K} \times \mathcal{L} \to \mathcal{M} \) whose codomain possesses all pushouts, then the Leibniz construction provides us with a bifunctor \(\hat{\otimes} : \mathcal{K}^2 \times \mathcal{L}^2 \to \mathcal{M}^2 \) between arrow categories which carries a pair of objects \(f \in \mathcal{K}^2 \) and \(g \in \mathcal{L}^2 \) to an object \(f \hat{\otimes} g \in \mathcal{M}^2 \) defined to be the map induced by the universal property of the pushout in the following diagram:

\[
\begin{array}{ccc}
K \otimes L & \xrightarrow{f \otimes L} & K' \otimes L \\
\downarrow K \otimes g & & \downarrow K' \otimes g \\
K \otimes L' & \rightarrow & (K' \otimes L) \cup_{K \otimes L} (K \otimes L') \\
\end{array}
\]

(2.2.6)

The action of this functor on the arrows of \(\mathcal{K}^2 \) and \(\mathcal{L}^2 \) is the canonical one induced by the functoriality of \(\otimes \) and the universal property of the pushout in the diagram above. In the case where the bifunctor \(\otimes \) defines a monoidal product, the Leibniz bifunctor \(\hat{\otimes} \) is frequently called the pushout product.

We refer the reader to [23, §4] for a full account of this construction and its properties. In particular, in the few instances where Reedy category theory is invoked in proofs appearing below, we make use of the notational conventions established therein.

2.2.7. Recall (cartesian model categories). We can now elaborate upon the closing comment of recollection 2.2.4: that the Joyal model structure is cartesian. We make frequent use of this cartesianness in what follows, so it is worth recalling that it may be formulated in the following equivalent forms:

1. If \(i : X \hookrightarrow Y \) and \(j : U \hookrightarrow V \) are both cofibrations (monomorphisms) then so is their Leibniz product \(i \hat{\times} j : (Y \times U) \cup_{X \times U} (X \times V) \hookrightarrow (Y \times V) \). Furthermore, if \(i \) or \(j \) is a trivial cofibration then so is \(i \hat{\times} j \).

2. If \(i : X \hookrightarrow Y \) is a cofibration (monomorphism) and \(p : A \twoheadrightarrow B \) is a fibration then their Leibniz hom \(\hat{\hom}(i,p) : A^Y \twoheadrightarrow B^Y \times_{B^X} A^X \) is also a fibration. Furthermore if \(i \) is a trivial cofibration or \(p \) is a trivial fibration then \(\hat{\hom}(i,p) \) is also a trivial fibration.

In particular, if \(A \) is a quasi-category then we may apply the second of these formulations to the unique isofibration \(! : A \rightarrow 1 \) and monomorphisms \(\emptyset \hookrightarrow X \) and \(i : X \hookrightarrow Y \) to show that \(A^X \) is again a quasi-category and that the pre-composition functor \(A^i : A^Y \rightarrow A^X \) is an isofibration.

2.2.8. Observation (closure properties of isofibrations). We will make frequent use of the following closure properties of the class of isofibrations which are consequent of recollections 2.2.4 and 2.2.7:

- The isofibrations are closed under products, pullbacks, retracts, and transfinite pre-composition (as fibrations between fibrant objects).
The isofibrations are also closed under the Leibniz hom \(\widehat{\text{hom}}(i, -) \) for any monomorphism \(i \) and, in particular, under exponentiation \((-)^X \) for any simplicial set \(X \) (as fibrations between fibrant objects in a cartesian model category).

2.3. Isomorphisms and marked simplicial sets.

2.3.1. Recall (isomorphisms in quasi-categories). When \(A \) is a quasi-category, we say that a 1-simplex \(a \in A_1 \) is an isomorphism if and only if the corresponding arrow of its homotopy category \(hA \) is an isomorphism in the usual sense.

When working with isomorphisms in quasi-categories, it will sometimes be convenient to work in the category of marked simplicial sets as defined in Lurie [11].

2.3.2. Definition (marked simplicial sets). A marked simplicial set \(X \) is simply a simplicial set equipped with a specified subset of 1-simplices \(mX \subseteq X_1 \) which must contain the all degenerate 1-simplices; the elements of \(mX \) are said to be marked. A map of marked simplicial sets is simply a map of their underlying simplicial sets which carries marked 1-simplices to marked 1-simplices. While the category \(\text{msSet} \) of marked simplicial sets is not quite as well behaved as \(\text{sSet} \) it is nevertheless a complete and cocomplete quasitopos, which in particular means that it is (locally) cartesian closed.

The functor \(\text{msSet} \to \text{sSet} \) which forgets markings has both a left and a right adjoint. This left adjoint, dubbed flat by Lurie, makes a simplicial set \(X \) into a marked simplicial set \(X^\flat \) by giving it the minimal marking in which only the degenerate 1-simplices are marked. Conversely, this right adjoint, which Lurie calls sharp, makes \(X \) into a marked simplicial set \(X^\sharp \) by giving it the maximal marking in which all 1-simplices are marked. As ever in such situations, if \(X \) is already a marked simplicial set then we will use the notation \(X^\flat \) and \(X^\sharp \) for the marked simplicial sets obtained by applying the flat or sharp construction (respectively) to the underlying simplicial set of \(X \).

In general, we will identify simplicial sets with their minimally (flat) marked variants, and this allows us to naturally extend the notation introduced above to the marked context. Any variation to this rule will be commented upon as we go along.

2.3.3. Remark (stratified simplicial sets). We might remark that for much the same reason that Lurie uses marked simplicial sets earlier authors, including Roberts [24], Street [25], and Verity [26, 27], have studied a more general notion of stratification. A stratified simplicial set is again a simplicial set \(X \) equipped with a specified subset of simplices which, in that context, are said to be thin. A stratification may contain simplices of arbitrary dimension and it must again contain all degenerate simplices. Such stratifications allow us to build structures called complicial sets, which model homotopy coherent higher categories in much the way that quasi-categories model homotopy coherent categories.

2.3.4. Observation (products and exponentiation). Suppose that \(X \) and \(Y \) are marked simplicial sets. Their product in the category of marked simplicial sets \(\text{msSet} \) may be formed by taking the product of underlying simplicial sets and marking those 1-simplices \((x, y) \in X \times Y \) which have \(x \) marked in \(X \) and \(y \) marked in \(Y \).
An exponential (internal hom) Y^X in marked simplicial sets has n-simplices which correspond to maps $h: X \times \Delta^n \to Y$ of marked simplicial sets and has marked 1-simplices those h which extend along the canonical inclusion $X \times \Delta^1 \hookrightarrow X \times (\Delta^1)^2$ to give a (uniquely determined) map h'

$$
\begin{array}{c}
X \times \Delta^1 \\
\downarrow \\
X \times (\Delta^1)^2
\end{array} \xrightarrow{h} \begin{array}{c}
\downarrow \\
\rightarrow
\end{array} \begin{array}{c}
Y \\
\rightarrow
\end{array}
$$

The only 1-simplices which are not marked in $X \times \Delta^1$ but are marked in $X \times (\Delta^1)^2$ are pairs of the form $(x, \text{id}_{[1]})$ in which x is marked in X. It follows that a marked simplicial map $h: X \times \Delta^1 \to Y$ extends along $X \times \Delta^1 \hookrightarrow X \times (\Delta^1)^2$, and thus represents a marked 1-simplex in Y^X, if and only if for all marked 1-simplices x in X the 1-simplex $h(x, \text{id}_{[1]})$ is marked in Y.

2.3.5. Observation (isomorphisms and markings). We may make a quasi-category A into a marked simplicial set $A^\#$ by giving it the natural marking, under which a 1-simplex is marked if and only if it is an isomorphism. When we regard an object as being a quasi-category in the marked setting we will always assume that it carries the natural marking without comment. A functor $f: A \to B$ between quasi-categories automatically preserves natural markings simply because the corresponding functor $h(f): hA \to hB$ preserves isomorphisms.

In this context it is useful to adopt the special marking convention for horns $(n = 1, \ldots, 0 \leq k \leq n)$ under which we

- write $\Delta^{n:k}$ for the marked simplicial set obtained from the standard minimally marked simplex Δ^n by also marking the edge $\{0, 1\}$ when $k = 0$ and marking the edge $\{n - 1, n\}$ when $k = n$,
- inherit the marking of the horn $\Lambda^{n,k}$ from that of $\Delta^{n:k}$, and
- use $\Lambda^{n,k} \hookrightarrow \Delta^{n:k}$ to denote the marked inclusion of this horn into its corresponding specially marked simplex.

Using these conventions we may recast Joyal’s special horn filler result [5, 1.3] simply as saying that a naturally marked quasi-category has the right lifting property with respect to all marked horns $\Lambda^{n,k} \hookrightarrow \Delta^{n:k} (n = 1, \ldots, 0 \leq k \leq n)$. An important corollary is that a Kan complex is precisely a quasi-category in which every 1-simplex is an isomorphism.

2.3.6. Recall (the model structure of naturally marked quasi-categories). Recall now that there is also a model structure on the category of marked simplicial sets whose fibrant-cofibrant objects are precisely the naturally marked quasi-categories (see Lurie [11, §3.1] or Verity [27, §6.5]). This model category is combinatorial and cartesian and is completely characterised by the fact that it has:

- weak equivalences which are those maps $w: X \to Y$ of marked simplicial sets for which $h(A^w): h(A^Y) \to h(A^X)$ is an equivalence of categories for all (naturally marked) quasi-categories A,

\begin{itemize}
 \item weak equivalences which are those maps $w: X \to Y$ of marked simplicial sets for which $h(A^w): h(A^Y) \to h(A^X)$ is an equivalence of categories for all (naturally marked) quasi-categories A,
\end{itemize}
• cofibrations which are simply the injective maps of marked simplicial sets, and
• fibrations between fibrant objects which are the isofibrations of naturally marked quasi-categories.

Here, the exponential A^X is the internal hom in the category of marked simplicial sets msSet. The functor $h: \text{msSet} \to \text{Cat}$ is the left adjoint to the nerve functor $N: \text{Cat} \to \text{msSet}$ which carries a category C to the marked simplicial set whose underlying simplicial set is the usual nerve and in which a 1-simplex is marked if and only if it is an isomorphism in $C \cong hC$.

By [7, 7.14], a cofibration is a weak equivalence if and only if it has the left lifting property with respect to the fibrations between fibrant objects. In particular, in this model structure all of the special marked horn inclusions $\Lambda^{n,k} \hookrightarrow \Delta^{n,k}$ $(n = 1,\ldots, 0 \leq k \leq n)$ are trivial cofibrations. It follows that the inclusion $(\Delta^1)^\sharp \hookrightarrow \mathbb{I}$ of the marked 1-simplex into the naturally marked isomorphism category is also a trivial cofibration. This proves that an isomorphism $\Delta^1 \to A$ in a quasi-category may always be extended to a functor $\mathbb{I} \to A$.

2.3.7. Observation (natural markings, internal homs, and products). The cartesianness of the marked model structure tells us that if A is a naturally marked quasi-category and X is any marked simplicial set then the exponential A^X is again a naturally marked quasi-category. Furthermore, the product of two naturally marked quasi-categories is again a naturally marked quasi-category. As an easy consequence of these facts, the fully faithful natural marking functor $\sharp: \text{qCat} \to \text{msSet}$ is a cartesian closed functor, in the sense that it carries preserves products and internal homs.

The content of the last observation is more profound than one might initially suspect. It might be summarised by the slogan “a natural transformation of functors is an isomorphism if only if it is a pointwise isomorphism”. The precise meaning of this slogan is encoded in the following result.

2.3.8. Lemma (pointwise isomorphisms are isomorphisms). Let X be a marked simplicial set and let A be a naturally marked quasi-category. A 1-simplex $h: X \times \Delta^1 \to A$ is marked in A^X if and only if for all 0-simplices x in X the 1-simplex $h(x \cdot \sigma^0, \text{id}_{[1]})$ is marked in A.

We might describe the intuition as follows. The component of a map $h: X \times \Delta^1 \to A$ at a 1-simplex $f: a \to b$ in X is a diagram $\Delta^1 \times \Delta^1 \to A$

$$
\begin{array}{c}
\downarrow h(a, \text{id}_{[1]}) \\
\downarrow h(f, \sigma^0) \\
\downarrow h(b, \text{id}_{[1]}) \\
\end{array}
$$

If f is marked and h is a marked map, then the verticals are marked in A. If A is a quasi-categories with marked edges the isomorphisms, then it follows that if the horizontals, the “components” of h, are marked, then so is the diagonal edge, simply because isomorphisms compose. If this is the case for all 1-simplices f, then h is marked in A^X by the definition of the internal hom.
We know from observation 2.3.4 that h is a marked 1-simplex in A^X if and only if $h(f, \text{id}_{[1]})$ is marked in A for all $f \in mX$. The 2-simplex $(f \cdot \sigma^0, \sigma^1)$ of $X \times \Delta^1$ can be drawn as follows:

$$
\begin{array}{c}
\begin{array}{ccc}
(f \cdot \delta^1) \cdot \sigma^0 & \xrightarrow{f \sigma^0} & f \\
\downarrow & & \downarrow \\
\cdot & \xrightarrow{f} & \cdot \\
\end{array} \\
\begin{array}{ccc}
\sigma^0 & \xrightarrow{\text{id}_{[1]}} & \sigma^1 \\
\downarrow & & \downarrow \\
\cdot & \xrightarrow{\text{id}_{[1]}} & \cdot \\
\end{array}
\end{array}
$$

So it follows that the 2-simplex $h(f \cdot \sigma^0, \sigma^1)$ of A witnesses the fact that $h(f, \text{id}_{[1]})$ is a composite of $h(f, \sigma^0)$ and $h((f \cdot \delta^1) \cdot \sigma^0, \text{id}_{[1]})$.

Now when f is marked in X, then (f, σ^0) is marked in $X \times \Delta^1$, so it follows that $h(f, \sigma^0)$ is marked in A. Furthermore, by assumption the 1-simplex $h((f \cdot \delta^1) \cdot \sigma^0, \text{id}_{[1]})$ is also marked in A. However isomorphisms, that is to say naturally marked 1-simplices, compose in A simply because isomorphisms compose in the category hA, so it follows that $h(f, \text{id}_{[1]})$ is marked in A because it is a composite of the marked 1-simplices $h(f, \sigma^0)$ and $h((f \cdot \delta^1) \cdot \sigma^0, \text{id}_{[1]})$.

Because the marking on A^X is natural, a 1-simplex $h: X \times \Delta^1 \to A$ is an isomorphism in A^X if and only if it is marked in there. By the argument just given, this latter condition holds if and only if for each 0-simplex x in X the component $h(x \cdot \sigma^0, \text{id}_{[1]})$ is marked in A and this again is the case if and only if that 1-simplex is an isomorphism in A. □

2.3.10. Observation. If A is a naturally marked quasi-category then pre-composition by the inclusion $\Delta^1 \hookrightarrow (\Delta^1)^\sharp$ gives rise to an inclusion $A^{(\Delta^1)^\sharp} \hookrightarrow A^{\Delta^1}$ of naturally marked quasi-categories. Taking transposes, we see that the last lemma may be recast as saying that if $f: X \to A^{\Delta^1}$ is a marked simplicial map then it has a (necessarily unique) lift as the dotted arrow in

$$
\begin{array}{ccc}
X & \xrightarrow{f} & A^{\Delta^1} \\
\downarrow & & \downarrow \\
& \xrightarrow{A^{(\Delta^1)^\sharp}} & \\
\end{array}
$$

if and only if f maps each 0-simplex $x \in X$ to an object $f(x) \in A^{\Delta^1}$ which corresponds to an arrow of A which is a marked. In other words, the map $A^{(\Delta^1)^\sharp} \hookrightarrow A^{\Delta^1}$ is a fully faithful inclusion which identifies $A^{(\Delta^1)^\sharp}$ with the full sub-quasi-category of A^{Δ^1} whose objects are the isomorphisms in A.

3. THE 2-CATEGORY OF QUASI-CATEGORIES

The full subcategory \mathbf{qCat} of quasi-categories and functors is closed in \mathbf{sSet} under product and internal homs. It follows that \mathbf{qCat} is cartesian closed and that it becomes a full simplicial sub-category of \mathbf{sSet} under its usual self enrichment. We shall denote this self-enriched category of quasi-categories by \mathbf{qCat}_∞, whose simplicial hom-spaces are given by exponentiation.

In this section, we shall study a corresponding 2-category of quasi-categories \mathbf{qCat}_2 which was introduced by Joyal [6]. This should be thought of a being a kind of quotient of \mathbf{qCat}_∞.
whose 2-cells (1-arrows) are replaced by homotopy classes of such and in which higher dimensional information in the hom-spaces is discarded. At first blush, it might seem that such a process would destroy far too much information to be of any great use. However, much of this paper is devoted to showing, perhaps quite surprisingly, that we may develop a very great deal of the elementary category theory of quasi-categories within the 2-category $q\text{Cat}_2$ alone. Our first step in this direction will be to recognise that much of this category theory may be encoded in the weak 2-universal properties of certain constructions in this 2-category.

In this section, we introduce the 2-category $q\text{Cat}_2$ of quasi-categories and establish a few of its basic properties. In particular, we shall discover that it supports certain weak 2-limit constructions. In later sections, we will use the structures introduced here to transport classical categorical proofs into the quasi-categorical context.

3.1. Relating 2-categories and simplicially enriched categories.

3.1.1. Notation (simplicial categories and 2-categories). The category of simplicial sets $s\text{Set}$ is complete, cocomplete, and cartesian closed, so in particular it supports a well-developed enriched category theory. We shall refer to $s\text{Set}$-enriched categories simply as simplicial categories and the enriched functors between them as simplicial functors.

If we are given a simplicial category K then we shall call the n-simplices of one of its simplicial hom-spaces $K(A, B)$ its n-arrows from A to B. The composition operation of K restricts to make the graph of the objects and n-arrows of K into a category which we shall call K_n, for which $K_n(A, B) = K(A, B)_n$. Furthermore, if $\alpha : [n] \to [m]$ is a simplicial operator then its action on arrows gives rise to an identity-on-objects functor $K_m \to K_n$.

In a similar fashion, the category of all (small) categories Cat is also complete, cocomplete, and cartesian closed so it too supports an enriched category theory. We shall refer to Cat-enriched categories as 2-categories and the enriched functors between them as 2-functors. If we are given a 2-category K then we shall follow convention and refer to its objects as 0-cells, the objects in its hom-categories as 1-cells, and the arrows in its hom-categories as 2-cells.

We refer the reader to Kelly’s canonical tome [9] for the standard exposition of the yoga of enriched category theory. We also strongly recommend Kelly and Street [10] and Kelly [8] as elementary introductions to 2-categories and their attendant 2-limit notions. In particular, we might encourage the reader to familiarise him- or herself with the rubric of pasting composition discussed in [10].

3.1.2. Observation. Recollection [2.2.2] reminds us that Cat may be regarded as a reflective subcategory of $s\text{Set}$, or indeed $q\text{Cat}$, via the adjunction $h \dashv N$. Now a direct computation, involving the standard presentation of hX in terms of generators and relations, reveals that h preserves binary products. This property in turn is equivalent to the observation that if C is a category and X is a simplicial set then their internal hom C^X in $s\text{Set}$ is again a category. Recollection [2.2.7] tells us the corresponding result for quasi-categories, this being that internal homs whose target objects are quasi-categories are themselves quasi-categories.
In particular, it follows that each of the categories Cat, qCat, and sSet is cartesian closed and that the various inclusions of one into another preserve finite products and internal homs. Equivalently, we may regard the self-enriched categories Cat and qCat as being full simplicial subcategories of sSet under its self enrichment. We shall use the notation Cat_2 for this 2-category of categories, which we may regard as being a full subcategory of qCat_∞.

3.1.3. **Notation.** We use $\mathbb{1}$, $\mathbb{2}$, or $\mathbb{3}$ to denote the one-point \bullet, generic arrow $\bullet \to \bullet$, and generic composed pair $\bullet \to \bullet \to \bullet$ categories respectively. Under our identification of categories with their nerves, these categories are identified with the standard simplices Δ^0, Δ^1, and Δ^2 respectively.

3.1.4. **Observation.** We know that h and N both preserve binary products and terminal objects and are thus strong monoidal. It follows that we may construct an induced adjunction

\[
\begin{array}{ccc}
\text{2-Cat} & \xleftarrow{h_*} & \text{sSet-Cat} \\
\downarrow & & \downarrow \\
\text{qCat-Cat} & \xleftarrow{N_*} & \end{array}
\]

between the categories of 2-categories and simplicial categories respectively. The functors in this adjunction are obtained by applying N and h to the hom-objects of an enriched category on one side of this adjunction to obtain a corresponding enriched category on the other side. Here again N_* is fully faithful, so it is natural to regard 2-Cat as being a reflective full subcategory both of sSet-Cat and of its full subcategory qCat-Cat of categories enriched in quasi-categories. Indeed, for our purposes here it suffices to consider the restricted adjunction

\[
\begin{array}{ccc}
\text{2-Cat} & \xleftarrow{h_*} & \text{qCat-Cat} \\
\downarrow & & \downarrow \\
\text{qCat-Cat} & \xleftarrow{N_*} & \end{array}
\]

Given a quasi-categorically enriched category \mathcal{K}, the 2-category $h_*\mathcal{K}$ is a quotient of sorts. The underlying unenriched categories of \mathcal{K} and $h_*\mathcal{K}$ coincide, but 2-cells in $h_*\mathcal{K}$ are homotopy classes of 1-arrows in \mathcal{K}. These homotopy classes are defined using relations witnessed by the 2-arrows. All higher dimensional cells are discarded. On regarding $h_*\mathcal{K}$ as a simplicially enriched category we see that the unit of the adjunction $h_* \dashv N_*$ provides us with a canonical simplicial quotient functor $\mathcal{K} \to h_*\mathcal{K}$.

3.1.5. **Observation** (1-cells are 0-arrows). Our identification of categories with their nerves also leads us to regarding 2-categories as certain special kinds of simplicial categories. This, however, introduces the slight nomenclatural infelicity that a 1-cell (resp. 2-cell) in a 2-category can equally well be regarded as being a 0-arrow (resp. 1-arrow) in the corresponding simplicial category.

3.2. **The 2-category of quasi-categories.**

3.2.1. **Definition** (the 2-category of quasi-categories). In particular, applying the functor h_* to the quasi-categorically enriched category qCat_∞, we obtain an associated 2-category
\(q\text{Cat}_2 := h_* q\text{Cat}_\infty \) whose hom-categories are given by

\[
\text{hom}_2(A, B) := h(B^A). \tag{3.2.2}
\]

Using the description of \(h \) given in recollection 2.2.2, we find that the objects of \(q\text{Cat}_2 \) are quasi-categories; the 1-cells are maps of quasi-categories, which we have agreed to call functors; and the 2-cells, which we shall call natural transformations, are certain homotopy classes of 1-simplices in the internal hom \(B^A \).

More explicitly, a 2-cell \(f \Rightarrow g \) between parallel functors \(f, g : A \Rightarrow B \) is an equivalence class represented by a simplicial map \(\alpha : A \times \Delta^1 \to B \) making the following diagram commute. The displayed map \(\alpha \) is a 1-simplex in \(B^A \) from the vertex \(f \) to the vertex \(g \). Two such 1-simplices represent the same 2-cell if and only if they are connected by a homotopy (in the sense of (2.2.3)) which fixes their common domain \(f \) and codomain \(g \).

For aesthetic reasons, we shall generally simply write \(\alpha : f \Rightarrow g \) to denote a 2-cell of \(q\text{Cat}_2 \) which is represented by a simplicial map \(\alpha : A \times \Delta^1 \to B \) making the following diagram

\[
\begin{array}{ccc}
A \times \Delta^0 & \cong & A \\
A \times \Delta^1 & \longrightarrow & B \\
A \times \Delta^0 & \cong & A
\end{array}
\]

commute. The displayed map \(\alpha \) is a 1-simplex in \(B^A \) from the vertex \(f \) to the vertex \(g \). Two such 1-simplices represent the same 2-cell if and only if they are connected by a homotopy (in the sense of (2.2.3)) which fixes their common domain \(f \) and codomain \(g \).

For aesthetic reasons, we shall generally simply write \(\alpha : f \Rightarrow g \) to denote a 2-cell of \(q\text{Cat}_2 \) which is represented by a simplicial map \(\alpha : A \times \Delta^1 \to B \). So if \(\alpha, \beta : f \Rightarrow g \) are two such represented 2-cells then when we write \(\alpha = \beta \) we won’t mean that these two representing maps \(\alpha, \beta : A \times \Delta^1 \to B \) are literally equal but instead that they are appropriately homotopic.

The 2-category \(q\text{Cat}_2 \) and the simplicial category \(q\text{Cat}_\infty \) both have the same underlying ordinary category \(q\text{Cat} \). Furthermore, we know that it \(A \) and \(B \) are both categories regarded as quasi-categories (via the nerve functor) then \(B^A \in q\text{Cat} \) is also a category and so \(B^A \cong h(B^A) \). This in turn implies that the full sub-2-category of \(q\text{Cat}_2 \) spanned by the categories is itself equivalent to \(\text{Cat}_2 \); we shall identify these from here on.

The fact that the homotopy category functor \(h \) preserves finite products allows us to canonically enrich it to a simplicial functor \(h : q\text{Cat}_\infty \to \text{Cat}_2 \). Specifically we take its action on the hom-space \(B^A \) to be the map obtained as the adjoint transpose of the composite \(h(B^A) \times h(A) \cong h(B^A \times A) \xrightarrow{h(\text{ev})} h(B) \).

3.2.3. Observation (pointwise isomorphisms are isomorphisms (reprise)). We say that a 2-cell \(\alpha : f \Rightarrow g : A \to B \) of \(q\text{Cat}_2 \) is a pointwise isomorphism if and only if for all functors \(a : \Delta^0 \to A \) (objects of \(A \)) the whiskered composite 2-cell \(aa : f a \Rightarrow g a : \Delta^0 \to B \) is an isomorphism in \(\text{hom}_2(\Delta^0, B) = hB \). Using this notion, the conclusion of lemma 2.3.8 may be recast to posit that \(\alpha \) is a pointwise isomorphism in \(q\text{Cat}_2 \) if and only if it is a genuine isomorphism in \(\text{hom}_2(A, B) = h(B^A) \).
Of course, since \(q\text{Cat}_\infty\) is the self enrichment of \(q\text{Cat}\) under its cartesian product, it is cartesian closed as a quasi-categorically enriched category. We now show that the 2-category \(q\text{Cat}_2\) inherits the corresponding property:

3.2.4. Proposition. \(q\text{Cat}_2\) is cartesian closed as a 2-category.

Proof. We show that the terminal object, binary products, and internal hom of the quasi-categorically enriched category \(q\text{Cat}_\infty\) possess the the corresponding 2-categorical universal properties. Specifically, we need to demonstrate the existence of isomorphisms

\[
\hom_2(A, \Delta^0) \cong 1
\]

\[
\hom_2(A, B \times C) \cong \hom_2(A, B) \times \hom_2(A, C)
\]

\[
\hom_2(A, C^B) \cong \hom_2(A \times B, C)
\]

of categories which are natural in all variables.

To establish each of these we simply apply the homotopy category functor \(h\) to translate the corresponding \(q\text{Cat}\)-enriched universal properties to \(\text{Cat}\)-enriched one, as expressed in terms of the hom-categories defined in (3.2.2).

Because \(\Delta^0\) is a terminal object in the simplicially enriched sense, i.e., because \((\Delta^0)^A \cong \Delta^0\), it is also terminal in the 2-categorical sense: This is demonstrated by the isomorphism

\[
\hom_2(A, \Delta^0) = h((\Delta^0)^A) \cong h(\Delta^0) \cong 1
\]

which asserts that the hom-category from \(A\) to \(\Delta^0\) is the terminal category.

In a similar fashion, since \(q\text{Cat}_\infty\) is cartesian closed we know that \(B \times C\) is a simplicially enriched product, as expressed by isomorphisms \((B \times C)^A \cong B^A \times C^A\). We know the homotopy category functor \(h\) preserves products so, on its application to the isomorphism of the last sentence, we get:

\[
\hom_2(A, B \times C) = h((B \times C)^A) \cong h(B^A \times C^A)
\]

\[
\cong h(B^A) \times h(C^A) = \hom_2(A, B) \times \hom_2(A, C).
\]

Finally, the cartesian closure of \(q\text{Cat}_\infty\) gives rise to isomorphisms \(C^{A \times B} \cong (C^B)^A\), to which we may apply the homotopy category functor \(h\) to obtain the isomorphism

\[
\hom_2(A \times B, C) = h(C^{A \times B}) \cong h((C^B)^A) = \hom_2(A, C^B)
\]

which says that \(C^B\) defines an internal hom for the 2-category \(q\text{Cat}_2\). \(\square\)

In particular, it follows from the last result that the exponential defines a 2-functor \(q\text{Cat}_2^{op} \times q\text{Cat}_2 \to q\text{Cat}_2\).

3.2.5. Observation (the 2-category of all simplicial sets).

The category \(s\text{Set}\) of all simplicial sets is cartesian closed, so we can apply the functor \(h_*:\ s\text{Set}\text{-Cat} \to 2\text{-Cat}\) to its self enrichment. This provides us with a 2-category \(h_*s\text{Set}\text{-Cat} \to 2\text{-Cat}\) to itself. We shall sometimes make slightly implicit use of this bigger 2-category in the arguments that follow. However we generally choose not to distinguish it notationally from \(q\text{Cat}_2\), leaving whatever disambiguation is required to the context. In particular we shall use the notation \(\hom_2(X, Y)\) to denote its hom-categories,
Observe that when A is a quasi-category and X is an arbitrary simplicial set then we know that A^X is a quasi-category and thus that $\hom_2(X, A) = h(A^X)$ again bears the simplified description given in definition 3.2.1. Furthermore, proposition 3.2.4 extends immediately to show that the 2-category of all simplicial sets is again cartesian closed as a 2-category.

3.2.6. Remark. We know that that \sSet is cartesian closed as a simplicially enriched category and that \qCat_∞ is closed under exponentiation in there. It follows that exponentiation restricts to a simplicial cotensor functor $\sSet^{\op} \times \qCat_\infty \to \qCat_\infty$.

A similar argument, starting with the cartesian closed structure of the 2-category $h_*\sSet$ discussed in the last observation, builds us a 2-functor $(h_*\sSet)^{\op} \times \qCat_2 \to \qCat_2$. In particular, it follows that exponentiation by any simplicial set X defines a 2-functor $(-)^X : \qCat_2 \to \qCat_2$.

3.2.7. Observation (representably defined equivalences in 2-categories). We say that a 1-cell $u : A \to B$ of a 2-category \mathcal{K} is an equivalence if and only if there exists a 1-cell $v : B \to A$, called its equivalence inverse, and a pair of 2-isomorphisms $uv \cong \id_B$ and $vu \cong \id_A$. The equivalences of a 2-category \mathcal{K} are preserved by all 2-functors, since they are defined by 2-equational conditions. Consequently, if $u : A \to B$ is an equivalence in \mathcal{K} then, applying the representable 2-functor $\mathcal{K}(X, -)$, it follows that the functor $\mathcal{K}(X, u) : \mathcal{K}(X, A) \to \mathcal{K}(X, B)$ is an equivalence of hom-categories.

It is a basic 2-categorical fact that $u : A \to B$ is an equivalence if and only if $\mathcal{K}(X, u)$ is an equivalence of hom-categories for all 0-cells X. Indeed, to prove the only if direction of this implication it is enough to know that the functors $\mathcal{K}(A, u)$ and $\mathcal{K}(B, u)$ are both equivalences of hom-categories. We leave the simple verifications of these facts to the reader.

3.2.8. Remark. Our central thesis is that the category theory of quasi-categories developed by Joyal, Lurie, and others is captured by \qCat_2. For this, it is essential that the standard notion of equivalence of quasi-categories—weak equivalence in the Joyal model structure—is encoded in the 2-category.

To that end, observe that the description of the weak equivalences given in recollection 2.2.4 may be recast in our 2-categorical framework: by definition, a simplicial map $u : X \to Y$ is a weak equivalence in Joyal’s model structure if an only if for all quasi-categories A the functor $\hom_2(u, A) : \hom_2(Y, A) \to \hom_2(X, A)$ is an equivalence of hom-categories.

Combining this description with the cartesian closure of our 2-category and observation 3.2.7 we obtain the following straightforward results:

3.2.9. Proposition. A functor between quasi-categories is a weak equivalence in the Joyal model structure if and only if it is an equivalence in the 2-category \qCat_2.

Proof. The description of weak equivalences given in the last remark simply tells us that they are the representably defined equivalences in the dual 2-category \qCat^{\op}_2. Equivalence is a self dual notion, so these coincide with the equivalences in \qCat_2. □
3.2.10. Proposition. A simplicial map \(u: X \to Y \) is a weak equivalence in the Joyal model structure if and only if for all quasi-categories \(A \) the pre-composition functor \(A^u: A^Y \to A^X \) is an equivalence in the 2-category \(\qCat \).

Proof. By observation 3.2.7, \(A^u: A^Y \to A^X \) is an equivalence in \(\qCat \) if and only if for all quasi-categories \(B \) the functor \(\hom_2(B, A^u) \) is an equivalence of hom-categories. Taking duals, \(\hom_2(B, A^u) \) is isomorphic to \(\hom_2(B \times u, A) \) which in turn is isomorphic to \(\hom_2(u, A^B) \). Hence, it suffices to show that \(u: X \to Y \) is a weak equivalence in Joyal’s model structure if and only if \(\hom_2(u, A^B) \) is an equivalence of hom-categories for all quasi-categories \(A \) and \(B \). However, this result follows immediately from remark 3.2.8 and the fact that quasi-categories are closed under exponentiation. □

3.3. Weak 2-limits. Finite products aside, the 2-category \(\qCat \) has few 2-limits. However, we shall soon discover that it has a number of important weak 2-limits whose universal properties will be repeatedly exploited in the remainder of this paper.

3.3.1. Definition (smothering functors). We say that a functor between categories is smothering if and only if it is surjective on objects, full, and conservative (reflects isomorphisms). Equivalently, a functor is smothering if and only if it possesses the right lifting property with respect to the set of functors

\[
\begin{align*}
\emptyset & \rightarrow \\
\rightarrow & \rightarrow \\
\rightarrow & \\
1 & \rightarrow \\
\rightarrow & 1
\end{align*}
\]

Consequently, the class of smothering functors contains all surjective equivalences and is closed under composition, retract, and pullback along arbitrary functors. Also, by composing lifting problems, we see that all smothering functors are isofibrations, in the sense that they have the right lifting property with respect to either inclusion \(1 \hookrightarrow I \). It is easily checked that if \(f \) is a functor which is surjective on objects and arrows, as is true for a smothering functor, and a composite \(gf \) is smothering, then so is the functor \(g \).

The following very simple lemma will be of significant utility later on.

3.3.2. Lemma (fibres of smothering functors). Each fibre of a smothering functor is a non-empty connected groupoid.

Proof. Suppose that \(f: A \to B \) is a smothering functor. The fact that it is surjective on objects implies immediately that its fibres are non-empty. Furthermore, if \(a \) and \(a' \) are both objects of \(A \) in the fibre of \(f \) over some object \(b \) in \(B \), in other words if \(f(a) = f(a') = b \), then the fullness of \(f \) implies that we may find an arrow \(\tau: a \to a' \) in \(A \) with \(f(\tau) = \id_b \), thus demonstrating that these fibres are all connected. Finally, if \(\tau: a \to a' \) is an arrow of \(A \) which lies in the fibre of \(f \) over \(b \), in other words if \(f(\tau) = \id_b \), then applying the conservativity of \(f \) we know that \(\tau \) is an isomorphism. Hence, these fibres are groupoids. □
3.3.3. Remark. We have chosen the term smothering here to evoke the image that these are surjective covering functors in quite a strong sense. Of course, we have placed our tongues firmly in our cheeks while introducing this nomenclature. Smothering functors can fruitfully be thought of as being a certain variety of weak surjective equivalences.

We weaken the standard theory of weighted 2-limits (see e.g., [8]) as follows.

3.3.4. Definition (weak 2-limits in a 2-category). Suppose that A is a small 2-category, that $D: A \to K$ is a diagram in a 2-category K, and that $W: A \to \text{Cat}$ is a 2-functor, which we shall refer to as a weight. If P is a 0-cell in K then a cone with summit P over D weighted by W is a 2-natural transformation $c: W \to \text{K}(P, D(-))$.

For each 0-cell K of K, composition with such a cone induces a functor

$$c_K: \text{K}(K, P) \to \text{lim}(W, \text{K}(K, D(-))) \cong \int_{a \in A} \text{K}(K, D(a))^{W(a)} \tag{3.3.5}$$

where the expression on the right denotes the usual category of natural transformations from W to the 2-functor $\text{K}(K, D(-))$, the 2-limit of $\text{K}(K, D(-))$ weighted by W. This family of maps is 2-natural in K.

We say that the cone c displays P as a weak 2-limit of D weighted by W if and only if the map in (3.3.5) is a smothering functor for all 0-cells $K \in K$.

3.3.6. Remark. While we feel obliged to give the last definition in its full, slightly unsightly, generality, the reader need not become an expert in the technology of weighted 2-limits in order to read the rest of the paper. We shall only work with certain simple varieties of weak 2-limits in qCat_2, whose weak 2-universal properties we shall describe explicitly as we go along.

The fact that the fibres of a smothering functor are connected groupoids is the key ingredient in the proof of the following lemma.

3.3.7. Lemma. Weak 2-limits are unique up to equivalence.

Proof. Suppose that we have a pair of cones $c: W \to \text{K}(P, D(-))$ and $c': W \to \text{K}(P', D(-))$ which display the 0-cells P and P' as weak 2-limits of D weighted by W. So for each 0-cell K in K we have a pair of smothering functors:

$$\text{K}(K, P) \xrightarrow{c_K} \text{lim}(W, \text{K}(K, D(-))) \xleftarrow{c'_K} \text{K}(K, P')$$

Taking $K = P$, consider the identity 1-cell id_P, an object in the hom-category $\text{K}(P, P)$, and observe that since c'_P is surjective on objects there is a 1-cell $u: P \to P'$, an object in $\text{K}(P, P')$, such that $c'_P(u) = c_P(\text{id}_P)$. Swapping the role of P and P', we may also find a 1-cell $u': P' \to P$ such that $c_{P'}(u') = c'_P(\text{id}_{P'})$.
Now we can apply the 2-naturality properties of the functors c_K and c'_K to show that
\[c_P(u'u) = \lim(W, K(u, D(-)))(c_P(u')) \]
\[= \lim(W, K(u, D(-)))(c'_P(id_P')) \]
\[= c'_P(u) \]
\[= c_P(id_P) \]

In other words, $u'u$ and id_P are both in the same fibre of c_P, and so they are isomorphic in that fibre since c_P is a smothering functor. Dually, uu' and $id_{P'}$ are both in the same fibre of c'_P from which it follows that they too are isomorphic in that fibre. It follows that $u: P \to P'$ and $u': P' \to P$ are equivalence inverses. □

3.3.8. Observation (a simplification). We will show that $q\text{Cat}_2$ admits all weak 2-limits of certain shapes. So suppose that we have fixed a category A and that we have chosen a class D of diagrams of the form $D: A \to q\text{Cat}$. Because $q\text{Cat}_2$ and $q\text{Cat}_\infty$ have the same underlying category, a diagram $D: A \to q\text{Cat}$ is equally a 2-functor $D: A \to q\text{Cat}_2$ and a simplicial functor $D: A \to q\text{Cat}_\infty$. Furthermore, a weight $W: A \to \text{Cat}$ for a 2-limit can be regarded as a weight for a simplicial limit by composing with the subcategory inclusion $\text{Cat} \hookrightarrow s\text{Set}$.

Our general strategy will be to show that for every D in D the simplicial weighted limit $\lim(W, D)$ exists in $q\text{Cat}_\infty$ and that it has the weak 2-universal property expected of the weak 2-limit of D in $q\text{Cat}_2$. This entails that we demonstrate that for each quasi-category X the canonical comparison map
\[\text{hom}_2(X, \lim(W, D)) \to \lim(W, \text{hom}_2(X, D(-))) \] (3.3.9)

is a smothering functor. Under the inclusion $\text{Cat} \hookrightarrow q\text{Cat}$, the 2-functor $\text{hom}_2(X, -)$ is isomorphic to the simplicial functor $h((-)^X)$. Furthermore, we know that the right adjoint simplicial functor $(-)^X: q\text{Cat}_\infty \to q\text{Cat}_\infty$ preserves all simplicial weighted limits; in other words the canonical comparison map $\lim(W, D)^X \to \lim(W, D(-)^X)$ is an isomorphism.

Applying these observations, we may reduce the comparison map (3.3.9) to the isomorphic comparison map:
\[h(\lim(W, D(-)^X)) \to \lim(W, h(D(-)^X)) \]

Consequently, if we assume that D is closed under exponentiation, that is to say if D is in there then so is $D(-)^X$ for all quasi-categories X, then to prove that $q\text{Cat}_2$ admits weak 2-limits of the diagrams in D, it suffices to show that for all (simplicial) diagrams D in D the comparison map
\[h(\lim(W, D)) \to \lim(W, h(D(-))) \]
is smothering.

3.3.10. Observation (cones whose summits are not quasi-categories). When the class D is closed under exponentiation by all simplicial sets, the argument of the last observation will generalise to cases where the summit X of our cones is an arbitrary simplicial set.
In all of the cases below this will follow from the fact that for any simplicial set \(X \) the exponentiation functor \((-)^X \) preserves quasi-categories and isofibrations.

Abstractly speaking, this tells us that the inclusion 2-functor \(\text{qCat}_2 \hookrightarrow h_* (sSet) \) preserves the weak 2-limits of diagrams in \(D \). In concrete terms, it means that we may apply the 2-universal properties of the weak 2-limits of \(\text{qCat}_2 \) constructed here to cones whose summits are arbitrary simplicial sets. In order to avoid repeated remarks of this kind throughout the remainder of this paper, our notation will tacitly signal when this is so by use of the letter “\(X \)” for the object of \(\text{qCat}_2 \) or \(\text{qCat}_\infty \) that could equally be replaced by any simplicial set.

As our first example of a weak 2-limit in \(\text{qCat}_2 \) we examine cotensors with the generic arrow \(2 \). Recall we write \(A^2 \) for the quasi-category \(A^\Delta^1 \) using our convention that categories are identified with their nerves. We invite the reader to verify that the natural functor

\[
\text{h} (A^2) \rightarrow (\text{h} A)^2
\]

is not an isomorphism: it is neither injective on objects nor faithful. However, it is a smothering functor. In other words:

3.3.11. Proposition. The exponential \(A^2 \) is a weak cotensor of \(A \) by 2 in \(\text{qCat}_2 \).

Proof. By observation 3.3.8, it suffices to prove that for any quasi-category \(A \), the canonical functor

\[
\text{h} (A^2) \rightarrow (\text{h} A)^2
\]

is a smothering functor. Certainly this map is surjective on objects, simply because every arrow in \(\text{h} A \) is represented by a 1-simplex in the quasi-category \(A \).

To prove fullness, suppose given a commutative square in \(\text{h} A \) and choose arbitrary 1-simplices representing each morphism and their common composite

\[
\begin{array}{ccc}
\cdot & \xrightarrow{a} & \cdot \\
\downarrow f & & \downarrow g \\
\cdot & \xrightarrow{b} & \cdot
d\end{array}
\]

(3.3.12)

Because \(A \) is a quasi-category, any relation between morphisms in \(\text{h} A \) is witnessed by a 2-simplex with any choice of representative 1-simplices as its boundary. Hence, we may choose 2-simplices witnessing the fact that \(k \) is a composite of \(a \) with \(g \) and of \(f \) with \(b \) as displayed.

\[
\begin{array}{ccc}
\cdot & \xrightarrow{a} & \cdot \\
\downarrow f & & \downarrow g \\
\cdot & \xrightarrow{k \sim} & \cdot
d\end{array}
\]

(3.3.13)

These two 2-simplices define a map \(\Delta^1 \rightarrow A^\Delta^1 = A^2 \), which represents an arrow in the category \(\text{h}(A^2) \) whose image is the specified commutative square.

To prove conservativity, suppose given a map in \(\text{h}(A^2) \) represented by a diagram \(\text{(3.3.13)} \) whose image \(\text{(3.3.12)} \) is an isomorphism in \((\text{h} A)^2 \); meaning that \(a \) and \(b \) are isomorphisms in \(\text{h} A \), in which case \(a \) and \(b \) are isomorphisms in the quasi-category \(A \). Lemma 2.3.8 tells us immediately that this diagram is an isomorphism in \(A^2 \); compare with \(\text{(2.3.9)} \). \(\Box \)
3.3.14. Remark. A generalization of this argument shows that if \(C \) is a free category and \(A \) is a quasi-category then the exponential \(A^C \) is the weak cotensor of \(A \) by \(C \) in \(\text{qCat}_2 \). Conservativity of the canonical comparison \(h(A^C) \to (hA)^C \) follows from lemma 2.3.8. Its surjectivity on objects makes use of the fact that the inclusion of the spine of an \(n \)-simplex, the simplicial subset spanned by the edges \(\{i,i+1\} \) in \(\Delta^n \), is a trivial cofibration for all \(n \geq 1 \). Fullness is similar.

One should note, however, that this result does not hold for exponentiation by arbitrary categories \(C \). For example, the reader may wish to verify that \(A^{2 \times 2} \) is not the weak cotensor of \(A \) by the product category \(2 \times 2 \) in \(\text{qCat}_2 \).

3.3.15. Proposition. The exponential \(A^I \) is a weak cotensor of \(A \) by the generic isomorphism \(I \) in \(\text{qCat}_2 \).

Proof. We need to show that
\[
h(A^I) \to h(A)^I
\]
is a smothering functor. This is easiest to do by arguing in the marked context.

By observation 2.3.7, \(A^I \) may equally well be regarded as an internal hom of naturally marked quasi-categories in \(\text{msSet} \). Recollection 2.3.6 tells us that the inclusion \(2^2 \hookrightarrow I \) is a trivial cofibration in the marked model structure. So it follows that the functor \(A^I \to A^{2^2} \) that restricts along that inclusion is a trivial fibration. Now it is easily checked that trivial fibrations of quasi-categories are carried by \(h \) to functors which are surjective on objects and fully faithful, the so-called surjective equivalences, so it follows that \(h(A^I) \to h(A^{2^2}) \) is a surjective equivalence. Furthermore, in the case where \(A \) is an actual category, the functor \(A^I \to A^{2^2} \) is an isomorphism. So we obtain a commutative square
\[
\begin{array}{ccc}
h(A^I) & \to & h(A)^I \\
\downarrow & & \downarrow \cong \\
h(A^{2^2}) & \to & h(A)^{2^2}
\end{array}
\]
of functors between categories in which the left hand vertical is a surjective equivalence. As observed in 3.3.1, the upper horizontal map in this square is a smothering functor if and only if the lower horizontal map is smothering.

The smothering functors are stable under pullback, so to complete our proof, it is a matter of checking that for any naturally marked quasi-category \(A \) the square
\[
\begin{array}{ccc}
h(A^{2^2}) & \to & h(A)^{2^2} \\
\downarrow & & \downarrow \\
h(A^2) & \to & h(A)^2
\end{array}
\]
is a pullback; we know from proposition 3.3.11 that the lower horizontal map is a smothering functor. This follows from the definition of the natural marking: a 1-simplex in \(A \) is marked if and only if it is an isomorphism, which is the case if and only if it represents an isomorphism in \(hA \). \(\square \)
3.3.16. **Proposition.** The 2-category \(\mathbf{qCat}_2 \) admits weak 2-pullbacks along isofibrations. In other words, if the square

\[
\begin{array}{ccc}
B \times_A C & \xrightarrow{\pi_2} & C \\
\downarrow_{\pi_1} & \nearrow & \downarrow_{g} \\
B & \xrightarrow{f} & A
\end{array}
\]

is a pullback in simplicial sets for which \(B, A, \) and \(C \) are quasi-categories and \(g \) is an isofibration, then \(B \times_A C \) is a quasi-category and it is a weak 2-pullback of \(g \) along \(f \) in the 2-category \(\mathbf{qCat}_2 \).

Proof. The statement only applies to pullbacks of those diagrams of shape \(B \xrightarrow{f} A \xleftarrow{g} C \) for which the map \(g \) is an isofibration. However, observation 2.2.8 tells us that any exponentiated isofibration \(g^X: C^X \to A^X \) is again an isofibration. It follows that diagrams of this kind are closed under exponentiation, so we are in a position to apply observation 3.3.8.

It remains to show that the canonical comparison

\[
h(B \times_A C) \to hB \times_{hA} hC
\]

is a smothing functor. This functor is actually bijective on objects, since on either side of this arrow an object consists simply of a pair \((b, c)\) of 0-simplices \(b \in B \) and \(c \in C \) with \(f(b) = g(c) \).

For fullness, suppose we are given two such pairs \((b, c)\) and \((b', c')\). An arrow between these objects in \(hB \times_{hA} hC \) consists of a pair of equivalence classes represented by 1-simplices \(\beta: b \to b' \) and \(\gamma: c \to c' \) which both map to the same equivalence class in \(hA \) under \(f \) and \(g \) respectively. This latter condition simply posits that \(f(\beta) \) and \(g(\gamma) \) are homotopic relative to their endpoints in \(B \); such a homotopy is represented by a 2-simplex with 2nd face \(g(\gamma) \), 1st face \(f(\beta) \), and 0th face degenerate. This information provides us with a lifting problem between \(\Lambda^{2,1} \to \Delta^2 \) and \(g \), which we may solve because \(g \) is an isofibration. The resulting filler supplies us with a 1-simplex \(\gamma': c \to c' \) for which \(g(\gamma') = f(\beta) \) and a homotopy of \(\gamma' \) and \(\gamma \) (relative to their endpoints) which shows these represent the same arrow in \(hC \). In other words, \((\beta, \gamma')\) is a 1-simplex in \(B \times_A C \) that represents an arrow of \(h(B \times_A C) \) from \((b, c)\) to \((b', c')\) and this arrow maps to the originally chosen arrow in \(hB \times_{hA} hC \).

The proof of conservativity is simplified by arguing in the marked model structure. Giving our quasi-categories \(A, B, \) and \(C \) the natural marking, the isofibration \(g \) becomes a fibrant in the marked model structure. It follows that the pullback is a fibrant object and hence naturally marked. Consequently, a 1-simplex \((\beta, \gamma)\) of \(B \times_A C \) represents an isomorphism in \(h(B \times_A C) \) if and only if it is marked, and this is the case if and only if \(\beta \) is marked in \(B \) and \(\gamma \) is marked in \(C \). Now, this latter condition holds if and only if \(\beta \) is invertible in \(hB \) and \(\gamma \) is invertible in \(hC \) and these conditions together are equivalent to the pair \((\beta, \gamma)\) being invertible as an arrow in the category \(hB \times_{hA} hC \). \(\square \)

3.3.17. **Definition** (comma objects). If we are given a pair of functors \(f: B \to A \) and \(g: C \to A \) of quasi-categories then we may define the **comma object** \(f \downarrow g \) to be the
simplicial set constructed by forming the following pullback:

\[
\begin{array}{c}
\xymatrix{
C \times B \ar[r]^{g \times f} \ar[d]_{s \times r} & A \times A \ar[d]_{q \times q} & A^2 \ar[l]_{(p_1, p_0)} & A^2 \ar[l]_{q^2} \\
\overline{C} \times \overline{B} \ar[r]^{\overline{g} \times \overline{f}} & \overline{A} \times \overline{A} & \overline{A} \ar[l]_{(\overline{p}_1, \overline{p}_0)} & \overline{A} \ar[l]_{\overline{q}^2}
}
\end{array}
\]

The right hand vertical in the pullback square above is isomorphic to the simplicial map \(A^{\Delta^1} \to A^{\partial \Delta^1}\) defined by restricting along the boundary inclusion \(\Delta^0 \cup \Delta^0 \cong \partial \Delta^1 \hookrightarrow \Delta^1\) and is thus an isofibration whenever \(A\) is a quasi-category by recollection \(2.2.4\). Consequently, \(p: f \downarrow g \to C \times B\) is also an isofibration, since the product \(C \times B\) is again a quasi-category, and, in particular, it also follows that \(f \downarrow g\) is a quasi-category. Under these assumptions, the projection functors \(\pi_C: C \times B \to C\) and \(\pi_B: C \times B \to B\) are both isofibrations because \(B\) and \(C\) are fibrant, so it follows that the domain and codomain projection maps \(p_0 := \pi_B \circ p: f \downarrow g \to B\) and \(p_1 := \pi_C \circ p: f \downarrow g \to C\) are also isofibrations.

3.3.18. Observation (maps induced between comma objects). Suppose further that we are given a commutative diagram

\[
\begin{array}{c}
\xymatrix{
B \ar[r]^f \ar[d]_r & A \ar[d]^q \ar[l]_g & C \ar[l]_s \\
\overline{B} \ar[r]_f & \overline{A} \ar[l]_{\overline{g}} & \overline{C}
}
\end{array}
\]

in \(q\text{-Cat}\) in which the vertical maps are (trivial) fibrations in the Joyal model structure. Then this gives rise to a corresponding commutative diagram

\[
\begin{array}{c}
\xymatrix{
C \times B \ar[r]^{g \times f} \ar[d]_{s \times r} & A \times A \ar[d]_{q \times q} & A^2 \ar[l]_{(p_1, p_0)} \ar[l]_{(\overline{p}_1, \overline{p}_0)} \\
\overline{C} \times \overline{B} \ar[r]^{\overline{g} \times \overline{f}} & \overline{A} \times \overline{A} \ar[l]_{\overline{p}_1} \ar[l]_{\overline{q}^2} & \overline{A} \ar[l]_{\overline{q}^2}
}
\end{array}
\]

in which \(P\) denotes the pullback of the maps \(q \times q\) and \((p_1, p_0)\) and \(l\) is the unique map induced into it by the right hand square. The pullbacks of the two horizontal lines are the comma objects \(f \downarrow g\) and \(\overline{f} \downarrow \overline{g}\) respectively. So this diagram induces a unique map \(r \downarrow q s: f \downarrow g \to \overline{f} \downarrow \overline{g}\) of comma objects which makes the manifest cube commute.

The (trivial) fibrations of any model category are closed under product, so the map \(s \times r\) is a (trivial) fibration in the Joyal model structure. Furthermore, the induced map \(l\) is isomorphic to the Leibniz hom \(\hom(\partial \Delta^1 \hookrightarrow \Delta^1, q: A \to \overline{A})\); since the Joyal model structure is cartesian, it follows that \(l\) is a (trivial) fibration (cf. \(2.2.7\)). Now a standard result originally due to Reedy \([17, \text{lemma } 1.3]\) tells us that since the maps \(s \times r\) and \(l\) are (trivial) fibrations we may infer that the induced map \(r \downarrow q s: f \downarrow g \to \overline{f} \downarrow \overline{g}\) is again a (trivial) fibration because it factors as a composite of pullbacks of these two maps.
3.3.19. **Corollary.** If \(f: B \to A \) and \(g: C \to A \) are functors of quasi-categories then the comma quasi-category \(f \downarrow g \) is a weak comma object in \(\text{qCat}_2 \).

Proof. Again, observation 3.3.8 applies, so it suffices to show that the canonical comparison
\[
h(f \downarrow g) \to h(f) \downarrow h(g) \tag{3.3.20}
\]
is a smothering functor. Here the target category is just the usual comma category constructed in \(\text{Cat} \). By definition, \(f \downarrow g \cong (C \times B) \times_{(A \times A)} A^2 \) and consequently we find that we may express the functor in (3.3.20) as a composite:
\[
h((C \times B) \times_{(A \times A)} A^2) \to h(C \times B) \times_{h(A \times A)} h(A^2) \to h(C \times B) \times_{h(A \times A)} h(A)^2
\]
The first of these maps is simply the canonical comparison studied in proposition 3.3.16, so we know it is a smothering functor. The second of these maps is a pullback of the canonical comparison discussed in proposition 3.3.11; since smothering functors are stable under pullback, it too is a smothering functor. We obtain the required result from the fact that smothering functors compose. \(\square \)

3.3.21. **Observation** (unpacking the universal property of weak comma objects). The smothering functors
\[
\hom_2(X, f \downarrow g) \to \hom_2(X, f) \downarrow \hom_2(X, g) \tag{3.3.22}
\]
which express the weak 2-universal property of the quasi-category \(f \downarrow g \) are induced by composition with a cone which may be depicted thus:
\[
\begin{array}{ccc}
P_1 \downarrow g & & P_0 \\
\psi & & \\
C & \downarrow \cong & B \\
g & & \downarrow f \\
\end{array}
\tag{3.3.23}
\]
The data displayed here is the image of the identity 1-cell under (3.3.22) in the case \(X = f \downarrow g \).

Surjectivity on objects of the functor in (3.3.22) simply says that for any comma cone
\[
\begin{array}{ccc}
a_1 & \downarrow X & a_0 \\
\alpha & \downarrow & \\
C & \cong & B \\
g & \downarrow f \\
\end{array}
\tag{3.3.24}
\]
over our diagram there exists a map \(a: X \to f \downarrow g \) which factors \(a_0: X \to B \) and \(a_1: X \to C \) through \(p_0: f \downarrow g \to B \) and \(p_1: f \downarrow g \to C \) respectively and which whiskers the 2-cell
\(\psi: fp_0 \Rightarrow gp_1\) to give the 2-cell \(\alpha: fa_0 \Rightarrow ga_1\); diagrammatically speaking:

\[
\begin{array}{ccc}
X & a \\
\downarrow & \downarrow a \\
C & \Rightarrow B \\
g & \downarrow f \\
A & \\
\end{array}
= \begin{array}{ccc}
X & a \\
\downarrow & \downarrow a \\
C & \Rightarrow B \\
g & \downarrow f \\
A & \\
\end{array}
\]
(3.3.25)

In a similar fashion, the fullness of the canonical comparison in (3.3.22) tells us that if we are given a pair of functors \(a, a': X \to f \downarrow g\) and a pair of 2-cells

\[
\begin{array}{ccc}
X & a' \\
\downarrow & \downarrow a \\
C & \Rightarrow B \\
g & \downarrow f \\
A & \\
\end{array}
\quad \text{and} \quad \begin{array}{ccc}
X & a' \\
\downarrow & \downarrow a \\
C & \Rightarrow B \\
g & \downarrow f \\
A & \\
\end{array}
\]
(3.3.26)

with the property that

\[
\begin{array}{ccc}
X & a' \\
\downarrow & \downarrow a \\
C & \Rightarrow B \\
g & \downarrow f \\
A & \\
\end{array}
\quad \text{and} \quad \begin{array}{ccc}
X & a' \\
\downarrow & \downarrow a \\
C & \Rightarrow B \\
g & \downarrow f \\
A & \\
\end{array}
\]
(3.3.27)

then there exists a 2-cell \(\tau: a \Rightarrow a'\) satisfying the equalities

\[
\begin{array}{ccc}
X & a' \\
\downarrow & \downarrow a \\
C & \Rightarrow B \\
g & \downarrow f \\
A & \\
\end{array}
\quad \text{and} \quad \begin{array}{ccc}
X & a' \\
\downarrow & \downarrow a \\
C & \Rightarrow B \\
g & \downarrow f \\
A & \\
\end{array}
\]

Finally, the conservativity of the canonical comparison in (3.3.22) tells us that if we are given a 2-cell \(\tau: a \Rightarrow a'\) then if the whiskered composites \(p_0\tau\) and \(p_1\tau\), as shown in the last diagram, are isomorphisms in \(\text{hom}_2(X, B)\) and \(\text{hom}_2(X, C)\) respectively, then \(\tau\) is also an isomorphism in \(\text{hom}_2(X, f \downarrow g)\).

We refer to the first two aspects of this kind of weak 2-universal property as \textit{1-cell induction} and \textit{2-cell induction} and refer to its third aspect as \textit{2-cell conservativity} or simply conservativity.
3.3.28. **Observation** (1-cell induction is unique up to isomorphism). Lemma 3.3.2, which demonstrates that fibres of smothering functors are connected groupoids, implies that any weak 2-limit has the property that 1-cell induction is unique up to isomorphism.

To illustrate in the case of weak comma objects, consider a pair of 1-cells \(a, a' : X \to f \downarrow g \) which are both induced by the same comma cone (3.3.24). From the defining property of induced 1-cells displayed in (3.3.25) it follows that \(p_0 a = p_0 a' \), \(p_1 a = p_1 a' \), and \(\psi a = \psi a' \). We can regard the first two of these equalities as being identity 2-cells of the form displayed in (3.3.26). Then the third of these equalities may be re-interpreted as positing the compatibility property displayed in (3.3.27) for those identity 2-cells. So we may apply the 2-cell induction property of \(f \downarrow g \) to obtain a 2-cell \(\tau : a \Rightarrow a' \) whose whiskered composites with \(p_0 \) and \(p_1 \) are the identity 2-cells corresponding to the equalities \(p_0 a = p_0 a' \) and \(p_1 a = p_1 a' \) respectively. This then allows us to apply the 2-cell conservativity property of our weak comma to show that \(\tau : a \Rightarrow a' \) is an isomorphism.

3.4. **Slices of the category of quasi-categories.**

3.4.1. **Definition** (enriching the slices of \(\text{qCat} \)). For a quasi-category \(A \), we will write \(\text{qCat}_A \) for the full subcategory of the usual slice category whose objects are isofibrations \(E \to A \). Where not otherwise stated, we shall restrict our attention to these subcategories of isofibrations: these are the subcategories of fibrant objects in slices of Joyal’s model structure and so are somewhat better behaved when viewed from the perspective of formal quasi-category theory than the slice categories of all maps with fixed codomain.

The category \(\text{qCat}_A \) has two enrichments of interest to us here. Let \(\text{qCat}_2 \) and \(\text{qCat}_\infty \) denote the 2-category and simplicial category (respectively) whose objects are the isofibrations with codomain \(A \) and whose hom-category and simplicial hom-space (respectively) between \(\psi : E \to A \) and \(\phi : F \to A \) are defined by the pullbacks

\[
\begin{array}{ccc}
\text{hom}_2^A(p, q) & \to & \text{hom}_2(E, F) \\
\downarrow & & \downarrow \text{hom}_2(E, q) \\
1 & \to & \text{hom}_2(E, A) \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{hom}_\infty^A(p, q) & \to & F^E \\
\downarrow & & \downarrow q^E \\
\Delta^0 & \to & A^E \\
\end{array}
\]

The objects of \(\text{hom}_2^A(p, q) \) and the vertices of \(\text{hom}_\infty^A(p, q) \) are exactly the morphisms from \(p \) to \(q \) in \(\text{qCat}_A \). The morphisms in \(\text{hom}_2^A(p, q) \), 2-cells in the 2-category \(\text{qCat}_2 \), are natural transformations between functors \(E \to F \) in \(\text{qCat}_2 \) whose whiskered composite with \(q \) is the identity 2-cell on \(p \). Since \(q : F \to A \) is an isofibration we know that \(q^E : F^E \to A^E \) is also an isofibration as is its pullback \(\text{hom}_2^A(p, q) \to \Delta^0 \); hence, \(\text{hom}_\infty^A(p, q) \) is a quasi-category. In other words, \(\text{qCat}_\infty \) is enriched in quasi-categories.

3.4.3. **Observation** (pushforward). If \(f : B \to A \) is an isofibration of quasi-categories then post-composition defines a simplicial functor \(f_* : \text{qCat}_\infty / B \to \text{qCat}_\infty / A \) and a 2-functor \(f_* : \text{qCat}_2 / B \to \text{qCat}_2 / A \).

Our particular interest in the simplicial categories \(\text{qCat}_\infty / A \) has to do with the following observation.
3.4.4. **Observation** (pullback). Consider any functor \(f : B \rightarrow A \) between quasi-categories. Pullback along \(f \) defines a functor \(f^* : \text{qCat}_2/A \rightarrow \text{qCat}_2/B \), and it is natural to ask whether this can be extended to a 2-functor in a canonical way. Unfortunately, however, pullback is only a weak 2-limit in \(\text{qCat}_2 \) and so does not furnish us with a 2-functor between slice 2-categories \(\text{qCat}_2/A \rightarrow \text{qCat}_2/B \). On the other hand, pullback is a genuine simplicial limit in \(\text{qCat}_\infty \) and so it does define a simplicial functor \(f^* : \text{qCat}_\infty/A \rightarrow \text{qCat}_\infty/B \), which in turn gives rise to a 2-functor \(f^* : h_*(\text{qCat}_\infty/A) \rightarrow h_*(\text{qCat}_\infty/B) \) on application of \(h_* : \text{sSet-Cat} \rightarrow \text{2-Cat} \). Observe that these remarks apply equally to the slice categories of isofibrations, as the isofibrations are stable under pullback, as well as to the larger slice categories of all maps with fixed codomain.

Observation 3.4.4 leads us to ask whether we can lift important structures from the slice 2-category \(\text{qCat}_2/A \) to the related 2-category \(h_*(\text{qCat}_\infty/A) \). If we discover that we can lift a 2-categorical structure in this way then it follows that we will be able to pull it back to \(\text{qCat}_2/B \) by applying the 2-functor \(f^* : h_*(\text{qCat}_\infty/A) \rightarrow h_*(\text{qCat}_\infty/B) \). The lifting arguments of this kind that we develop here will rely upon the assumption that the simplicial categories in which we work have hom-spaces which are quasi-categories, which is why our default is to assume that the objects of our slice categories \(\text{qCat}_2/A \) and \(\text{qCat}_\infty/A \) are isofibrations.

3.4.5. **Observation** (comparing the 2-categories \(\text{qCat}_2/A \) and \(h_*(\text{qCat}_\infty/A) \)). To understand how structures may be lifted from \(\text{qCat}_2/A \) to \(h_*(\text{qCat}_\infty/A) \) we should first understand the similarities and differences between these 2-categories. It is plain to see that they have the same 0-cells and 1-cells; however it is not the case that their 2-cells coincide. If we are given a parallel pair of 1-cells

\[
E \xrightarrow{f} F
\]

\[
P \xleftarrow{g} q
\]

\[
A
\]

a 2-cell from \(f \) to \(g \) in \(\text{qCat}_2/A \): is a homotopy class of 1-simplices \(f \rightarrow g \) in \(F^E \) that whisker with \(q \) to the homotopy class of the degenerate 1-simplex on \(p \).

\(h_*(\text{qCat}_\infty/A) \): is a homotopy class represented by a 1-simplex \(f \rightarrow g \) in the fibre of \(q^E : F^E \rightarrow A^E \) over the vertex \(p \in A^E \) under homotopies which are also constrained to that fibre.

Note here that the notion of homotopy involved in the description of 2-cells in \(h_*(\text{qCat}_\infty/A) \) is more refined (identifies fewer simplices) than that given for 2-cells in \(\text{qCat}_2/A \). Each homotopy class representing a 2-cell in \(\text{qCat}_2/A \) may actually split into a number of distinct homotopy classes representing 2-cells in \(h_*(\text{qCat}_\infty/A) \).

Consequently, it is not the case that these two enrichments of \(\text{qCat}/A \) to a 2-category are identical. However, they are related by a 2-functors whose properties are strong enough for our purposes here, as we shall see in the following proposition.
3.4.6. **Definition** (smothering 2-functor). A 2-functor \(F: \mathcal{K} \rightarrow \mathcal{L} \) is said to be a **smothering 2-functor** if it is surjective on 0-cells and locally smothering, i.e., if for all 0-cells \(K \) and \(K' \) in \(\mathcal{K} \) the action \(F: \mathcal{K}(K, K') \rightarrow \mathcal{L}(FK, FK') \) of \(F \) on the hom-category from \(K \) to \(K' \) is a smothering functor.

Note that smothering 2-functors are also conservative at the level of 1-cells in the sense appropriate to 2-category theory; that is to say if \(k: K \rightarrow K' \) is a 1-cell in \(\mathcal{K} \) for which \(Fk \) is an equivalence in \(\mathcal{L} \) then \(k \) is an equivalence in \(\mathcal{K} \).

3.4.7. **Proposition.** There exists a canonical 2-functor \(h_*(\mathsf{qCat}_\infty/A) \rightarrow \mathsf{qCat}_2/A \) which acts identically on 0-cells and 1-cells and is a smothering 2-functor.

Proof. To construct the required 2-functor, observe that we may apply the homotopy category functor \(h \) to the defining pullback square for \(\mathsf{hom}_A^\infty(p, q) \) in (3.4.2) to obtain a square which then induces a functor \(h(\mathsf{hom}_A^\infty(p, q)) \rightarrow \mathsf{hom}_A^2(p, q) \) by the pullback property of the defining square for \(\mathsf{hom}_2(p, q) \). It is a routine matter now to check that we may assemble these actions on hom-categories together to give a 2-functor which acts as the identity on the common underlying category \(\mathsf{qCat}/A \) of these 2-categories.

To show that this 2-functor is smothering, we already know that it acts bijectively on 0-cells so all that remains to do is show that each \(h(\mathsf{hom}_A^\infty(p, q)) \rightarrow \mathsf{hom}_A^2(p, q) \) is a smothering functor. However, this fact is follows by direct application of proposition 3.3.16 to the defining pullbacks (3.4.2).

By combining the last proposition with the following 2-categorical lemma, we obtain a useful principle by which to recognise those 1-cells of \(h_*(\mathsf{qCat}_\infty/A) \) which are equivalences in there. The following observation will be used in its proof.

3.4.8. **Observation** (representably defined isofibrations in 2-categories). A 1-cell \(p: B \rightarrow A \) in a 2-category \(\mathcal{K} \) is said to be a **representably defined isofibration** (or just an isofibration) if and only if for each object \(X \in \mathcal{K} \) the functor \(\mathcal{K}(X, p): \mathcal{K}(X, B) \rightarrow \mathcal{K}(X, A) \) is an isofibration of categories (has the right lifting property with respect to the inclusion \(\mathbb{1} \hookrightarrow \mathbb{1} \)).

In more explicit terms, this means that for any diagram

\[
\begin{array}{ccc}
B & \xrightarrow{\sim} & B \\
\downarrow{p} & & \downarrow{p} \\
X & \xrightarrow{a} & A
\end{array}
\]

consisting of 1-cells \(a \) and \(b \) and a 2-isomorphism \(\alpha: pb \cong x \), there exists a 1-cell \(x \) and 2-isomorphism \(\beta: b \cong x \) so that \(p\beta = \alpha \) and \(px = a \).

Suppose \(p: B \rightarrow A \) is an isofibration in between quasi-categories. Then \(p^X: B^X \rightarrow A^X \) is also an isofibration for any simplicial set \(X \), and in particular \(p^X \) has the right lifting property with respect to \(\mathbb{1} \hookrightarrow \mathbb{1} \). Using the standard homotopy coherence result that an isomorphism in the homotopy category of a quasi-category can be extended to a functor with domain \(\mathbb{1} \) (cf. recollection 2.3.6), we may show that \(\mathsf{hom}_2(X, p): \mathsf{hom}_2(X, B) \rightarrow \mathsf{hom}_2(X, A) \) also has the right lifting property with respect to \(\mathbb{1} \hookrightarrow \mathbb{1} \). Thus \(\mathsf{hom}_2(X, p) \)
is an isofibration of categories, which shows that the isofibrations of quasi-categories are representably defined in the 2-category \qCat_2.

The following lemma, stated here in the special case of \qCat_2, applies equally to any slice 2-category whose objects are isofibrations.

3.4.9. **Lemma.** The canonical projection 2-functor $\qCat_2/C \to \qCat_2$ is conservative on 1-cells in the appropriate 2-categorical sense. In other words, if

$$
\begin{array}{ccc}
E & \xrightarrow{w} & F \\
\downarrow{p} & & \downarrow{q} \\
A & & A
\end{array}
$$

is a 1-cell in \qCat_2/A for which $w: E \to F$ is an equivalence in \qCat_2 then it is an equivalence in the slice 2-category \qCat_2/A.

Proof. Start by taking an equivalence inverse $w': F \to E$ and picking 2-isomorphisms $\alpha: w'w \cong \id_E$ and $\beta: \id_F \cong ww'$ which display w' as a left adjoint equivalence inverse to w in \qCat_2. Now consider the whiskered composite $q\beta: q \cong qww' = pw'$ and use the fact that p is an iso-fibration in the 2-category \qCat_2 to lift the isomorphism $q\beta$ along p to give a 1-cell $\bar{w}: F \to E$ with $p\bar{w} = q$ and a 2-isomorphism $\gamma: \bar{w} \cong w'$ with $p\gamma = q\beta$. The first of these equations tells us that \bar{w} is a 1-cell in \qCat_2/A, and it is an easy matter use the second of these equations, along with the triangle identities relating α and β, to show that the isomorphisms $\alpha \cdot \gamma w: \bar{w}w \cong \id_E$ and $w\gamma^{-1} \cdot \beta: \id_F \cong w\bar{w}$ are 2-cells in \qCat_2/A. These display \bar{w} as a left adjoint equivalence inverse to w in \qCat_2/A as required. \hfill \Box

3.4.10. **Corollary.** The 1-cell depicted in (3.4.10) is an equivalence in $h^*(\qCat_\infty/A)$ if and only if $w: E \to F$ is an equivalence in \qCat_2.

Proof. By proposition 3.4.7 and lemma 3.4.9, the canonical 2-functors $h^*(\qCat_\infty/A) \to \qCat_2/A$ and $\qCat_2/A \to \qCat_2$ are both conservative on 1-cells, so their composite is also conservative on 1-cells. The result follows immediately. \hfill \Box

3.4.12. **Definition** (fibred equivalence). A functor $w: E \to F$ between quasi-categories equipped with specified isofibrations $E \to A$ and $F \to A$ is an equivalence fibred over A, or just a fibred equivalence, if it is an equivalence in $h^*(\qCat_\infty/A)$. By corollary 3.4.11 any equivalence commuting with the maps to A is a fibred equivalence. Unpacking the definition, a fibred equivalence admits an equivalence inverse $w': F \to E$ over A together with isomorphisms $\alpha: w'w \cong \id_E \in E^E$ and $\beta: \id_F \cong ww' \in F^F$ represented by 1-simplices that compose with p and q to degenerate 1-simplices.

3.5. **A strongly universal characterisation of weak comma objects.** We may use properties of the 2-categorical slice \qCat_2/A to characterise the weak comma objects of \qCat_2 in terms of a strong universal property. We present this technical result here and then use it to good effect in section 5 where we demonstrate how to characterise limits and colimits that exist in a quasi-category in purely 2-categorical terms.
For this subsection we shall assume, contrary to our notational convention elsewhere, that $\text{qCat}_2/(C \times B)$ denotes the unrestricted slice 2-category whose objects are all functors with codomain $C \times B$.

3.5.1. Observation (uniqueness of 1-cell induction revisited). Any 1-cell $a: X \to f \downarrow g$ induced by the comma cone [3.3.24] may be regarded as a 1-cell

$$
\begin{array}{ccc}
X & \xrightarrow{a} & f \downarrow g \\
& \downarrow (a_1, a_0) & \downarrow (p_1, p_0) \\
C \times B & \xleftarrow{(a_1, a_0)} & X
\end{array}
$$

in $\text{qCat}_2/(C \times B)$. If we are given a second 1-cell $a': X \to f \downarrow g$ which is also induced by the same comma cone then the argument of observation [3.3.28] delivers us a 2-cell

$$
\begin{array}{ccc}
X & \xrightarrow{a} & f \downarrow g \\
& \downarrow (a_1, a_0) & \downarrow (p_1, p_0) \\
C \times B & \xleftarrow{(a_1, a_0)} & X
\end{array}
$$

in $\text{qCat}_2/(C \times B)$, which is moreover an isomorphism. Conversely, by 2-cell conservativity of the comma quasi-category $f \downarrow g$, any 2-cell of $\text{qCat}_2/(C \times B)$ of the form depicted in [3.5.2] is an isomorphism. Thus, the hom-category $\text{hom}_{\text{qCat}_2/(C \times B)}((a_1, a_0), (p_1, p_0))$ is a groupoid, whose connected components comprise those 1-cells induced by a common cone [3.3.24].

3.5.3. Observation. For each object $(a_1, a_0): X \to C \times B$ of $\text{qCat}/(C \times B)$ we have a set $\text{sq}_{g,f}(a_1, a_0)$ of 2-cells as depicted in [3.3.24]. This construction may be extended immediately to a contravariant functor $\text{sq}_{g,f}: (\text{qCat}/(C \times B))^\text{op} \to \text{Set}$, which carries a morphism

$$
\begin{array}{ccc}
X & \xrightarrow{u} & Y \\
& \downarrow (a_1, a_0) & \downarrow (b_1, b_0) \\
C \times B & \xleftarrow{(a_1, a_0)} & X
\end{array}
$$

of $\text{qCat}/(C \times B)$ to the function $\text{sq}_{g,f}(u)$ which maps a 2-cell β of $\text{sq}_{g,f}(b_1, b_0)$ to the whiskered 2-cell βu in $\text{sq}_{g,f}(a_1, a_0)$.

If we are given a 2-cell

$$
\begin{array}{ccc}
X & \xrightarrow{u} & Y \\
& \downarrow (a_1, a_0) & \downarrow (b_1, b_0) \\
C \times B & \xleftarrow{(a_1, a_0)} & X
\end{array}
$$

in $\text{qCat}_2/(C \times B)$ and a 2-cell $\beta \in \text{sq}_{g,f}(b_1, b_0)$ then the middle four interchange rule for the horizontal composite of the 2-cells β and τ provides us with a commutative square

$$
\begin{array}{ccc}
fb_0u & \xrightarrow{\beta u} & gb_1u \\
\downarrow fb_0 & \equiv & \downarrow gb_1 \\
fb_0\tau & \equiv & gb_1\tau
\end{array}
$$
whose vertical arrows are the identities on fa_0 and ga_1 respectively. Hence, $\beta u = \beta u'$, and we conclude that if u and u' are 1-cells in the same connected component of the category $\text{hom}_{C^\times B}((a_1, a_0), (b_1, b_0))$ then the functions $sq_{g,f}(u)$ and $sq_{g,f}(u')$ are identical.

3.5.4. Observation. If C is any category then we shall use $\pi^g_0 C$ to denote the set of connected components of its sub-groupoid of isomorphisms. This construction extends to a functor $\pi^g_0 : \text{Cat} \to \text{Set}$ which preserves finite products so it follows, just as in observation 3.1.4, that we may apply π^g_0 to the hom-categories of a 2-category K to construct a category $(\pi^g_0)^*K$.

Any isomorphism $K \cong L$ in the category $(\pi^g_0)^*K$ can be lifted to a corresponding equivalence in K by picking representatives $w : K \to L$ and $w' : L \to K$ in K for the isomorphism and its inverse. The 2-isomorphisms $\alpha : w'w \cong \text{id}_K$ and $\beta : ww' \cong \text{id}_L$ which witness these as equivalence inverses in K simply arise by choosing 2-cells which witness the mutual inverse identities $w'w = \text{id}_K$ and $ww' = \text{id}_L$ in $(\pi^g_0)^*K$.

The content of the final clause of observation 3.5.3 is that the functor $sq_{g,f}$ factorises through the quotient functor $q\text{Cat}/(C \times B) \to (\pi^g_0)^*(q\text{Cat}_2/(C \times B))$, which allows us to regard it as a functor

$$sq_{g,f} : (\pi^g_0)^*(q\text{Cat}_2/(C \times B))^{\text{op}} \to \text{Set},$$

(3.5.5)

This functor allows us to expose another aspect of the weak 2-universal property of weak comma objects: namely that the comma cone formed from the cospan $B \xleftarrow{f} A \xrightarrow{g} C$ represents the functor (3.5.5).

3.5.6. Lemma. The weakly universal comma cone

$$p_1 \downarrow f \quad \psi \downarrow g \quad p_0$$

$$\begin{array}{ccc}
\text{C} & \leftarrow & \psi \downarrow \quad \xrightarrow{\psi} \quad \downarrow \quad \psi \downarrow \quad \xrightarrow{\psi} \quad \text{B} \\
\downarrow g & & \downarrow \psi & & \downarrow \psi & & \downarrow \psi & & \downarrow \psi \\
\text{A} & \rightarrow & f
\end{array}$$

(3.5.7)

provides us with an element $\psi \in sq_{g,f}(p_1, p_0)$ which is universal, in the usual sense, for the functor $sq_{g,f} : (\pi^g_0)^*(q\text{Cat}_2/(C \times B))^{\text{op}} \to \text{Set}$. Furthermore, any comma cone

$$\begin{array}{ccc}
q_1 & \leftarrow & Q & \rightarrow & q_0 \\
\downarrow g & & \downarrow \phi & & \downarrow \phi \\
\text{C} & \leftarrow & \phi \downarrow \quad \xrightarrow{\phi} \quad \downarrow \quad \phi \downarrow \quad \xrightarrow{\phi} \quad \text{B} \\
\downarrow g & & \downarrow \phi & & \downarrow \phi & & \downarrow \phi & & \downarrow \phi \\
\text{A} & \rightarrow & f
\end{array}$$

(3.5.8)

for which the 2-cell $\phi \in sq_{g,f}(q_1, q_0)$ is a universal element of the functor $sq_{g,f}$ displays Q as a weak comma object in $q\text{Cat}_2$.

Proof. For each object $(a_1, a_0) : X \to C \times B$ of $q\text{Cat}_2/(C \times B)$ the element $\psi \in sq_{g,f}(p_1, p_0)$ induces a function

$$\pi^g_0(\text{hom}_{C^\times B}((a_1, a_0), (p_1, p_0))) \to sq_{g,f}(a_1, a_0)$$
which carries a functor $a: X \rightarrow f \downarrow g$ representing an element of the set on the left to the whiskered composite wa on the right. The element $\psi \in sq_{q,f}(p_1, p_0)$ is universal for $sq_{q,f}$ if and only if each of those functions is a bijection. Surjectivity follows directly from the 1-cell induction property of $f \downarrow g$, and injectivity follows from the reformulation of lemma 3.3.2 discussed in observation 3.5.1.

If $\phi \in sq_{q,f}(q_1, q_0)$ is another element which is universal for $sq_{q,f}$, then by Yoneda’s lemma the objects $(p_1, p_0): f \downarrow g \rightarrow C \times B$ and $(q_1, q_0): Q \rightarrow C \times B$ are isomorphic in the category $(\pi_0^g)_*(qCat_2/(C \times B))$ via an isomorphism whose action under $sq_{q,f}$ carries $\psi \in sq_{q,f}(p_1, p_0)$ to $\phi \in sq_{q,f}(q_1, q_0)$. Proceeding as in observation 3.5.4, we may pick representatives of this isomorphism and its inverse to provide a pair of 1-cells

\[
\begin{array}{ccc}
Q & \xleftarrow{w'} & f \downarrow g \\
\downarrow (q_1, q_0) & & \downarrow (p_1, p_0) \\
C \times B & \xrightarrow{w} & (p_1, p_0)
\end{array}
\]

which are related by a pair of 2-isomorphisms $\alpha: w'w \cong \text{id}_Q$ and $\beta: ww' \cong \text{id}_{f \downarrow g}$ in the slice 2-category $qCat_2/(C \times B)$. The fact that this isomorphism carries ϕ to ψ under the action of $sq_{q,f}$ provides the 2-cellular equations $p_0w = p_0$ and $q_1w' = \phi w' = \psi$. The 1-cell induction property for the comma cone (3.5.8) suppose that we are given a comma cone (3.3.24). The 1-cell induction property of $f \downarrow g$ provides us with a 1-cell $a: X \rightarrow f \downarrow g$ with the defining property that $p_0a = a_0$, $p_1a = a_1$, and $\psi a = \alpha$. The functor $w': f \downarrow g \rightarrow Q$ satisfies the equations $q_0w' = p_0$, $q_1w' = p_1$, and $\phi w' = \psi$, so we have $q_0w'a = p_0a = a_0$, $q_1w'a = p_1a = a_1$, and $\phi w'a = \psi a = \alpha$. This demonstrates that $w'a: X \rightarrow Q$ is a 1-cell induced by the comma cone (3.3.24) with respect to the comma cone (3.5.8).

To prove the 2-cell induction property for the comma cone (3.5.8) suppose that we are given a pair of 1-cells $a, a': X \rightarrow Q$ and a pair of 2-cells $\tau_0: q_0a \Rightarrow q_0a'$ and $\tau_1: q_1a \Rightarrow q_1a'$ satisfying the condition given in (3.3.27) with respect to the comma cone (3.5.8). The 1-cells $wa, wa': X \rightarrow f \downarrow g$ and the 2-cells $\tau_0: p_0wa = q_0a \Rightarrow q_0a' = p_0wa'$ and $\tau_1: p_1wa = q_1a \Rightarrow q_1a' = p_1wa'$ also satisfy the condition given in (3.3.27) with respect to the comma cone (3.5.7). Hence, the 2-cell induction property of $f \downarrow g$ ensures that we have a 2-cell $\mu: wa \Rightarrow wa'$ with the defining properties that $p_0\mu = \tau_0$ and $p_1\mu = \tau_1$. Combining this with the invertible 2-cell $\alpha: w'w \cong \text{id}_Q$, we may construct a 2-cell

\[
\tau := a \xrightarrow{\alpha^{-1}_a \cong} w'wa \xrightarrow{w'\mu} w'wa' \xrightarrow{\alpha a' \cong} a'
\]

Because α is a 2-cell in the endo-hom-category in $qCat_2/(C \times B)$ on the 0-cell $(q_1, q_0): Q \rightarrow C \times B$, $q_0\alpha = \text{id}_{q_0}$ and $q_1\alpha = \text{id}_{q_1}$. It follows that $q_0\tau = q_0w'\mu = p_0\mu = \tau_0$ and $q_1\tau = q_1w'\mu = p_1\mu = \tau_1$, which demonstrates that $\tau: a \Rightarrow a'$ satisfies the defining properties required of a 2-cell induced by the pair of 2-cells τ_0 and τ_1.

The proof of 2-cell conservativity is of a similar ilk and is left to the reader. \qed
4. ADJUNCTIONS OF QUASI-CATEGORIES

We begin our 2-categorical development of quasi-category theory by introducing the appropriate notion of adjunction.

4.0.1. Definition (adjunction). An adjunction

\[
\begin{tikzcd}
A \arinlet{f} & B \arinlet{u} \\
\end{tikzcd}
\]

in a 2-category consists of objects \(A, B\); 1-cells \(f: B \to A, u: A \to B\); and unit and counit 2-cells \(\eta: \text{id}_B \Rightarrow uf, \epsilon: fu \Rightarrow \text{id}_A\) satisfying the triangle identities.

\[
\begin{array}{cccc}
B & \xrightarrow{f} & B \\
\downarrow & & \downarrow \\
A & \xleftarrow{u} & A
\end{array}
\]

In particular, an adjunction between quasi-categories is an adjunction in the 2-category \(\text{qCat}_2\). As always we identify the unit and counit 2-cells with the simplicial maps

\[
\begin{array}{cccc}
B & \xrightarrow{\psi \eta} & B \\
\downarrow & & \downarrow \\
A & \xleftarrow{\iota} & A
\end{array}
\]

(1-simplices in \(B^B\) and \(A^A\) respectively) representing the unit and counit respectively. Because \(B^A\) and \(A^B\) are quasi-categories we know, from the description of the homotopy category of a quasi-category given in recollection [2.2.2] that for any choice of representatives of the unit and counit there exist maps

\[
\alpha: A \times \Delta^2 \to B \quad \text{and} \quad \beta: B \times \Delta^2 \to A
\]

(2-simplices in \(B^A\) and \(A^B\) respectively) which witness the triangle identities in the sense that their boundaries have the form

\[
\begin{array}{cccc}
\eta u & \xrightarrow{ufu} & \epsilon u \\
\downarrow & & \downarrow \\
u & \xleftarrow{\text{id}_u} & u
\end{array}
\]

\[
\begin{array}{cccc}
f \eta & \xrightarrow{fuf} & \epsilon f \\
\downarrow & & \downarrow \\
f & \xleftarrow{\text{id}_f} & f
\end{array}
\]

4.0.2. Example. On account of the fully-faithful inclusion \(\text{Cat}_2 \hookrightarrow \text{qCat}_2\), any adjunction of categories gives rise to an adjunction of quasi-categories with canonical representatives for the unit and counit. Conversely, the 2-functor \(h: \text{qCat}_2 \to \text{Cat}_2\) carries any adjunction of quasi-categories to an adjunction between their respective homotopy categories.
4.0.3. **Example.** The homotopy coherent nerve defines a 2-functor from the 2-category of topologically enriched categories, continuous functors, and enriched natural transformations to qCat_2. This 2-functor factors through the 2-category of locally Kan simplicial categories, simplicial functors, and simplicial natural transformations. Hence, any enriched adjunction between topological or fibrant simplicial categories gives rise to an adjunction of quasi-categories by passing to homotopy coherent nerves. As in the unenriched case, there exist canonical representatives for the unit and counit defined by applying the homotopy coherent nerve to the corresponding enriched natural transformations.

4.0.4. **Example.** Any simplicially enriched Quillen adjunction between simplicial model categories descends to an adjunction between the associated quasi-categories, constructed by restricting to the fibrant-cofibrant objects and then applying the homotopy coherent nerve. This restriction is necessary to define the quasi-category associated to a simplicial model category; the homotopy coherent nerve of a simplicial category might not be a quasi-category if the simplicial category is not locally Kan. The subcategory of fibrant-cofibrant objects of a simplicial model category is locally Kan, and furthermore the hom-space bifunctor preserves weak equivalences in both variables; it is common to say that only between fibrant-cofibrant objects are the simplicial hom-spaces guaranteed to have the “correct” homotopy type.

In contrast with the topological case, some care is required to define the functors constituting the adjunction; the point-set level functors will not do because neither adjoint need land directly in the fibrant-cofibrant objects. We prove that a simplicial Quillen adjunction descends to an adjunction of quasi-categories in theorem 6.2.1.

4.0.5. **Example.** Suppose that $\ell : C \to B$ is a functor of quasi-categories and let $i : C \to B \downarrow \ell$ be any functor induced by the identity comma cone:

$$\begin{array}{ccc}
C & \xrightarrow{\ell} & B \\
\downarrow i & & \downarrow \ell \\
\downarrow \ell & & \downarrow \ell \\
C & \xleftarrow{\ell} & B
\end{array}$$

(4.0.6)

Then $i : C \to B \downarrow \ell$ is right adjoint to the codomain projection functor $p_1 : B \downarrow \ell \to C$ in the slice 2-category qCat_2/C

$$\begin{array}{ccc}
C & \xrightarrow{p_1} & B \downarrow \ell \\
\downarrow i & & \downarrow \ell \\
\downarrow \ell & & \downarrow \ell \\
C & \xleftarrow{p_1} & B \downarrow \ell
\end{array}$$

and the counit may be chosen to be an identity 2-cell.

Proof. By construction, i is a section to the isofibration p_1 and, accordingly, we may take the counit of the postulated adjunction to be the identity $p_1i = \text{id}_C$. Now a 2-cell $\nu : \text{id}_{B\downarrow \ell} \Rightarrow ip_1$ provides us with a 2-cell in qCat_2/C which satisfies the triangle identities with respect to that counit if and only if $p_1\nu$ and νi are identity 2-cells.
We construct a suitable 2-cell $\nu: \text{id}_{B\downarrow \ell} \Rightarrow ip_1$ by applying the 2-cell induction property of $B\downarrow \ell$ to the pair of 2-cells $\phi: p_0 \Rightarrow \ell p_1 = p_0 ip_1$ and $\text{id}_{p_1}: p_1 = p_1 ip_1$; here, the compatibility condition of (3.3.27) reduces to the trivial pasting identity

By construction, $\nu: \text{id}_{B\downarrow \ell} \Rightarrow ip_1$ is a 2-cell satisfying $p_0 \nu = \phi$ and $p_1 \nu = \text{id}_{p_1}$.

All that remains is to show that νi is also an identity, which we do in two steps. Firstly, observe that $p_0 \nu i = \phi i = \text{id}_\ell$ and $p_1 \nu i = \text{id}_{p_1} i = \text{id}_{p_1} = \text{id}_{C}$, so using the 2-cell conservativity property of $B\downarrow \ell$ we conclude that νi is an isomorphism. Now the middle four interchange rule for the horizontal composition of the 2-cell ν with itself gives us a commutative diagram

and, as $p_1 i$ and $p_1 \nu$ are known to be identities, this tells us that νi is an idempotent. Since νi is also an isomorphism, we may cancel it from either side of the idempotency identity $\nu i \cdot \nu i = \nu i$ to show that it is indeed an identity as required. \hfill \Box

4.0.7. Remark (idempotent isomorphisms). Because $q\text{Cat}_2$ has many weak but few strict 2-limits, it is frequently easier to show that a 2-cell is an isomorphism than to show that it is an identity. When we desire an identity and not merely an isomorphism, we will make frequent use of the trick that any idempotent isomorphism is an identity, as employed in the proof of the last example.

4.1. Terminal objects as adjunctions. Adjunctions between quasi-categories can be used to define terminal and initial objects.

4.1.1. Definition (terminal objects). An object t in a quasi-category A is terminal if there is an adjunction

4.1.2. Example (slices have terminal objects). For any object a of a quasi-category A, we may apply example 4.0.5 to construct an adjunction

which demonstrates that the object of $A \downarrow a$ corresponding to the degenerate 1-simplex $a \cdot \sigma^0: a \rightarrow a$ is terminal.
4.1.3. **Lemma** (minimal information required to display a terminal object). To demonstrate that an object \(t \) is terminal in \(A \) it is enough to provide a unit 2-cell \(\eta : \text{id}_A \Rightarrow t! \) for which the whiskered composite \(\eta t \) is an isomorphism.

When \(A \) is a category this presentation is neither more nor less than the well known observation that an object \(t \) is terminal in \(A \) if and only if there exists a cocone on the identity diagram with vertex \(t \) whose component at \(t \) is an isomorphism. The proof of this lemma applies in any 2-category which possesses a 2-terminal object.

Proof. This result follows from the observation that the counit and one of the triangle identities arise trivially from the fact that the categories \(\text{hom}_2(\Delta^0, \Delta^0) \) and \(\text{hom}_2(A, \Delta^0) \) are both isomorphic to the terminal category \(1 \). So all we need do is provide a unit and verify that the other triangle identity holds, but this reduces to showing that the whiskered composite \(\eta t \) is the identity on \(t \).

The middle four interchange rule in \(\mathbf{qCat}_2 \) for the horizontal composite of \(\eta \) with itself provides us with the following naturality square:

\[
\begin{array}{ccc}
 t & \xrightarrow{\eta t} & t!t \\
 \eta t & \downarrow & \downarrow \eta t ! t \\
 t!t & \xrightarrow{t t !} & t! t
\end{array}
\]

The whiskered composite \(! \eta \) is a 2-cell in \(\text{hom}_2(A, \Delta^0) \cong 1 \) and the composite \(t! \) is a 1-cell in \(\text{hom}_2(\Delta^0, \Delta^0) \cong 1 \) so they are both identities. Hence, commutativity of this square reduces to the equation \(\eta t \cdot \eta t = \eta t \). By remark 4.0.7, it follows that \(\eta t = \text{id}_t \) if it is an isomorphism.

A similar 2-categorical argument enables us to prove the following “recognition” criterion for certain special cases of adjunctions. We leave the proof as an entertaining diversion for the reader.

4.1.4. **Lemma.** Suppose we are given a pair of 1-cells \(u : A \to B \) and \(f : B \to A \) and a 2-isomorphism \(f u \cong \text{id}_A \) in a 2-category. If there exists a 2-cell \(\eta' : \text{id}_B \Rightarrow uf \) with the property that \(f \eta' \) and \(\eta' u \) are 2-isomorphisms, then \(f \) is left adjoint to \(u \). Furthermore, in the special case where \(u \) is a section of \(f \), then \(f \) is left adjoint to \(u \) with the counit of the adjunction an identity.

Proof. The only if direction is immediate on observing that \(\text{K}(X, -) \) is a 2-functor and thus preserves adjunctions. For the converse, we observe that the family of units of the adjunctions \(\text{K}(X, f) \dashv \text{K}(X, u) \) is 2-natural in \(X \) and so the 2-categorical Yoneda lemma
provides us with a 2-cell η: $id_B \Rightarrow uf$ with the property that $K(X, \eta)$ and $K(X, \epsilon)$ are unit and counit of the adjunction $K(X, f) \dashv K(X, u)$. A further application of the 2-categorical Yoneda lemma demonstrates that the triangle identities η and ϵ follow immediately from those for $K(X, \eta)$ and $K(X, \epsilon)$. □

4.1.6. Proposition. A vertex t in a quasi-category A is terminal if and only if for all X the constant functor $X \overset{!}{\to} \Delta^0 \overset{t}{\to} A$ is terminal, in the usual sense, in the hom-category $\text{hom}_2(X, A)$.

Proof. Apply lemma 4.1.5 to the functors $t: \Delta^0 \to A$ and $!: A \to \Delta^0$ and the identity natural transformation $!t = id_{\Delta^0}$. □

4.1.7. Example. Joyal defines a vertex t in a quasi-category A to be terminal if and only if any sphere $\partial \Delta^n \to A$ whose final vertex is t has a filler [5, 4.1]. In proposition 4.3.5, we will show that Joyal’s definition is equivalent to ours. For the moment, however, we shall at least take some satisfaction in convincing ourselves directly that his notion implies ours.

Supposing that $t \in A$ is terminal in Joyal’s sense, then to define an adjunction $! \dashv t: \Delta^0 \to A$ we wish to define a unit $\eta: id_A \Rightarrow t!$ for which ηt is an identity. This unit is represented by a map

\[
\begin{array}{ccc}
A & \xrightarrow{\eta} & A \\
\downarrow i_0 & & \downarrow i_1 \\
A \times \Delta^1 & \xrightarrow{\eta} & A \\
\downarrow \downarrow t & & \downarrow \downarrow t \\
A & \to & \Delta^0
\end{array}
\]

which we define as follows. For each $a \in A_0$, use the universal property of t to choose a 1-simplex $\eta a: \Delta^1 \to A$ from a to t. We take care to pick ηt to be the degenerate 1-simplex at t, thus ensuring that the 2-cell ηt will be the identity at t as required.

For each $\alpha: a \to a' \in A_1$, define a cylinder $\Delta^1 \times \Delta^1 \to A$ as follows. The 1-skeleton consists of the displayed 1-simplices.

\[
\begin{array}{ccc}
\alpha & \xrightarrow{\eta a} & t \\
\downarrow \downarrow & & \downarrow \downarrow \\
\alpha & \xrightarrow{\eta a'} & t
\end{array}
\]

One shuffle is defined by degenerating ηa. The other is chosen by applying the universal property of t to the sphere formed by α, ηa, and $\eta a'$.

Continuing inductively, suppose we have chosen, for each $\sigma \in A_n$, a cylinder $\Delta^n \times \Delta^1 \to A$ from σ to the degenerate n-simplex at t in such a way that these choices are compatible with the face and degeneracy maps from the n-truncation of Δ. Given $\tau \in A_{n+1}$, this simplex together with the $(n+1)$-simplices chosen for each of its n-dimensional faces $\tau \delta^i$ form the boundary of an $(n+2)$-sphere with final vertex t, and we may choose a filler $\tilde{\tau}$.
Define the requisite cylinder, the component of η at τ, to be the composite
$$\Delta^{n+1} \times \Delta^1 \xrightarrow{q} \Delta^{n+2} \xrightarrow{\hat{\tau}} A$$
of $\hat{\tau}$ with the map induced by the functor $q: [n + 1] \times [1] \to [n + 2]$ defined by $q(i, 0) = i$
and $q(i, 1) = n + 2$.

This example will be generalised in proposition 5.2.11 to limits of arbitrary shape.

4.2. Basic theory. A key advantage to our 2-categorical definition of adjunctions is that
formal category theory supplies easy proofs of a number of desired results.

4.2.1. Proposition. A pair of adjunctions $f \dashv u : A \to B$ and $f' \dashv u' : B \to C$ in a 2-
category compose to give an adjunction $ff' \dashv uu' : A \to C$. In particular, we may compose
adjunctions of quasi-categories.

Proof. The unit and counit of the composite adjunction are

$$
\begin{array}{ccc}
C & \xrightarrow{\psi_{\eta'}} & C \\
\downarrow f' & & \downarrow u' \\
B & \xleftarrow{\phi_{\eta}} & B \\
\downarrow f & & \downarrow u \\
A & \xleftarrow{\phi_{\epsilon'}} & A
\end{array}
\quad \quad
\begin{array}{ccc}
C & \xrightarrow{\psi'_{\eta}} & C \\
\downarrow u' & & \downarrow f' \\
B & \xleftarrow{\phi'_{\eta}} & B \\
\downarrow u & & \downarrow f \\
A & \xleftarrow{\phi'_{\epsilon}} & A
\end{array}
$$

We also have the following classical 2-categorical result (cf. [13, IV.4.1]):

4.2.2. Proposition. Any equivalence $w : A \to B$ in a 2-category may be promoted to an
adjoint equivalence in which w may be taken to be either the left or right adjoint. In
particular, we may promote equivalences of quasi-categories to adjoint equivalences.

Proof. This is an immediate corollary of lemma 4.1.4.

4.2.3. Proposition. Suppose $f \dashv u : A \to B$ is an adjunction of quasi-categories. For any
simplicial set X and any quasi-category C,

$$
\begin{array}{ccc}
A^X & \xleftarrow{f^X} & B^X \\
\downarrow u^X & & \downarrow \\
C^A & \xrightarrow{C^u} & C^B
\end{array}
$$

are adjunctions of quasi-categories.

Proof. By 3.2.4 and 3.2.6, exponentiation defines 2-functors $(-)^X : q\text{Cat}_2 \to q\text{Cat}_2$ and
$C(-) : q\text{Cat}_2^{op} \to q\text{Cat}_2$, which preserve adjunctions.

As an easy corollary of the last few results, terminal objects are preserved by right
adjoints, initial objects are preserved by left adjoints, and they are both preserved by
equivalences.

4.2.4. Proposition. If $u : A \to B$ is a right adjoint or an equivalence of quasi-categories
and t is a terminal object of A, then ut is a terminal object in B.
Proof. By proposition 4.2.2, if \(u \) is an equivalence then it may be promoted to a right adjoint, which reduces preservation by equivalences to preservation by right adjoints. Now proposition 4.2.1 tells us that we may compose the adjunction in which \(u \) features with that which displays \(t \) as a terminal object in \(A \) to obtain an adjunction which displays \(ut \) as a terminal object in \(B \). \(\square \)

4.3. The universal property of adjunctions. An essential point in the proof of the main existence theorem of [21] is that adjunctions between quasi-categories, while defined equationally, satisfy a universal property. In the terminology introduced there, any adjunction between quasi-categories extends to a homotopy coherent adjunction. By contrast, a monad in \(\text{qCat}_2 \) need not underlie a homotopy coherent monad. In this subsection, we provide several forms of the universal property held by an adjunction.

Given an adjunction, we form the comma quasi-categories

\[
\begin{array}{ccc}
\downarrow f & A & \downarrow A^2 \\
(p_1,p_0) & \downarrow & \downarrow \\
A \times B & \downarrow & A \times B
\end{array}
\quad
\begin{array}{ccc}
\downarrow B & B & \downarrow B^2 \\
(q_1,q_0) & \downarrow & \downarrow \\
A \times B & \downarrow & A \times B
\end{array}
\quad
\begin{array}{ccc}
\downarrow f \times \text{id}_A & A \times B & \downarrow B \times B \\
\downarrow u \times \text{id}_B & \downarrow & \downarrow \\
A \times B & \downarrow & A \times B
\end{array}
\]

as in definition 3.3.17. These quasi-categories are equipped with 2-cells

\[
\begin{array}{ccc}
A & f & B \\
\downarrow & \downarrow & \downarrow \\
p_1 & \downarrow \alpha & p_0 \\
A & \downarrow & B
\end{array}
\quad
\begin{array}{ccc}
B & B & \downarrow B \\
\downarrow u & \downarrow & \downarrow \\
q_1 & \downarrow \beta & q_0 \\
B & \downarrow & A
\end{array}
\]

satisfying the weak 2-universal properties detailed in observation 3.3.21. Mimicking the standard argument, we can use these properties to derive a fibred equivalence \(f \downarrow A \simeq B \downarrow u \) from the unit and counit of our adjunction.

4.3.2. Proposition. If \(f \dashv u : A \to B \) is an adjunction of quasi-categories, then we may construct a fibred equivalence between the objects \((p_1,p_0) : f \downarrow A \to A \times B \) and \((q_1,q_0) : B \downarrow u \to A \times B \).

Proof. The composite 2-cells displayed on the left of the equalities below give rise to functors \(w : B \downarrow u \to f \downarrow A \) and \(w' : f \downarrow A \to B \downarrow u \) by 1-cell induction. By definition these maps satisfy the following pasting identities in \(\text{qCat}_2 \)
so it follows, in particular, that they provide us with 1-cells

\[
\begin{array}{ccc}
 f & \Downarrow & w' \\
 \downarrow & & \downarrow \\
 B & \Downarrow & u \\
 \downarrow & & \downarrow \\
 A & \Downarrow & w \\
 \downarrow & & \downarrow \\
 (p_1, p_0) & \Downarrow & (q_1, q_0) \\
 \end{array}
\]

in the slice 2-category \(q\text{Cat}_2/(A \times B) \) commuting with the canonical isofibrations to \(A \times B \). These identities give rise to the following sequence of pasting identities

\[
\begin{array}{ccc}
 f & \Downarrow & w' \\
 \downarrow & & \downarrow \\
 B & \Downarrow & u \\
 \downarrow & & \downarrow \\
 A & \Downarrow & w \\
 \downarrow & & \downarrow \\
 (p_1, p_0) & \Downarrow & (q_1, q_0) \\
 \end{array}
\]

in which the last step is an application of one of the triangle identities of the adjunction \(f \dashv u \). This tells us that the endo-1-cells \(w'w' \) and \(\text{id}_{f \downarrow A} \) on the object \((p_1, p_0) : f \downarrow A \to A \times B \) in \(q\text{Cat}_2/(A \times B) \) both map to the same 2-cell \(\alpha \) under the whiskering operation. Applying observation [3.5.1] we find that \(w'w' \) and \(\text{id}_{f \downarrow A} \) are connected by a 2-isomorphism in \(q\text{Cat}_2/(A \times B) \). A dual argument provides us with a 2-isomorphism between the 1-cells \(w'w \) and \(\text{id}_{B \downarrow u} \) in the groupoid of endo-cells on \((q_1, q_0) : B \downarrow u \to A \times B \). This data provides us with an equivalence in the slice 2-category \(q\text{Cat}_2/(A \times B) \), which we may lift along the smothering 2-functor of proposition [3.4.7] to give a fibred equivalence over \(A \times B \).

Just as in ordinary category theory, the proposition 4.3.2 has a converse:

4.3.3. **Proposition.** Suppose we are given functors \(u : A \to B \) and \(f : B \to A \) between quasi-categories. If there is a fibred equivalence between \((p_1, p_0) : f \downarrow A \to A \times B \) and \((q_1, q_0) : B \downarrow u \to A \times B \), then \(f \) is left adjoint to \(u \).

Schematically the proof of this result proceeds by observing that the image of the identity morphism at \(f \) under the equivalence \(f \Downarrow A \simeq B \Downarrow u \) defines a candidate unit for the desired adjunction. This can then be shown to have the appropriate universal property; the proof, however is slightly subtle. We delay it to the next section, where it will appear as a special case of a more general result needed there.

4.3.4. **Observation** (the hom-spaces of a quasi-category). One model for the hom-space between a pair of objects \(a \) and \(a' \) in a quasi-category \(A \) is the comma quasi-category \(a \downarrow a' \), denoted by \(\text{Hom}_A(a,a') \) in \(\Box \). Corollary [3.3.19] tells us that the canonical comparison \(h(a \downarrow a') \to h(a) \downarrow h(a') \) from the homotopy category of this hom-space is a smothering
functor. Its codomain \(h(a) \downarrow h(a') \) is a comma category of arrows between a fixed pair of objects in the category \(hA \), so it is simply the discrete category whose objects are the arrows from \(a \) to \(a' \) in \(hA \). It follows from conservativity of the smothering functor that all arrows in \(h(a) \downarrow h(a') \) and thus also \(a \downarrow a' \) are isomorphisms; hence, \(a \downarrow a' \) is a Kan complex by observation 2.3.5.

By observation 3.4.4, the fibred equivalence of proposition 4.3.2 may be pulled back along the functor \((a, b): \Delta^0 \to A \times B \) associated with any pair of vertices \(a \in A \) and \(b \in B \) to give an equivalence \(fb \downarrow a \simeq b \downarrow ua \) of hom-spaces. This should be thought of as a quasi-categorical analog of the usual adjoint correspondence defined for arrows between a fixed pair of objects \(b \in B \) and \(a \in A \). In this way, we see that the 2-categorical definition of an adjunction implies the definition of adjunction given by Lurie in [11, 5.2.2.8].

We may combine proposition 4.3.2 and the equivalence of slice and comma quasi-categories established in appendix A to give a converse to example 4.1.7.

4.3.5. Proposition. A vertex \(t \in A \) is terminal in Joyal’s sense if and only if

\[
\begin{array}{ccc}
\Delta^0 & \xrightarrow{t} & A \\
\downarrow & & \downarrow \\
! & & !
\end{array}
\]

is an adjunction of quasi-categories.

Proof. The “if” direction is example 4.1.7. For the converse implication, an adjunction \(! \dashv t \) gives rise to an equivalence between \(\downarrow t \Delta^0 \cong A \) and \(A \downarrow t \) over \(A \) by proposition 4.3.2. Hence, by the 2-of-3 property of equivalences, the isofibration \(A \downarrow t \to A \) is a trivial fibration. By proposition A.4.13, we have an equivalence

\[
\begin{array}{ccc}
A \downarrow t & \sim & A/t \\
\Downarrow & & \Downarrow \\
A & \to & A
\end{array}
\]

between our comma quasi-category and Joyal’s slice quasi-category; see A.1.2 for a definition. Applying the 2-of-3 property again, it follows that the isofibration \(A/t \to A \) is a trivial fibration; the right lifting property against the boundary inclusions \(\partial \Delta^n \to \Delta^n \) says precisely that \(t \in A \) is terminal in Joyal’s sense.

One reason for our particular interest in terminal objects is to show that the units and counits of adjunctions have universal properties which may be expressed “pointwise” in terms of certain outer horn filler conditions.

4.3.6. Proposition (the pointwise universal property of an adjunction). Suppose that we are given an adjunction

\[
\begin{array}{ccc}
A & \xleftarrow{f} & B \\
\downarrow & \nabla & \downarrow \\
a & & B
\end{array}
\]

of quasi-categories with unit \(\eta: \text{id}_B \Rightarrow uf \) and counit \(\epsilon: fu \Rightarrow \text{id}_A \). Then for each \(a \in A \) the (fat) slice quasi-category \(f \downarrow a \cong f/a \) has terminal object \(\epsilon a: fua \to a \), namely the component of the counit \(\epsilon \) at \(a \).
Proof. From proposition 4.3.2, the adjunction \(f \dashv u\) gives rise to the equivalence \(f \downarrow A \simeq B \downarrow u\) fibred over \(A \times B\). By observation 3.4.4, for each \(a \in A\), the fibred equivalence pulls back along the functor \((a, \text{id}_B) : B \to A \times B\) to give a fibred equivalence

\[
\begin{array}{ccc}
 f \downarrow a & \cong & B \downarrow ua \\
 \downarrow w & & \downarrow w' \\
 B & \cong & B
\end{array}
\]

(4.3.7)

over \(B\).

By example 4.1.2, we know that \(B \downarrow ua\) has the identity map \(ua \cdot \sigma^0 : ua \to ua\) as its terminal object, and by proposition 4.2.4 we know that terminal objects transport along equivalences, so it follows that \(f \downarrow a\) also has terminal object \(w'(ua \cdot \sigma^0)\). It is now easily checked, from the definition of \(w'\) given in proposition 4.3.2, that \(w'(ua \cdot \sigma^0)\) is isomorphic to \(\epsilon a : fua \to a\). The desired result follows on transporting this terminal object along the equivalence between \(f \downarrow a\) and \(f/a\) provided by the geometry result of remark A.4.14. □

Of course, the unit of an adjunction of quasi-categories satisfies a dual universal property.

4.3.8. Observation (unpacking this pointwise universal property of an adjunction). Unpacking the definitions in remark A.4.14 and definition A.1.2 we see that a map \(X \to f/a\) corresponds to a pair of maps \(b : X \to B\) and \(\alpha : X \star \Delta^0 \to A\) which make the diagram

\[
\begin{array}{ccc}
 X & \xrightarrow{f} & B \\
 \downarrow & & \downarrow \beta \\
 X \star \Delta^0 & \xrightarrow{\alpha} & A \\
 \downarrow \alpha & & \downarrow \alpha \\
 \Delta^0 & \xrightarrow{\epsilon a} & A
\end{array}
\]

commute.

Now we know that \(\epsilon a : fua \to a\) is terminal in \(f/a\) is terminal if and only if every sphere \(\partial \Delta^{n-1} \to f/a\) whose last vertex is \(\epsilon a\) may be filled to a simplex. Applying our description of maps into \(f/a\) and observing that \(\Delta^{n-1} \star \Delta^0 \simeq \Delta^n\) and \(\partial \Delta^{n-1} \star \Delta^0 \simeq \Lambda^{n,n}\), we see that \(\epsilon a\) being terminal means that if we are given

- a horn \(\Lambda^{n,n} \to A\), with \(n \geq 2\) together with
- a sphere \(\partial \Delta^{n-1} \to B\) whose composite with \(f\) is the boundary of the missing face of the horn, with the property that
- the final edge of the horn is \(\epsilon a\)

then there is

- a simplex \(\Delta^n \to A\) filling the given horn and
- a simplex \(\Delta^{n-1} \to B\) filling the given sphere, with the property that
- the \(n\)th face of the filling \(n\)-simplex in \(B\) is the simplex obtained by applying \(f\) to the filling \((n-1)\)-simplex in \(A\).

}\]
For \(n = 2 \), this situation is summarised by the following schematic:

\[
\begin{array}{c}
\text{fua} \searrow \downarrow \searrow \\
\text{fb} \downarrow \alpha \rightarrow a \\
\text{ua} \end{array}
\quad \sim \quad
\begin{array}{c}
\text{fua} \searrow \downarrow \searrow \\
\text{fb} \downarrow \alpha \rightarrow a \\
\text{ua} \\
\end{array}
\end{equation}

\(\epsilon \), \(b \in B_0 \) \(\Rightarrow \) \(\sigma \), \(\beta : b \rightarrow ua \in B_1 \), \(\sigma \in A_2 \)

4.3.9. Observation (the relative universal property of an adjunction). For any quasi-category \(X \) the 2-functor \(\text{hom}_2(X, -) : \text{qCat}_2 \rightarrow \text{Cat} \) carries an adjunction \(f \dashv u : A \rightarrow B \) of quasi-categories to an adjunction \(\text{hom}_2(X, f) \dashv \text{hom}_2(X, u) : \text{hom}_2(X, A) \rightarrow \text{hom}_2(X, B) \) of categories. Extending lemma 4.1.5, a standard and easily established fact of 2-category theory is that \(f : B \rightarrow A \) has a right adjoint in \(\text{qCat}_2 \) if and only if for each quasi-category \(X \) the functor \(\text{hom}_2(X, f) : \text{hom}_2(X, B) \rightarrow \text{hom}_2(X, A) \) has a right adjoint. We might call this observation the external universal property of an adjunction.

There is a closely related internal or relative universal property of adjunctions in \(\text{qCat}_2 \), which arises instead from remark 3.2.6 that the cotensor \((\cdot)^X : \text{qCat}_2 \rightarrow \text{qCat}_2 \) is also a 2-functor. Applying this cotensor 2-functor to the adjunction \(f \dashv u \) we obtain its relative universal property simply as the pointwise universal property of the adjunction \(f^X \dashv u^X : A^X \rightarrow B^X \) as derived in proposition 4.3.6 and expressed explicitly in observation 4.3.8. The relative universal property of adjunctions will become a key tool in the proof that any adjoint functor between quasi-categories extends to a homotopy coherent adjunction; see [21].

4.4. Fibred adjunctions. As we’ve seen above, fibred equivalences over \(A \), i.e., equivalences in \(\text{h}^*(\text{qCat}_\infty/A) \), are preferable to equivalences in the slice 2-category \(\text{qCat}_2/A \) because the former can be pulled back along arbitrary maps \(f : B \rightarrow A \); see observation 3.4.4. Precisely the same kind of reasoning applies to adjunctions in \(\text{qCat}_2/A \).

4.4.1. Definition (fibred adjunctions). We refer to adjunctions in \(\text{h}^*(\text{qCat}_\infty/A) \) as adjunctions fibred over \(A \) or simply fibred adjunctions.

Our aim in this section is to show that any adjunction in \(\text{qCat}_2/A \) can be lifted to an adjunction fibred over \(A \), i.e., to an adjunction in \(\text{h}^*(\text{qCat}_\infty/A) \). In particular, such a result will allow us to prove that any adjunction in \(\text{qCat}_2/A \) may be pulled back along any functor \(f : B \rightarrow A \). We shall use this result to define a loops–suspension adjunction on any quasi-category with appropriate finite limits and colimits (cf. proposition 5.2.26).

Recall from section 3.4 that the canonical 2-functor \(\text{h}^*(\text{qCat}_\infty/A) \rightarrow \text{qCat}_2/A \) is a smothering 2-functor. Consequently, the following 2-categorical lemma is key:

4.4.2. Lemma. Suppose \(F : \mathcal{K} \rightarrow \mathcal{L} \) is a smothering 2-functor. Then any adjunction in \(\mathcal{L} \) can be lifted to an adjunction in \(\mathcal{K} \). Furthermore, if we have previously specified a lift of the objects, 1-cells, and either the unit or counit of the adjunction in \(\mathcal{L} \), then there is a lift of the remaining 2-cell that combines with the previously specified data to define an adjunction in \(\mathcal{K} \).

Proof. Use surjectivity on objects and local surjectivity on arrows to define \(u : A \rightarrow B \) and \(f : B \rightarrow A \) in \(\mathcal{K} \) lifting the objects and 1-cells of the downstairs adjunction. Then use local
fullness to define lifts $\epsilon: fu \Rightarrow \id_A$ and $\eta': \id_B \Rightarrow uf$ of the downstairs counit and unit. If desired, we can regard A, B, f, u and ϵ as “previously specified”. We will show that $f \dashv u$ by modifying the 2-cell η'.

Now define a 2-cell $\theta: u \Rightarrow u$ as the “triangle identity composite” $\theta := u\epsilon \cdot \eta'u$ and observe that $F\theta = \id_{Fu}$. So we may apply the local conservativity of the action of F on 2-cells to conclude that θ is an isomorphism. Define the 2-cell $\eta: \id_B \Rightarrow uf$ to be the composite $\eta := \theta^{-1}f \cdot \eta'$. Because $F\theta$ is an identity, $F\eta$ and $F\eta'$ lift the same downstairs 2-cell. We claim that this data forms an adjunction in \mathcal{K}.

By construction, η satisfies the triangle identity $u\epsilon \cdot \etau = \id_u$, as verified by an easy calculation

\[
\begin{array}{c}
\eta' u \downarrow u \\
\downarrow \\
\eta' u \downarrow u \\
\uparrow \\
\eta' u \downarrow u \\
\end{array}
\]

Furthermore, the other triangle identity composite $\phi := \epsilon f \cdot f\eta$ is an idempotent:

\[
\begin{array}{c}
f \downarrow f\eta \\
\downarrow f\eta \\
\downarrow f\eta \\
\downarrow \epsilon f \\
\downarrow \epsilon f \\
\end{array}
\]

Finally observe that the component parts we’ve composed to make ϕ all map by F to the corresponding components of the original adjunction in \mathcal{L}. It follows that $F\phi$ is equal to the corresponding triangle identity composite in \mathcal{L} and so is an identity. Consequently, applying the local conservativity of F on 2-cells we find that ϕ is an isomorphism. Because all idempotent isomorphisms are identities, it follows that $\epsilon f \cdot f\eta = \id_f$ as required. □

4.4.5. **Corollary.** Every adjunction in \mathcal{qCat}/A lifts to an adjunction fibred over A.

Proof. Combine proposition 3.4.7 and lemma 4.4.2. □

4.4.6. **Example.** The last result allows us to lift the adjunction $p_1 \dashv i: C \to B \downarrow \ell$ of example 4.0.5 to a fibred adjunction over C whose counit is an identity.

We describe a special class of fibred adjunctions that arises quite frequently in practice:

4.4.7. **Example** (isofibration–section adjunctions). Any adjunction

\[
\begin{array}{c}
A \downarrow \leftarrow f \\
\downarrow u' \\
\end{array}
\]

in which f is an isofibration and the counit is an isomorphism can be modified to produce an adjunction $f \dashv u$ whose counit is an identity. This latter adjunction provides us with
an adjunction in $\mathcal{q}\text{Cat}_2/A$ which we may lift into $h_*(\mathcal{q}\text{Cat}_\infty/A)$ to give an adjunction

$$
\begin{array}{c}
\begin{array}{ccc}
A & \xleftarrow{f} & B \\
\downarrow{u} & & \downarrow{f} \\
\downarrow{f} & & \downarrow{f}
\end{array}
\end{array}
$$

(4.4.8)

which is fibred over A. In essence, this latter fibred adjunction expresses the fact that each of the fibres of the isofibration $f: B \to A$ has a terminal object.

Proof. We construct the functor $u: A \to B$ and an isomorphism $\beta: u' \cong u$ by applying the universal property of the isofibration $f: B \to A$ to the counit $\epsilon': fu' \cong \text{id}_A$.

The composite $\eta := \text{id}_B \eta' \xrightarrow{uf} \beta f \eta u f$ of the original unit η' with the lifted isomorphism β defines the unit of an adjunction $f \dashv u$ whose counit is the identity. We leave the verification of the triangle identities $f\eta = \text{id}_f$ and $\eta u = \text{id}_u$ to the reader. Now the equation $f\eta = \text{id}_f$ tells us that the unit η is a 2-cell in the endo-hom-category on $f: B \to A$ in $\mathcal{q}\text{Cat}_2/A$, so it follows that this data displays an adjunction in $\mathcal{q}\text{Cat}_2/A$ to which we may apply lemma 4.4.2 to obtain the fibred adjunction advertised. □

4.4.9. **Observation.** Applying the 2-functor $\text{hom}_A^2(p, -)$ represented by an isofibration $p: E \to A$ to the fibred adjunction in (4.4.8) we obtain an adjunction of hom-categories. Now the identity functor id_A is the 2-terminal object of the 2-category $\mathcal{q}\text{Cat}_2/A$, so it follows that $\text{hom}_A^2(p, \text{id}_A) \cong 1$. Hence, the displayed adjunction amounts simply to the assertion that up is a terminal object of the category $\text{hom}_A^2(p, f)$. Consequently, applying lemma 4.1.5, we discover that there exists a fibred adjunction of the form displayed in (4.4.8) if and only if for all isofibrations $p: E \to A$ the composite map $up: E \to B$ is a terminal object of the hom-category $\text{hom}_A^2(p, f)$.

A final example of a fibred adjunction describes the “composition” functor $A^{A^{2,1}} \to A^2$ that fills a $(2,1)$-horn and then restricts to the missing face as the right and left adjoint, respectively, to the pair of functors that extend a 1-simplex into a composable pair by using the identities at its domain and codomain.

4.4.10. **Example.** There exists a pair of adjunctions

$$
\begin{array}{c}
\begin{array}{c}
\Delta^1 \\
\downarrow{\delta^1} \\
\Delta^2
\end{array}
\end{array}
$$

\[\sigma_1\]

\[\sigma^0\]
of ordered sets, whose units and counits arise as the equalities $\sigma^0 \delta^1 = \sigma^1 \delta^1 = \text{id}_{\Delta^1}$ and the inequalities $\delta^1 \sigma^0 < \text{id}_{[2]} < \delta^1 \sigma^1$. Now if A is a quasi-category, we may apply proposition 4.2.3 to construct the associated pair of adjunctions

$$
\begin{array}{ccc}
A^{\Delta^2} & \xrightarrow{i_0} & A^{\Delta^1} \\
\downarrow \delta^1 & & \downarrow \delta^1 \\
A^\sigma & \xleftarrow{i_0} & A^\delta
\end{array}
$$

Here the upper adjunction has identity unit and the lower adjunction has identity counit. So it follows from example 4.4.7 that this is a pair of adjunctions fibred over A^{Δ^1} with respect to the projections $A^\sigma: A^{\Delta^2} \to A^{\Delta^1}$ and $\text{id}_{A^{\Delta^1}}: A^{\Delta^1} \to A^{\Delta^1}$.

Because the horn inclusion $\Lambda^{2,1} \hookrightarrow \Delta^2$ is a trivial cofibration in Joyal’s model structure, the associated restriction isofibration $p: A^{\Delta^2} \to A^{\Lambda^{2,1}}$ is an equivalence of quasi-categories fibred over $A^{\Lambda^{2,1}}$. By proposition 4.2.2 (applied to $\text{qCat}_2/A^{\Lambda^{2,1}}$) and corollary 4.4.5 the fibred equivalence formed by p and a chosen inverse p' can be promoted to a pair of adjoint equivalences $p \dashv p'$ fibred over $A^{\Lambda^{2,1}}$. On account of the pushout diagram defining the $(2,1)$-horn, $A^{\Lambda^{2,1}}$ is isomorphic to the pullback:

$$
\begin{array}{ccc}
\Lambda^{2,1} & \xleftarrow{\delta^2} & \Delta^1 \\
\delta^0 \downarrow & & \delta^0 \downarrow \\
\Delta^1 & \xleftarrow{\delta^1} & \Delta^0
\end{array}
\quad
\begin{array}{ccc}
A^{\Lambda^{2,1}} & \xrightarrow{\pi_0} & A^2 \\
\pi_1 \downarrow & & \downarrow p_1 \\
A^2 & \xrightarrow{p_0} & A
\end{array}
$$

Now we may take the pushforward of the fibred adjunctions of the last two paragraphs along the isofibrations $(A^{(1)}, A^{(0)}): A^{\Delta^1} \to A \times A$ and $(A^{(2)}, A^{(0)}): A^{\Lambda^{2,1}} \to A \times A$ respectively to obtain adjunctions fibred over $A \times A$. Composing these we obtain a pair of adjunctions

$$
A^{\Lambda^{2,1}} \cong A^2 \times_A A^2
\quad
\begin{array}{ccc}
\xrightarrow{i_0} & \xrightarrow{\cdot} & \xleftarrow{i_1} \\
\downarrow \cdot & & \downarrow \cdot \\
A^2 & \xleftarrow{m} & A^2
\end{array}
$$

(4.4.11)

which are fibred over $A \times A$ with respect to the projections $(p_1, p_0): A^2 \to A \times A$ and $(p_1 \pi_1, p_0 \pi_0): A^{\Lambda^{2,1}} \to A \times A$. Here the upper adjunction has isomorphic unit and the lower adjunction has isomorphic counit. The functors i_0 and i_1 degenerate the domain and codomain respectively of a given 1-simplex to form a $(2,1)$-horn. The map m is a “composition” functor.

5. Limits and Colimits

In this section, we demonstrate that limits and colimits of individual diagrams in a quasi-category can be encoded as absolute right and left liftings in the 2-category qCat_2. The proof that this definition is equivalent to the standard one makes use of the fact that absolute lifting diagrams in qCat_2 can be detected by an equivalence of suitably defined
comma quasi-categories. This observation, combined with example \[5.0.4\] also supplies the proof of proposition \[4.3.3\], completing the unfinished business from the previous section.

We begin with a general definition:

5.0.1. **Definition.** In a 2-category, an absolute right lifting diagram consists of the data

\[
\begin{array}{c}
B \\
\downarrow^f \\
C \\
\downarrow_g \\
A
\end{array}
\xrightarrow{\ell} \begin{array}{c}
B \\
\downarrow^f \\
C \\
\downarrow_g \\
A
\end{array}
\]

(5.0.2)

with the universal property that if we are given any 2-cell \(\chi\) of the form depicted to the left of the following equality

\[
\begin{array}{c}
X \\
\downarrow^f \\
C \\
\downarrow_g \\
A
\end{array}
\xrightarrow{\ell} \begin{array}{c}
X \\
\downarrow^f \\
C \\
\downarrow_g \\
A
\end{array} = \begin{array}{c}
X \\
\downarrow^f \\
C \\
\downarrow_g \\
A
\end{array}
\]

(5.0.3)

then it admits a unique factorisation of the form displayed to the right of that equality. When this condition holds for the diagram in (5.0.2) we say that it displays \(\ell\) as an absolute right lifting of \(g\) through \(f\).

5.0.4. **Example.** The counit of an adjunction \(f \dashv u : A \to B\) defines an absolute right lifting diagram

\[
\begin{array}{c}
B \\
\downarrow^f \\
A
\end{array}
\xrightarrow{u} \begin{array}{c}
B \\
\downarrow^f \\
A
\end{array}
\]

(5.0.5)

and, conversely, if this diagram displays \(u\) as an absolute right lifting of the identity on its domain through \(f\) then \(f\) is left adjoint to \(u\) with counit 2-cell \(\epsilon\).

Proof. This is a standard 2-categorical result. The 2-functor represented by \(X\) carries an adjunction \(f \dashv u\) to an adjunction whose counit has the universal property described in (5.0.3) for the 2-cell (5.0.5).

Conversely, given an absolute right lifting diagram (5.0.5), we take this 2-cell to be the counit and define the unit by applying the universal property of this absolute right lifting to the identity 2-cell:

\[
\begin{array}{c}
B \\
\downarrow^f \\
A
\end{array}
\xrightarrow{\id_B} \begin{array}{c}
B \\
\downarrow^f \\
A
\end{array} = \begin{array}{c}
B \\
\downarrow^f \\
A
\end{array}
\]

(5.0.6)

This defining equation establishes one of the triangle identities. The other is obtained by pasting \(\epsilon\) on the left of both of the 2-cells of (5.0.6) and applying the uniqueness statement.
in the universal property of the absolute right lifting:

\[
\begin{array}{ccc}
A & \overset{id_A}{\longrightarrow} & A \\
\downarrow & \overset{\psi}{\downarrow} & \downarrow \psi \\
B & \overset{id_B}{\longrightarrow} & B \\
\end{array}
\]

5.1. Absolute liftings and comma objects. We now specialise to the 2-category \(q\text{Cat}_2\). Our aim is to use its weak comma objects to re-express the universal property of absolute lifting diagrams and describe various procedures through which they may be detected.

5.1.1. Observation (re-expressing the universal property of absolute liftings). For each pair of functors \(b: X \to B\) and \(c: X \to C\) as in (5.0.3) observe that \(sq_{g,f}(c,b)\) (cf. observation 3.5.3) is simply the set of those 2-cells of the form depicted in the square on the left of the equality in (5.0.3) and that \(sq_{\ell,B}(c,b)\) is the set of those 2-cells which inhabit the upper left triangle of the diagram to the right of that same equality. Furthermore, we may define

\[
sq_{\ell,B}(c,b) \xrightarrow{k^\lambda(c,b)} sq_{g,f}(c,b)
\]

to be the function which takes each triangle in its domain and pastes it onto our candidate lifting diagram (5.0.2) to obtain a corresponding square as depicted in (5.0.3).

This family of functions is natural in \((c,b): X \to C \times B\) in the sense that they are the components of a natural transformation \(k^\lambda\) between the functors

\[
sq_{\ell,B}, sq_{g,f}: (\pi_0^g)_*(q\text{Cat}_2/((C \times B)))^{op} \to \text{Set}
\]

of observation 3.5.4. Furthermore it is clear, by construction, that the triangle in (5.0.3) is an absolute right lifting if and only if \(k^\lambda: sq_{\ell,B} \Rightarrow sq_{g,f}\) is a natural isomorphism.

5.1.2. Observation. Given any diagram in \(q\text{Cat}_2\) of the form displayed in (5.0.2) in \(q\text{Cat}_2\) we may form comma objects \(B \downarrow \ell\) and \(f \downarrow g\) with canonical comma cones:

\[
\begin{array}{ccc}
B \overset{\psi_\ell}{\longrightarrow} & B \\
\downarrow \psi & \downarrow \psi \\
\ell \overset{p_\ell}{\longrightarrow} & \ell \\
C & \downarrow \psi \\
\end{array}
\]

Pasting the canonical cone associated with \(B \downarrow \ell\) onto the triangle (5.0.2) we obtain a comma cone which induces a functor \(w: B \downarrow \ell \to f \downarrow g\) by the 1-cell induction property of
Recall this means that \(w \) makes the following pasting equality hold

\[
\begin{array}{c}
\begin{array}{ccc}
C & \xleftarrow{\phi} & B \\
\downarrow{g} & & \downarrow{\ell} \\
A & \xleftarrow{\lambda} & \end{array}
\end{array}
\quad =
\begin{array}{c}
\begin{array}{ccc}
B & \downarrow{w} & \ell \\
\downarrow{f} & & \downarrow{p_0} \\
C & \xleftarrow{\phi} & \\
\downarrow{g} & & \downarrow{q_0} \\
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{ccc}
A & \xleftarrow{\lambda} & B \\
\downarrow{\ell} & & \downarrow{p_0} \\
\end{array}
\end{array}
\end{array}
\tag{5.1.4}
\]

and in particular may be regarded as being a 1-cell in the slice 2-category \(\mathbf{qCat}/(C \times B) \) from \((p_1, p_0): f \downarrow g \to C \times B \) to \((q_1, q_0): B \downarrow \ell \to C \times B \).

5.1.5. **Observation.** Consider a commutative square of natural transformations

\[
\begin{array}{c}
\begin{array}{ccc}
\pi_0^g(\hom^2_{C \times B}(-, (p_1, p_0))) & \xrightarrow{u \circ -} & \pi_0^g(\hom^2_{C \times B}(-, (q_1, q_0))) \\
\downarrow{k} & & \downarrow{k} \\
\text{sq}_{\ell, B} & \xrightarrow{\pi_0^g(\hom^2_{C \times B}(-, (p_1, p_0)))} & \text{sq}_{g, f}
\end{array}
\end{array}
\]

between presheaves on \((\pi_0^g(\mathbf{qCat}/(C \times B))) \), in which the vertical isomorphisms are those induced by the weakly universal comma cones of \((5.1.3) \) as discussed in lemma \(3.5.6 \). Applying Yoneda’s lemma and the definition of \((\pi_0^g(\mathbf{qCat}/(C \times B))) \), this square provides us with a canonical bijection between the set of natural transformations \(k: \text{sq}_{\ell, B} \Rightarrow \text{sq}_{g, f} \) and the set of isomorphism classes of 1-cells

\[
\begin{array}{c}
\begin{array}{ccc}
B & \xleftarrow{u} & f \downarrow g \\
\downarrow{(p_1, p_0)} & & \downarrow{(q_1, q_0)} \\
C \times B & \xleftarrow{\pi_0^g(\hom^2_{C \times B}(-, (p_1, p_0)))} & \end{array}
\end{array}
\tag{5.1.6}
\]

in \(\mathbf{qCat}/(C \times B) \).

By the Yoneda lemma, \(k: \text{sq}_{\ell, B} \Rightarrow \text{sq}_{g, f} \) is a natural isomorphism if and only if the corresponding \(u: B \downarrow \ell \to f \downarrow g \) is an isomorphism in \((\pi_0^g(\mathbf{qCat}/(C \times B))) \). By observation \(3.5.4 \) this holds if and only if \(u \) is an equivalence in \(\mathbf{qCat}/(C \times B) \). By lemma \(3.4.9 \), this is the case if and only if \(u \) is an equivalence in \(\mathbf{qCat}_2 \).

Notice in particular that the natural transformation \(k^\lambda: \text{sq}_{\ell, B} \Rightarrow \text{sq}_{g, f} \) constructed in observation \(5.1.1 \) from the 2-cell \((5.0.2) \) corresponds to the isomorphism class of those induced 1-cells \(w: B \downarrow \ell \to f \downarrow g \) over \(C \times B \) which satisfy the pasting identity displayed in \((5.1.4) \). It is now a triviality to prove the following analogue of proposition \(4.3.2 \).

5.1.7. **Proposition.** The data of \((5.0.2) \) defines an absolute right lifting in \(\mathbf{qCat}_2 \) if and only if the induced map \(w: B \downarrow \ell \to f \downarrow g \) of \((5.1.4) \) is an equivalence.

Proof. By observation \(5.1.1 \), we know that that the triangle in \((5.0.2) \) is an absolute lifting diagram if and only if \(k^\lambda: \text{sq}_{\ell, B} \Rightarrow \text{sq}_{g, f} \) is a natural isomorphism. Observation \(5.1.5 \) tells us that this happens if and only if \(w: B \downarrow \ell \to f \downarrow g \) is an equivalence. \(\square \)
5.1.8. **Remark.** There is nothing in the proof of the last proposition, or in those of the lemmas upon which it relies, which depends upon the vertex X in (5.0.3) being a quasi-category. The essential point here is that the space of maps out of any simplicial set X taking values in a quasi-category is still a quasi-category. Consequently, we find that absolute lifting diagrams in $q\text{Cat}_2$ possess the factorisation property displayed in (5.0.3) for 2-cells whose 0-cellular domains X are general simplicial sets.

For certain applications, it will be important to have a strengthened version of proposition 5.1.7 which says that from any equivalence $B \downarrow \ell \simeq f \downarrow g$ fibred over $C \times B$ we may construct a 2-cell which displays ℓ as an absolute right lifting of g through f. This result, proposition 5.1.11 below, proceeds directly from the following technical lemma:

5.1.9. **Lemma.** For all natural transformations $k: sq_{\ell,B} \Rightarrow sq_{g,f}$ there exists a unique 2-cell λ of the form depicted in (5.0.2) such that k is equal to the natural transformation k^λ of observation 5.1.1.

Proof. A 2-cell in the triangle (5.0.2) is simply an element of $sq_{g,f}(C, \ell)$, so we may construct our candidate 2-cell λ from the natural transformation $k: sq_{\ell,B} \Rightarrow sq_{g,f}$ by applying it to the identity 2-cell in $sq_{\ell,B}(C, \ell)$; that is, we take $\lambda := k_{(C,\ell)}(id_{\ell})$.

Lemma 3.5.6 reveals that $sq_{\ell,B}$ is a representable functor whose universal element is the 2-cell $\phi \in sq_{\ell,B}(p_1, p_0)$ of the weakly universal cone (5.1.3) displaying $B \downarrow \ell$. So Yoneda’s lemma tells us that in order to show that our original natural transformation k is equal to k^λ it is enough to check that they both map ϕ to the same element of $sq_{g,f}(p_1, p_0)$.

To do this, first observe that the functor $i: C \rightarrow B \downarrow \ell$ defined in example 4.0.5 can be regarded as a morphism in $(\pi^0_\ast(q\text{Cat}_2/(C \times B)))$. Its defining property, that $\phi i = id_\ell$, may then be re-expressed as the equality $sq_{\ell,B}(i)(\phi) = id_\ell$ relating $id_\ell \in sq_{\ell,B}(C, \ell)$ and $\phi \in sq_{\ell,B}(p_1, p_0)$. By naturality of k, this then allows us to obtain a similar relationship between the 2-cell λ and the image $\mu := k_{(p_1, p_0)}(\phi)$ of ϕ under k, as given by the following computation: $sq_{g,f}(i)(k_{(p_1, p_0)}(\phi)) = k_{(C,\ell)}(sq_{\ell,B}(\ell)(\phi)) = k_{(C,\ell)}(id_{\ell}) = \lambda$. By the definition of the map $sq_{g,f}(i)$, this relationship may be expressed as a pasting equality:

\[
\begin{array}{ccc}
C & \xleftarrow{\ell} & B \\
\downarrow{g} & \searrow{f} & \\
A & \xleftarrow{\mu} & B
\end{array}
\begin{array}{ccc}
C & \xleftarrow{\ell} & B \\
\downarrow{i} & \searrow{\ell} & \\
A & \xleftarrow{\mu} & B
\end{array}
\]

(5.1.10)
By definition, \(k^\lambda \) acts on \(\phi \) by pasting it to the 2-cell \(\lambda \) as depicted in the diagram on the left hand side of the following computation:

To elaborate, the first step in this calculation is simply an application of the equality given in (5.1.10). Its second step follows from the first of the defining properties of the unit \(\nu : \text{id}_{B\ell} \Rightarrow ip_1 \) of the adjunction \(p_1 \dashv i \) of example 4.0.5, those being that \(p_0 \nu = \phi \) and \(p_1 \nu = \text{id}_{p_1} \). The third of these equalities follows on observing that the pasting depicted on its left is simply the horizontal composite of the 2-cells \(\mu \) and \(\nu \), which may be expressed as the vertical composite \(qp_1 \nu \cdot \mu \) in which the second factor is an identity by the second defining property of \(\nu \).

In other words, this calculation demonstrates that \(k^\lambda_{(p_1,p_0)}(\phi) = \mu \) which is in turn equal to \(k_{(p_1,p_0)}(\phi) \), by definition. Consequently, Yoneda’s lemma tells us that \(k = k^\lambda \) as required. Finally, the fact that \(\lambda \) is the unique 2-cell with the property that \(k = k^\lambda \) follows immediately from the patent fact that \(\lambda = k^\lambda_{(C,\ell)}(\text{id}_{\ell}) \).

As an immediate corollary, we have the following important result:

5.1.11. Proposition. Suppose we are given functors \(f : B \to A \), \(g : C \to A \), and \(\ell : C \to B \) of quasi-categories. Then the construction depicted in (5.1.4) provides us with a bijection between 2-cells of the form

\[
\begin{array}{ccc}
C & \xrightarrow{\ell} & B \\
\downarrow \downarrow \downarrow & \downarrow & \downarrow \downarrow \\
C & \xrightarrow{\ell} & B & \text{and isomorphism classes of 1-cells} \\
\downarrow \downarrow \downarrow & \downarrow & \downarrow \downarrow \\
A & \xrightarrow{f} & B & \text{in } q\text{Cat}_2/(C \times B) .
\end{array}
\]

Furthermore, this 2-cell \(\lambda \) displays \(\ell \) as an absolute right lifting of \(g \) through \(f \) if and only if any representative \(w \) of the corresponding isomorphism class of functors is an equivalence.

Proof. This follows directly from lemma [5.1.9], observation [5.1.5], and proposition [5.1.7].
As a special case, if \(f \downarrow A \) and \(B \downarrow u \) are equivalent over \(A \times B \), then \(f \) is left adjoint to \(u \).

Proof of proposition 4.3.3. If \(f \downarrow A \) and \(B \downarrow u \) are equivalent over \(A \times B \), then proposition 5.1.11 provides us with a corresponding 2-cell \(\epsilon : fu \Rightarrow \text{id}_A \), which displays \(u \) as an absolute right lifting of \(\text{id}_A \) through \(f \). By example 5.0.4, this provides us with enough information to conclude that \(f \) is left adjoint to \(u \) with counit \(\epsilon \).

A second characterisation of absolute right liftings in \(\text{qCat} \) relates them to the possession of terminal objects by the fibres of \(q_1 : f \downarrow g \rightarrow C \). To explain this relationship, start by applying observation 3.5.1 to show that arbitrary pairs \((\ell, \lambda)\) as depicted in (5.1.12) correspond to isomorphism classes of functors

\[
\begin{array}{ccc}
C & \xrightarrow{t} & f \downarrow g \\
(C, \ell) & \xrightarrow{(q_1, q_0)} & C \times B \\
\end{array}
\]

over \(C \times B \) defined by 1-cell induction

\[
\begin{array}{ccc}
C & \xrightarrow{\ell} & C \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
C & \xrightarrow{g} & B \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
C & \xrightarrow{\psi} & B \\
\end{array}
\]

The following proposition relates the universal properties of pairs \((\ell, \lambda)\) and corresponding functors \(t \).

5.1.14. Proposition. The 2-cell \(\lambda \) shown in (5.1.12) displays \(\ell \) as an absolute right lifting of the functor \(g \) through \(f \) if and only if the induced functor \(t : C \rightarrow f \downarrow g \) of (5.1.13) features in a fibred adjunction:

\[
\begin{array}{ccc}
C & \xrightarrow{q_1} & f \downarrow g \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
C & \xrightarrow{\psi} & B \\
\end{array}
\]

Proof. First assume that the triangle in (5.1.12) is an absolute right lifting diagram and apply proposition 5.1.7 to show that the associated functor \(w : B \downarrow \ell \rightarrow f \downarrow g \) is a fibred equivalence with equivalence inverse \(w' \). Applying proposition 4.2.2 in \(\text{qCat} / (C \times B) \) and corollary 4.4.5, this may be promoted to a fibred adjoint equivalence \(w' \dashv w \) over \(C \times B \). Its pushforward along the projection \(C \times B \rightarrow C \) is an adjoint equivalence fibred over \(C \).

Example 4.0.5 provides us with an adjunction \(p_1 \dashv i : C \rightarrow B \downarrow \ell \) also fibred over \(C \). Composing these, we obtain an adjunction \(p_1 w' \dashv w i : C \rightarrow f \downarrow g \) again fibred over \(C \). From the defining properties of \(w \) and \(i \), as described in (5.1.4) and (4.0.6), it is clear that \(wi \) is a 1-cell induced over \(\psi \) by the comma cone \(\lambda \), and so we may infer, by observation 3.5.1,
that it is isomorphic to t over C. Furthermore, w' is fibred over $C \times B$ so $p_1 w' = q_1$, and the fibred adjunction $p_1 w' \dashv w i$ reduces to a fibred adjunction $q_1 \dashv t$ as required.

For the converse, assume that we have a fibred adjunction of the form given in (5.1.15). We must show that for any 2-cell μ

$$
\begin{array}{c}
Y \xrightarrow{b} B \\
c \downarrow \Rightarrow \mu \downarrow f \\
C \xrightarrow{g} A
\end{array} =
\begin{array}{c}
Y \xrightarrow{b} B \\
c \downarrow \Rightarrow f \\
C \xrightarrow{g} A
\end{array}
$$

(5.1.16)

there exists a unique 2-cell τ which makes this pasting equation hold.

To do this, start by applying the 1-cell induction property of $f \downarrow g$ to the comma cone μ to give a functor $m: Y \rightarrow f \downarrow g$ so that

$$
\begin{array}{c}
Y \xrightarrow{m} \Rightarrow \mu \\
f \downarrow q_1 \Rightarrow g_0 \Rightarrow \mu \\
C \xleftarrow{\psi} A
\end{array} =
\begin{array}{c}
Y \xrightarrow{b} \Rightarrow \mu \\
f \downarrow g \Rightarrow \leftarrow \mu \\
C \xleftarrow{\psi} A
\end{array}
$$

(5.1.17)

A 2-cell $\tau: b \Rightarrow \ell c$ satisfying (5.1.16) gives rise to a 2-cell ν from $m: Y \rightarrow f \downarrow g$ to the composite functor $tc: Y \rightarrow f \downarrow g$ over C by 2-cell induction: Notice that the fact that we require ν to be a 2-cell over C means that the equation $q_1 \nu = id_{p_1}$ must hold, which tells us that the second 2-cell of its inducing pair must be id_{p_1}. The compatibility condition expressed in (3.3.27) for the pair (τ, id_{p_1}) reduces to the pasting equality (5.1.16) by direct application of the defining properties for m and t given in (5.1.17) and (5.1.13). Conversely, if $\nu: m \Rightarrow tc$ is any 2-cell over C then the whiskered 2-cell $\tau := q_0 \nu; b \Rightarrow \ell c$ satisfies (5.1.16).

Extending definition 3.4.1, the map c defines a 2-functor $\hom_C^2(c, -) : q\Cat_2 / C \rightarrow \Cat_2$. As in observation 4.4.9, this 2-functor carries the postulated fibred adjunction $q_1 \dashv t$ to a terminal object $tc: Y \rightarrow f \downarrow g$ in the hom-category $\hom_C^2(c, q_1)$. It follows that there exists a unique 2-cell $\nu: m \Rightarrow tc$ over C; hence, the 2-cell $q_0 \nu; b \Rightarrow \ell c$ provides us with a solution to (5.1.16). Furthermore if $\tau: b \Rightarrow \ell c$ is any other 2-cell which solves that pasting equality then the 2-cell it induces must necessarily be the unique such $\nu: m \Rightarrow tc$, and consequently we have the equality $\tau = q_0 \nu$. This demonstrates that the solution to (5.1.16) is unique. □

5.1.18. Observation. The upshot of proposition 5.1.14 is that if the projection $q_1: f \downarrow g \rightarrow C$ has a fibred right adjoint (5.1.15), then we may compose it with the weakly universal cone associated with $f \downarrow g$ to obtain an absolute right lifting of g through f.

This characterisation of absolute right liftings leads to the following generalisation of a classical result:
5.1.19. Proposition. There exists an absolute right lifting

\[
\begin{array}{c}
& B \\
\underset{f}{\uparrow} & \downarrow \\
& C \xrightarrow{g} A
\end{array}
\]

if and only if there exists an absolute right lifting

\[
\begin{array}{c}
& f \downarrow A \\
\underset{\ell}{\uparrow} & \downarrow \\
& C \xrightarrow{g} A
\end{array}
\]

Furthermore, the 2-cell \(\hat{\lambda} \) is necessarily an isomorphism and \(\hat{\ell} \) may be chosen so as to make it an identity.

Proof. Write \((r_1, r_0)\): \(p_1 \downarrow g \Rightarrow C \times f \downarrow A \) for the projection defined by the comma quasi-category construction [3.3.17]. Directly from this definition, there exists a canonical isomorphism \(p_1 \downarrow g \cong A \downarrow g \times_A f \downarrow A \) commuting with the projections to \(C \times f \downarrow A \). Applying proposition [5.1.14] our aim is to use a fibred right adjoint to \(q_1 \) to construct a fibred right adjoint to \(r_1 \) and vice versa.

\[
\begin{array}{c}
& f \downarrow g \\
\underset{\ell}{\uparrow} & \downarrow \\
& C \xrightarrow{i_1} C
\end{array}
\]

To that end, pull back the “composition–identity” fibred adjunctions [4.4.11] along the functor \(g \times p_1: C \times f \downarrow A \to A \times A \) to obtain a pair of adjunctions

\[
\begin{array}{c}
& p_1 \downarrow g \cong A \downarrow g \times_A f \downarrow A \\
\underset{i_0}{\uparrow} & \downarrow \\
& f \downarrow g
\end{array}
\]

fibred over \(C \times f \downarrow A \). Pushing forward along the projection \(C \times f \downarrow A \to C \), we may regard the adjunctions [5.1.23] as fibred over \(C \) with respect to the isofibrations \(r_1: p_1 \downarrow g \to C \) and \(q_1: f \downarrow g \to C \).

With this adjunction in our armoury our result is essentially immediate. If we are given the left-hand fibred adjunction [5.1.22] witnessing the existence of the absolute right lifting of \(g \) through \(f \) then we may compose it with the lower fibred adjunction of [5.1.23] to obtain the right-hand fibred adjunction [5.1.22], providing us with an absolute right lifting of \(g \) through \(p_1 \). Conversely, we may go back in the other direction by composing the right-hand fibred adjunction with the upper fibred adjunction of [5.1.23] to obtain an adjunction of the type on the left of [5.1.22].
All that remains is to check the final clause of the proposition. To that end, observation [5.1.18] tells us that we may construct an absolute right lifting of \(g \) through \(p_1 \) by composing the right adjoint functor

\[
C \xrightarrow{t} f \downarrow g \xrightarrow{i_1} p_1 \downarrow g
\]

where \(t \) is the fibred right adjoint of [5.1.22], with the comma cone that displays \(p_1 \downarrow g \) as a weak comma object. By construction, the 2-cell of that cone is the restriction

\[
p_1 \downarrow g \rightarrow A \downarrow g
\]

of the 2-cell which displays \(A^2 \) as a weak cotensor. Hence, the 2-cell \(\hat{\lambda} \) constructed by proposition [5.1.14] is equal to

\[
C \xrightarrow{t} f \downarrow g \rightarrow A^2 \xrightarrow{i_1} A^2 \times_A A^2 \xrightarrow{\pi_1} A^2 \xrightarrow{\psi} \xrightarrow{p_0} A
\]

and, consulting the definition of \(i_1 \) given in example [4.4.10], it is straightforward to verify that the composite of the last three cells above is equal to the identity 2-cell on \(p_1: A^2 \rightarrow A \). Consequently, the 2-cell in our absolute right lifting is also an identity as required. \(\square \)

5.2. Limits and colimits as absolute lifting diagrams. A diagram in a quasi-category \(A \) is just a map \(d: X \rightarrow A \) of simplicial sets. In particular, when \(X \) is the nerve of a small category and \(A \) is the homotopy coherent nerve of a locally Kan simplicial category, a diagram is precisely a homotopy coherent diagram in the sense of Cordier, Porter, Vogt, and others [2].

5.2.1. Notation. From here on we adopt the notational conventions established in appendix [A]. Specifically, we use \(c: A \rightarrow A^X \) to denote the constant diagram map: the adjoint transpose of the projection map \(\pi_A: A \times X \rightarrow A \). Furthermore, we shall notationally identify functors \(f: X \rightarrow A \) and natural transformations \(\alpha: f \Rightarrow g: X \rightarrow A \) with their adjoint transposes \(f: \Delta^0 \rightarrow A^X \) and \(\alpha: f \Rightarrow g: \Delta^1 \rightarrow A^X \) respectively.

5.2.2. Definition. We say that an absolute right lifting diagram

\[
\Delta^0 \xrightarrow{d} A^X \\
\Delta^0 \xrightarrow{\psi \lambda} \xrightarrow{c} A
\]

displays the vertex \(\ell \in A \) as the limit of the diagram \(d: X \rightarrow A \). The 2-cell \(\lambda \), which we may equally regard as going from the constant diagram \(X \xrightarrow{\ell} \Delta^0 \xrightarrow{c} A \) to \(d \), is called the
limiting cone. Dually, we say that an absolute left lifting diagram

\[
\begin{array}{c}
A \\
\downarrow^c \\
\Delta^0 \rightarrow A^X
\end{array}
\]

(5.2.4)

\[\ell \quad \overset{\partial \lambda}{\rightarrow} \quad d \]

displays the vertex \(\ell \in A\) as the colimit of the diagram \(d: X \rightarrow A\). Here again the 2-cell \(\lambda\), from \(d\) to the constant diagram \(X \rightarrow \Delta^0 \rightarrow A\), is called the colimiting cone.

5.2.5. Remark. For the most part in what follows, we shall present our results in terms of limits and absolute right liftings only. Of course, these arguments all admit the obvious duals which apply to colimits and absolute left liftings. Indeed the results of this section and the last are almost exclusively matters of formal 2-category theory. Their duals follow by re-interpreting these arguments in the dual 2-category \(\text{qCat}_{\text{co}}\) obtained by reversing the direction of all 2-cells.

A special case of proposition 5.1.14 gives an alternative definition of limits and colimits in a quasi-category.

5.2.6. Proposition. A limit of \(d: X \rightarrow A\) is a terminal object in the quasi-category \(c \downarrow d\), and conversely a terminal object defines a limit.

Proof. A limiting cone defines a vertex in the comma quasi-category \(c \downarrow d\) by 1-cell induction; observation 3.3.28 and proposition 5.1.14 tell us this vertex is unique up to isomorphism and terminal. Conversely, proposition 5.1.14 implies that the data of a terminal object in \(c \downarrow d\) defines a limit object \(\ell \in A\) and a limiting cone \(\lambda\) in the sense of definition 5.2.2. \(\square\)

5.2.7. Observation (limits are limits). An important corollary of proposition 5.2.6 and the geometry theorem proven in our appendix is that our definition agrees with the existing ones in the literature. Joyal defines a limit of a diagram \(d: X \rightarrow A\) to be a terminal vertex \(t\) in the slice quasi-category \(A/\Delta^0\), thought of as the “quasi-category of cones” over \(d\). If \(\pi: A/\Delta^0 \rightarrow A\) denotes the canonical projection then such a limiting cone displays \(\ell := \pi t\) as a limit of \(d\).

On the other hand, proposition 5.2.6 tells us that our definition can be recast in a corresponding form: as a terminal vertex \(t\) (in the sense of definition 4.1.1) in the comma quasi-category \(c \downarrow d\). Our “quasi-category of cones” is also equipped with a projection \(q_0: c \downarrow d \rightarrow A\), and by proposition 5.1.14 such a limiting cone displays \(\ell := q_0 t\) as a limit of \(d\).

The appendix provides the desired comparison: By proposition A.3.7, the comma quasi-category \(c \downarrow d\) is isomorphic, over \(A\), to the fat slice quasi-category \(A_{/d}\) defined in A.3.3. Furthermore, by proposition A.4.13 \(A_{/d}\) is equivalent to Joyal’s slice quasi-category \(A_{/d}\), again over \(A\). So applying proposition 4.2.4, our preservation result for terminal objects, we see that this equivalence maps a limit cone in Joyal’s sense to a limit cone in our sense and vice versa. Furthermore, since this is an equivalence over \(A\), it follows that these corresponding cones display the same vertex \(\ell\) as the limit of \(d\).
5.2.8. **Definition.** A family \(k \) of diagrams of shape \(X \) in a quasi-category \(A \) is simply a functor \(k : K \to A^X \). In many cases, \(K \) will be the full sub-quasi-category of \(A^X \) determined by some set of diagrams and \(k \) will be the inclusion \(K \hookrightarrow A^X \).

We say that \(A \) **admits limits of the family of diagrams** \(k : K \to A^X \) if there exists an absolute right lifting diagram:

\[
\begin{array}{ccc}
\lim & \rightarrow & A \\
\downarrow & & \downarrow c \\
K & \xrightarrow{k} & A^X \\
\uparrow & \psi \lambda & \\
\end{array}
\]

(5.2.9)

Furthermore, we shall simply say that \(A \) **admits all limits of shape** \(X \) if it admits limits of the family of all diagrams \(A^X \).

A diagram \(d : X \to A \) is said to be a member of the family \(k \) if it is a vertex in the image of \(k \), that is to say if there is a vertex \(\bar{d} \in K \) such that \(d = k\bar{d} \). It is trivially verified, directly from the universal property of absolute right liftings, that if \(A \) admits limits of the family of diagrams \(k \) and \(d \) is a member of the family \(k \) then the restricted triangle

\[
\begin{array}{ccc}
\lim \bar{d} & \rightarrow & A \\
\downarrow & & \downarrow c \\
\Delta^0 & \xrightarrow{\psi \lambda \bar{d}} & A^X \\
\end{array}
\]

is again an absolute right lifting, thus providing us with a limit of individual diagram \(d \).

(Our use of the adjective “absolute” here coincides with its usual meaning; absolute lifting diagrams are preserved by pre-composition by all functors.)

This result has the following converse, whose proof we delay to section 6.

5.2.10. **Proposition.** If \(A \) admits the limit of each individual diagram \(d : X \to A \) in the family \(k : K \to A^X \) then it admits limits of the family of diagrams \(k \).

As a special case of example 5.0.4:

5.2.11. **Proposition.** A quasi-category \(A \) has all limits of shape \(X \) if and only if there exists an adjunction

\[
A^X \rightleftarrows \lim \rightarrow A
\]

5.2.12. **Proposition.** Right adjoints preserve limits.

Our proof will closely follow the classical one. Given a diagram \(d : X \to A \) and a right adjoint \(u : A \to B \) to some functor \(f \), a cone with summit \(b \) over \(ud \) transposes to a cone with summit \(fb \) over \(d \), which factorises uniquely through the limit cone. This factorisation
transposes back across the adjunction to show that the image of the limit cone under u
defines a limit over ud.

Proof. Suppose that A admits limits of a family of diagrams $k: K \to A^X$ as witnessed
by an absolute right lifting diagram (5.2.9). Given an adjunction $f \dashv u$, and hence by
proposition 4.2.3 an adjunction $f^X \dashv u^X$, we must show that

$$
\begin{array}{c}
A \xrightarrow{u} B \\
\downarrow \psi \lambda \downarrow \downarrow \\
K \xrightarrow{k} A^X \xrightarrow{u^X} B^X
\end{array}
$$

is an absolute right lifting diagram. Given a square

$$
\begin{array}{c}
Y \xrightarrow{b} B \\
\downarrow a \\
K \xrightarrow{k} A^X \xrightarrow{u^X} B^X
\end{array}
\quad \begin{array}{c}
Y \xrightarrow{b} B \xrightarrow{f} A \\
\downarrow \psi \chi \downarrow \downarrow \\
K \xrightarrow{k} A^X \xrightarrow{u^X} B^X
\end{array}
$$

we first transpose across the adjunction, by composing with f and the counit.

$$
\begin{array}{c}
Y \xrightarrow{b} B \xrightarrow{f} A \\
\downarrow \psi \chi \downarrow \downarrow \\
K \xrightarrow{k} A^X \xrightarrow{u^X} B^X
\end{array}
= \begin{array}{c}
Y \xrightarrow{b} B \xrightarrow{f} A \\
\downarrow \psi \chi \downarrow \downarrow \\
K \xrightarrow{k} A^X \xrightarrow{u^X} B^X
\end{array}
$$

Applying the universal property of the absolute right lifting diagram (5.2.9) produces a
factorisation ζ, which may then be transposed back across the adjunction by composing
with u and the unit.

Here the second equality is immediate from the definition of η^X and the third is by the
triangle identity defining the adjunction $f^X \dashv u^X$. The pasted composite of ζ and η
is the desired factorisation of χ through λ.
The proof that this factorisation is unique, which again parallels the classical argument, is left to the reader: the essential point is that the transposes are unique. □

5.2.13. **Corollary.** Equivalences preserve limits and colimits.

Proof. This follows immediately from propositions 5.2.12 and 4.2.2. □

5.2.14. **Observation.** Under the 2-adjunction \(- \times Y \dashv (_)^Y\) triangles of the form

\[
\begin{array}{ccc}
B & \rightarrow & A \\
\downarrow & & \downarrow \\
K \times Y & \rightarrow & \ell \downarrow \psi \lambda \\
K & \rightarrow & f \\
\end{array}
\]

(5.2.15)

correspond to transposed diagrams:

\[
\begin{array}{ccc}
B^Y & \rightarrow & A^Y \\
\downarrow & & \downarrow \\
K & \rightarrow & f^Y \\
\downarrow & & \downarrow \\
K & \rightarrow & A^Y \\
\end{array}
\]

(5.2.16)

Furthermore, if the first of these triangles is an absolute right lifting then so is the second one. To prove this, we must show that we can uniquely factorise the 2-cell in a square

\[
\begin{array}{ccc}
Z & \rightarrow & B^Y \\
\downarrow & & \downarrow \\
K & \rightarrow & A^Y \\
\downarrow & & \downarrow \\
K & \rightarrow & A^Y \\
\end{array}
\]

through the 2-cell \(\hat{\lambda}\) in (5.2.16). Transposing that square under the 2-adjunction, we obtain the square on the left of the following diagram:

\[
\begin{array}{ccc}
Z \times Y & \rightarrow & B \\
\downarrow & & \downarrow \\
K \times Y & \rightarrow & A \\
\downarrow & & \downarrow \\
K \times Y & \rightarrow & A \\
\end{array}
\]

The unique factorisation on the right arises from the universal property of the absolute lifting diagram (5.2.15), and its transpose provides the desired unique factorisation of \(\alpha\).

5.2.17. **Proposition** (pointwise limits in functor quasi-categories). If a quasi-category \(A\) admits limits of the family of diagrams \(k: K \rightarrow A^X\) of shape \(X\) then the functor quasi-category \(A^Y\) admits limits of the corresponding family of diagrams \(k^Y: K^Y \rightarrow (A^X)^Y \cong (A^Y)^X\) of shape \(X\).

Proof. On precomposing the absolute right lifting that displays the limits of the family \(k: K \rightarrow A^X\) (5.2.9) by the evaluation map \(ev: K^Y \times Y \rightarrow K\), we obtain an absolute
right lifting diagram whose adjoint transpose under the 2-adjunction \(- \times Y \dashv (-)^Y\) is the triangle

\[
\begin{array}{ccc}
\lim^Y & \rightarrow & A^Y \\
\downarrow & \searrow \lambda^Y & \searrow c^Y \\
K^Y & \rightarrow & (A^X)^Y
\end{array}
\]

By the last observation, this is again an absolute right lifting diagram which, on composition with the canonical isomorphism \((A^X)^Y \cong (A^Y)^X\), displays \(\lim^Y\) as the family of limits required in the statement. \(\Box\)

Proposition 5.2.11 tells us that if \(A\) has all limits of shape \(X\), then there is a functor \(\lim: A^X \rightarrow A\) that is right adjoint to the constant functor \(c: A \rightarrow A^X\). In ordinary category theory we often deploy another adjunction related to the existence of limits of shape \(X\), this being the restriction–right Kan extension adjunction between diagrams of shape \(X\) and diagrams whose shape is that of a cone over \(X\).

The shape of a cone over a diagram of shape \(X\) is given by the simplicial set \(\Delta^0 \star X\); see recollection A.1.1.

5.2.18. **Proposition.** A quasi-category \(A\) admits limits of the family of diagrams \(k: K \rightarrow A^X\) of shape \(X\) if and only if there exists an absolute right lifting diagram

\[
\begin{array}{ccc}
\Delta^0 \star X & \rightarrow & A^X \\
\downarrow & \searrow \lambda & \searrow \cong \\
K^X & \rightarrow & A^X
\end{array}
\]

in which \(\text{res}\) is the restriction isofibration given by pre-composition with the inclusion \(X \hookrightarrow \Delta^0 \star X\). Furthermore, when these equivalent conditions hold \(\lambda\) is necessarily an isomorphism and, indeed, we may choose \(\text{ran}\) so that \(\lambda\) is an identity.

Proof. By proposition [A.4.11] the canonical comparison \(\Delta^0 \diamond X \rightarrow \Delta^0 \star X\) is a weak equivalence in Joyal’s model structure. So if \(A\) is a quasi-category, it follows, by proposition [3.2.10], that the associated pre-composition functor \(A^{\Delta^0 \diamond X} \rightarrow A^{\Delta^0 \star X}\) is an equivalence of quasi-categories. Now the contravariant exponential functor \(A(-): \text{sSet}^{op} \rightarrow \text{qCat}\) carries colimits to limits so it is immediate, from definition [A.3.3], that we have a pullback

\[
\begin{array}{ccc}
A^{\Delta^0 \diamond X} & \rightarrow & A^{X \times \Delta^1} \\
\downarrow & \searrow & \downarrow \\
A \times A^X & \cong & A^{\Delta^0 \cup X} \rightarrow A^{X \cup X} \cong A^X \times A^X
\end{array}
\]

from which we see that \(A^{\Delta^0 \diamond X}\) is isomorphic to the comma quasi-category \(c \downarrow A^X\). It is now easily checked that a triangle of the form given in the statement is an absolute right
lifting if and only if the following rearranged triangle

\[
\begin{array}{ccc}
K \xrightarrow{k} A^X & \xrightarrow{\lambda} A^X \\
\downarrow \scriptstyle{\text{ran}} & \downarrow \scriptstyle{\text{res}} & \downarrow \scriptstyle{\text{ran}} \\
A^X & \xleftarrow{p_1} & A^X
\end{array}
\]

has that property; now the current result is merely a special case of proposition 5.1.19. □

5.2.19. **Corollary.** A quasi-category \(A\) admits all limits of shape \(X\) if and only if the restriction functor associated with the inclusion \(X \hookrightarrow \Delta^0 \star X\) has a fibred right adjoint.

\[
\begin{array}{ccc}
A^X & \xleftarrow{\text{res}} & A^\Delta^0 \star X \\
\downarrow \scriptstyle{\text{ran}} & \downarrow \scriptstyle{\text{res}} & \downarrow \scriptstyle{\text{ran}} \\
A^X & \xleftarrow{p_1} & A^X
\end{array}
\]

Proof. Since the restriction functor \(A^\Delta^0 \star X \to A^X\) is an isofibration, we may follow example 4.4.7 and pick its right adjoint so that the counit of the adjunction \(\text{res} \dashv \text{ran}\) is an identity. By corollary 4.4.5, this adjunction lifts to an adjunction fibred over \(A^X\). □

As an application of some significant classical interest, we may use proposition 5.2.18 to construct a loops–suspension adjunction in any pointed quasi-category admitting certain pullbacks and pushouts.

5.2.20. **Definition** (pointed quasi-categories). A **zero object** in a quasi-category is an object in there that is both initial and terminal. We say that a quasi-category \(A\) is **pointed** if it has a zero object and write \(* \in A\) for that object. We call the counit \(\rho: *! \Rightarrow \text{id}_A\) of the adjunction \(*! \dashv !: A \to \Delta^0\) the **family of points** of the objects of \(A\) and call the unit \(\xi: \text{id}_A \Rightarrow *!\) of the adjunction \(! \dashv *: A \to \Delta^0\) the **family of co-points** of the objects of \(A\).

5.2.21. **Notation** (pushout and pullback diagrams). We shall adopt the following notation for certain important diagram shapes which arise naturally as simplicial subsets of the square \(\Delta^1 \times \Delta^1\):

- \(\sqcup\) will denote the simplicial subset \((\Delta^1 \times \Delta^1(1)) \cup (\Delta^1(1) \times \Delta^1),\) and
- \(\cap\) will denote the simplicial subset \((\Delta^1 \times \Delta^0) \cup (\Delta^0 \times \Delta^1).\)

Of course, \(\sqcup\) and \(\cap\) are the shapes of pullback and pushout diagrams, isomorphic to the horns \(\Lambda^2_2\) and \(\Lambda^2_0\) respectively. The joins \(\Delta^0 \star \sqcup\) and \(\cap \star \Delta^0\) are each isomorphic to the square \(\Delta^1 \times \Delta^1\). These isomorphisms identify the canonical inclusions of those joins with the corresponding subset inclusions \(\sqcup \hookrightarrow \Delta^1 \times \Delta^1\) and \(\cap \hookrightarrow \Delta^1 \times \Delta^1\) respectively.

5.2.22. **Definition** (pushouts and pullbacks in quasi-categories). A **pullback** in a quasi-category is a limit of a diagram of shape \(\sqcup\). Dually a **pushout** in a quasi-category is a colimit of a diagram of shape \(\cap\).

5.2.23. **Observation.** The family of points of a pointed quasi-category \(A\) may be represented by a simplicial map \(\rho: A \to A^2\). Now the pullback diagram shape \(\sqcup\) may be represented
as a glueing of two copies of 2 identified at their initial vertex, so it follows that A^\downarrow may be constructed as a pullback of two copies of A^2 along the projection $p_1: A^2 \twoheadrightarrow A$. Consequently, two copies of ρ give rise to a functor $\bar{\rho}: A \rightarrow A^\downarrow$. This functor maps each object a of A to a pushout diagram with outer vertices \ast, inner vertex a, and maps two copies of the component of ρ at a. Dually we may define a corresponding functor $\bar{\xi}: A \rightarrow A^\Gamma$ using two copies of the family of co-points.

5.2.24. **Definition** (loop spaces and suspensions). We say that a pointed quasi-category A admits the construction of *loop spaces* if it admits limits of the family of diagrams $\bar{\rho}: A \rightarrow A^\downarrow$. Dually, we say that A admits the construction of *suspensions* if it admits colimits of the family of diagrams $\bar{\xi}: A \rightarrow A^\Gamma$. These constructions, when they exist, are displayed by absolute right and left liftings

\[
\begin{array}{ccc}
A \\
\downarrow c & \searrow & A^\downarrow \\
\Omega & \nearrow & A \\
\end{array}
\]

\[
\begin{array}{ccc}
A \\
\uparrow c & \nearrow & A^\Gamma \\
\Sigma & \searrow & A \\
\end{array}
\]

in which Ω is called the *loop space functor* and Σ is called the *suspension functor*. Of course, if A admits all pullbacks (resp. pushouts) then, as a special case, it admits the construction of loop spaces (resp. suspensions).

5.2.25. **Example.** In the quasi-category of spaces, which we construct by applying the homotopy coherent nerve to the simplicially enriched category of Kan complexes, pushouts and pullbacks are constructed by taking classical homotopy pushouts and pullbacks. The quasi-category of pointed spaces is simply the slice under Δ_0 and its pushouts and pullbacks may be computed as in the quasi-category of spaces. It follows, therefore, that the loop space and suspension constructions in this quasi-category coincide with the usual notions in classical homotopy theory.

The following proposition promotes our classical intuition about the relationship between loop and suspension constructions to a genuine adjunction of quasi-categories. To keep our proof as simple and transparent as possible, we choose to assume that the quasi-category here admits all pushouts and pullbacks, leaving it to the reader to generalise this result to one in which we only assume the existence of loop spaces and suspensions.

5.2.26. **Proposition.** Suppose that A is a pointed quasi-category which admits all pushouts and pullbacks. Then A has a loops–suspension adjunction

\[
\begin{array}{ccc}
A & \dashv & A \\
\Sigma & \downarrow & \Omega \\
\end{array}
\]

Proof. By corollary 5.2.19 and the ruminations of 5.2.21, the hypothesis that A has pullbacks and pushouts implies that there are adjunctions

\[
\begin{array}{ccc}
A^\downarrow & \dashv & A^\Delta^1 \times \Delta^1 & \dashv & A^\Gamma \\
\mathrm{res} & \downarrow & \mathrm{ran} & \dashv & \mathrm{lan} \\
\mathrm{ran} & \dashv & \mathrm{res} \\
\end{array}
\]

(5.2.27)
which are fibred over A^1 and A^Γ, respectively. Now the inclusion of $\Delta^0 \sqcup \Delta^0$ into $\Delta^1 \times \Delta^1$ which picks out the vertices $(1,0)$ and $(0,1)$ factorises through each of the subsets Δ and Γ and therefore induces restriction isofibrations $A^1 \to A \times A$ and $A^\Gamma \to A \times A$. So we may push forward our fibred adjunctions along these isofibrations to obtain a composable pair of adjunctions fibred over $A \times A$. Composing these and pulling back along $(\ast, \ast): \Delta^0 \to A \times A$, we obtain an adjunction

$$
A^\ast_\ast \xleftarrow{\Sigma} \Downarrow \xrightarrow{\Omega} A^\ast_\ast
$$

(5.2.28)

where $A^\ast_\ast \subseteq A^1$ and $A^\ast_\ast \subseteq A^\Gamma$ are the sub-quasi-categories of pullback and pushout diagrams whose outer vertices are pinned at the zero object \ast.

The family of points $\rho: A \to A^2$ discussed in observation 5.2.23 factorises through the sub-quasi-category $\ast \downarrow A \subseteq A^2$; hence, the family of diagrams $\rho: A \to A^1$ for the loop space construction also factorises through $A^\ast_\ast \subseteq A^1$. Furthermore, it is clear that the pullback expressing A^1 in terms of two copies of A^2 restricts to the pullback expressing A^\ast_\ast in terms of two copies of $\ast \downarrow A$ in the following diagram:

$$
\begin{array}{ccc}
A & \xrightarrow{\rho} & A^1 \\
\downarrow \rho_\ast & & \Downarrow p_1 \\
A^\ast_\ast & \xrightarrow{\ast \downarrow A} & A \\
\end{array}
$$

We claim that each functor in this diagram is an equivalence. To show this start by observing that the initiality of \ast in A implies that the isofibration p_1 is an equivalence, as is its right inverse ρ by the 2-of-3 property. Trivial fibrations are stable under pullback, so the two projections from A^\ast_\ast are equivalences, as is $\bar{\rho}$ by the 2-of-3 property. Observe also that the functor which restricts each pullback diagram to its inner vertex is an isofibration left inverse to $\bar{\rho}$ and so, by the 2-of-3 property, it too is an equivalence. The dual argument shows that the family of diagrams $\bar{\xi}: A \to A^\ast_\ast$ for the suspension construction also factorises through $A^\ast_\ast \subseteq A^1$. Furthermore, it is clear that the pullback expressing A^1 in terms of two copies of A^2 restricts to the pullback expressing A^\ast_\ast in terms of two copies of $\ast \downarrow A$ in the following diagram:

$$
\begin{array}{ccc}
A & \xrightarrow{\rho} & A^2 \\
\downarrow \rho_\ast & & \Downarrow p_1 \\
A^\ast_\ast & \xrightarrow{\ast \downarrow A} & A \\
\end{array}
$$

Now we may promote the equivalences $\bar{\rho}$ and $\bar{\xi}$ to adjoint equivalences and compose them with the adjunction (5.2.28). The right adjoint in this composite adjunction is equal to the composite $A \xrightarrow{\bar{\rho}} A^1 \xrightarrow{\text{ran}} A^\Delta \xrightarrow{\text{res}} A$ in which the last map is the restriction functor associated with the inclusion of Δ^0 as the vertex $(0,0)$ of $\Delta^1 \times \Delta^1$. The composite of these last two functors is the pullback functor $\lim: A^1 \to A$, so pre-composing it with $\bar{\rho}: A \to A^1$ produces a functor which picks out limits of the diagrams in the family $\bar{\rho}$. This must therefore be isomorphic to the loop space functor Ω by definition 5.2.24. A dual argument demonstrates that the left adjoint in the composite adjunction is isomorphic to the suspension functor Σ, thus completing the verification that the adjunction we have constructed is the one asked for in the statement. □
5.3. Geometric realizations of simplicial objects. A classical result from simplicial homotopy theory states that if a simplicial object admits an augmentation together with a splitting, also called a contracting homotopy or simply “extra degeneracies”, then the augmentation is homotopy equivalent to its geometric realization. More precisely, the augmented simplicial object, a diagram of shape Δ^+_{op}, defines a colimit cone over the restriction of this diagram to Δ_{op}.

In this section, we import these ideas into the quasi-categorical context, proving that if a simplicial object in a quasi-category admits an augmentation and a splitting then the augmentation is its quasi-categorical colimit. Again, the result is not new (cf. [11, 6.1.3.16]), but our proof closely mirrors the classical one (see, e.g., [14]). Specifically, we show that the structure of the contracting homotopies define an absolute left extension diagram in Cat. Furthermore, this universal property is witnessed equationally and so is preserved by any 2-functor. Dual remarks apply to cosimplicial objects admitting a coaugmentation and a splitting.

The first step is to describe the shape of a split simplicial object. There are two choices, distinguished by whether we choose a “forwards” or “backwards” contracting homotopy. The corresponding categories are opposites. Let Δ_{∞} and $\Delta_{-\infty}$ denote the subcategories of Δ consisting of those maps that preserve the top or bottom element respectively in each ordinal. There is an inclusion $[0] \oplus - : \Delta_+ \hookrightarrow \Delta_{-\infty}$ which freely adjoins a bottom element. Note the degree shift: this functor sends the initial object $[-1] \in \Delta_+$ to the zero object $[0] \in \Delta_{-\infty}$.

A simplicial object is augmented if it admits an extension to Δ^+_{op} and split if it admits a further extension to $\Delta_{\infty} \cong \Delta^+_{\text{op}}$. Evaluating at $[0] \in \Delta_{\infty}$ yields the augmentation. Restriction along the inclusion $\Delta^+_{\text{op}} \hookrightarrow \Delta^+_{\text{op}} \hookrightarrow \Delta_{\infty}$ yields the original diagram. We will prove:

5.3.1. Theorem. For any quasi-category B, the canonical diagram

\[
\begin{array}{ccc}
B & \xrightarrow{c} & B \\
\downarrow & & \downarrow \\
B^\Delta_{\infty} & \xrightarrow{\text{res}} & B^{\Delta^+_{\text{op}}}
\end{array}
\]

is an absolute left lifting diagram. Hence, given any simplicial object admitting an augmentation and a splitting, the augmented simplicial object defines a colimit cone over the original simplicial object. Furthermore, such colimits are preserved by any functor.

Our proof uses a 2-categorical lemma.

5.3.2. Lemma. Suppose given an adjunction in a slice 2-category C/\mathcal{K}

\[
\begin{array}{ccc}
& B & \\
\downarrow^{f} & \downarrow^{u} & \downarrow^{A} \\
C & \xleftarrow{a} & \xrightarrow{c} & \xrightarrow{C}
\end{array}
\]

is an absolute left lifting diagram. Hence, given any simplicial object admitting an augmentation and a splitting, the augmented simplicial object defines a colimit cone over the original simplicial object. Furthermore, such colimits are preserved by any functor.
If b admits a left adjoint c in K with unit ι, then the 2-cell $f \iota: f \Rightarrow fbc = ac$ exhibits c as an absolute left lifting of f through a.

Proof. Let ν be the counit of $c \dashv b$, and write η and ϵ for the unit and counit of the adjunction $f \dashv u$: because this adjunction is under C we have $\epsilon a = \text{id}_a$ and $\eta b = \text{id}_b$. Any 2-cell χ of the form displayed below factorises through $f \iota$ as follows

\[
\begin{array}{cccc}
X & \overset{y}{\to} & C & \overset{y}{\to} C \\
\downarrow \chi & a = x & \downarrow \chi & a = x \quad \text{(a)} \\
B & \overset{f}{\to} A & \overset{f}{\to} A & \overset{f}{\to} A \\
\end{array}
\]

using a triangle identity for each adjunction and the fact that $\epsilon a = \text{id}_a$. Such factorisations are unique because the 2-cell ζ can be recovered from the pasted composite with $f \iota$:

\[
\begin{array}{cccc}
X & \overset{y}{\to} C & \overset{y}{\to} C & \overset{y}{\to} C \\
\downarrow \chi & a = x & \downarrow \chi & a = x \\
B & \overset{f}{\to} A & \overset{f}{\to} A & \overset{f}{\to} A \\
\end{array}
\]

Proof of theorem 5.3.1 The inclusion $\Delta^\text{op} \hookrightarrow \Delta_\infty$ admits a left adjoint. One way to define it is to present Δ^op via the “interval representation”: after employing a degree shift $[n] \mapsto [n + 1]$, Δ^op is the subcategory of Δ_+ consisting of ordinals with distinct top and bottom elements and maps that preserve these. Most generally, we might think of the interval representation as the diagonal composite functor in the pullback diagram

\[
\begin{array}{ccc}
\Delta^\text{op}_+ & \to & \Delta_\infty \\
\downarrow & & \downarrow \\
\Delta^\text{op}_- & \to & \Delta_+
\end{array}
\]

The arrows $\Delta_\infty \leftarrow \Delta^\text{op}_+ \to \Delta_\infty$ extend the category indexing augmented simplicial objects by introducing extra maps that define “extra degeneracies” either on the left or on the right. The restricted functor $\Delta^\text{op} \to \Delta_\infty$ is the inclusion described above. It has a left adjoint: a map $\alpha: [k] \to [n + 1]$ in Δ_∞ is given by a map $[n] \to [k]$ in Δ that sends $i \in [n]$, thought of as a “gap” between adjacent elements in $[n + 1]$, to the minimal $j \in [k]$ so that $\alpha(j) = i + 1$.

Riehl and Verity
For any quasi-category B, the 2-functor $B(-): \text{Cat}^{\text{op}} \rightarrow \text{qCat}$ carries the adjoint functors

$$
\Delta^\infty \xleftarrow{\text{res}} B \xrightarrow{f} A
$$

to an adjunction in the slice 2-category B/qCat

$$
B^{\Delta^\infty} \xleftarrow{\text{res}} B^{\Delta^\text{op}} \xrightarrow{c} B^{\Delta^\text{op}} \xleftarrow{\text{ev}_0} B^\Delta \rightarrow A
$$

The 2-cell defined by whiskering res with the unit of ev_0 is the 2-cell $\Rightarrow c \cdot \text{ev}_0$ obtained by applying the 2-functor B^- to the unique 2-cell

$$
\Delta^\text{op} \xleftarrow{[0]} \rightarrow \Delta^\infty
$$

that exists because $[0] \in \Delta^\infty$ is terminal. The result now follows from lemma 5.3.2.

It remains only to prove the last statement. Given any functor $f: B \rightarrow A$, the diagrams

$$
B^{\Delta^\infty} \xleftarrow{\text{res}} B^{\Delta^\text{op}} \xrightarrow{c} A^{\Delta^\text{op}} = B^{\Delta^\infty} \xrightarrow{f} \xrightarrow{c} A^{\Delta^\text{op}}
$$

coincide by bifunctoriality of the internal hom 2-functor in qCat. In particular, the left-hand side inherits the universal property of the right-hand side. □

5.3.3. Example. Theorem 5.3.1 can be used to prove that any object in the quasi-category of algebras associated to a coherent monad is a homotopy colimit of a canonical simplicial object of free algebras. See [21] and [22].

6. Pointwise universal properties

We have seen that limits and adjunctions can be encoded as absolute lifting diagrams in qCat. In this section, we prove a theorem that allows such diagrams to be identified in practice: we show that absolute left or right lifting diagrams can be defined “pointwise” by specifying initial or terminal objects, respectively, in the appropriate slice quasi-categories. The definition of Joyal’s slice quasi-categories is recalled in A.1.2 and A.4.14.

We conclude by proving a corollary of this result: that simplicial Quillen adjunctions between simplicial model categories are adjunctions of quasi-categories. Adjunctions in homotopical contexts are commonly presented as Quillen adjunctions, which can be replaced
by adjunctions of this type in good set-theoretical cases \cite{19}. This result implies that such
adjunctions can be imported into the quasi-categorical context.

6.1. **Pointwise absolute lifting.**

6.1.1. **Observation.** As discussed in the comment at the end of definition \cite{5.2.8}, absolute
lifting diagrams are preserved by pre-composition by all functors. It follows that if

\[
\begin{array}{c}
\Delta^0 \\
\downarrow \Phi \\
B \\
\downarrow f \\
C \\
\downarrow g \\
A
\end{array}
\]

is an absolute lifting diagram and \(c\) is an object of \(C\) then pre-composition by the functor
\(c: \Delta^0 \to C\) gives a 2-cell \(\lambda c: \ell \ell c \Rightarrow gc\) which displays \(\ell c: \Delta^0 \to B\) as an absolute right
lifting of \(gc: \Delta^0 \to A\) through \(f: B \to C\). We refer to this as the pointwise universal
property of the absolute lifting diagram \((6.1.2)\).

Now proposition \cite{5.1.14} tells us that \(\lambda c\) defines an absolute right lifting diagram if and
only if any object of the comma quasi-category \(f \downarrow gc\) which corresponds to the 2-cell \(\lambda c\)
is a terminal object. Remark \cite{A.4.14} supplies an equivalence \(f \downarrow gc \cong f/gc\) along which we
may transport terminal objects. It follows, therefore, that the pointwise universal property
of our absolute right lifting may be expressed as positing the existence of a terminal object
in the slice quasi-category \(f/gc\) associated with each object \(c\) of \(C\).

The following theorem provides a converse to this observation.

6.1.3. **Theorem.** The functor \(g: C \to A\) admits an absolute right lifting through the functor
\(f: B \to A\), as depicted in \((6.1.2)\), if and only if for all objects \(c\) of \(C\) the quasi-category
\(f \downarrow gc \cong f/gc\) has a terminal object.

Proof. The only if direction is discussed in observation \cite{6.1.1} the content is in the converse.
So suppose each \(f/gc\) has a terminal object \(\lambda c: fb \to gc\), i.e., suppose we can fill any sphere
\(\partial \Delta^n \to f/gc\) with \(n \geq 1\) whose final vertex is \(\lambda c\). Unpacking the definition, we have assumed
that we can solve any lifting problem

\[
\begin{array}{c}
\Delta^n \\
\downarrow f/gc \\
\partial \Delta^n
\end{array}
\]

in \(q\text{Cat}^2\) for which the \(\{n, n + 1\}\) edge of the \(\Lambda^{n+1,n+1}\)-horn in \(A\) is \(\lambda c\).
It follows that we can solve any extension problem

\[\partial \Delta^n \times \Delta^{(0)} \rightarrow B \]
\[\partial \Delta^n \times \Delta^1 \cup \Delta^n \times \Delta^{(1)} \rightarrow A \]
\[\Delta^n \times \Delta^{(0)} \]
\[\Delta^n \times \Delta^{(1)} \]

for which the image of the edge between the vertices \((n,0)\) and \((n,1)\) is \(\lambda_c\): The filler is constructed by inductively choosing images for the shuffles of \(\Delta^n \times \Delta^1\) starting from the filled end of the specified cylinder. The images for all but the last shuffle are defined by filling the obvious inner horns in \(A\). The final shuffle is attached by filling a \(\Lambda_{n+1,n+1}\)-horn in \(A\) precisely of the form \((6.1.4)\).

We are interested in extension problems \((6.1.5)\) where the \(n\)-simplex in \(A\) given as one end of the cylinder is in the image of some specified \(n\)-simplex of \(C\) under \(g\); these are precisely the data specified by a lifting problem

\[\partial \Delta^n \longrightarrow f \downarrow g \]
\[\Delta^n \longrightarrow C \]

in which case the extension of \((6.1.5)\) provides a solution. We have just shown that any lifting problem \((6.1.6)\) in which the final vertex of the sphere maps to a terminal object \(\lambda_c \in f/gc\) has a solution. Monomorphisms \(X \hookrightarrow Y\) of simplicial sets with \(X_0 = Y_0\) can be decomposed into composites of pushouts of coproducts of the boundary inclusions \(\partial \Delta^n \hookrightarrow \Delta^n\) with \(n \geq 1\); hence, there is a solution to any lifting problem

\[X \longrightarrow f \downarrow g \]
\[Y \longrightarrow C \]

provided that \(X_0 = Y_0\) and the final vertex in any simplex in \(Y\) but not in \(X\) maps to an object in \(f \downarrow g\) that is terminal in its corresponding slice quasi-category \(f/gc\).

We use this lifting property to define the desired absolute right lifting diagram \((6.1.2)\). The hypothesised terminal objects assemble into a map \(sk_0 C \rightarrow f \downarrow g\) which then defines a lifting problem

\[sk_0 C \longrightarrow f \downarrow g \]
\[C \longrightarrow C \]

of the form we know how to solve. Define \(\ell\) to be the composite of a lift \(k\) with the domain projection \(q_0\): \(f \downarrow g \rightarrow B\) and define the 2-cell \(\lambda\) to be the restriction along \(k\) of the universal
2-cell defining the comma object $f \downarrow g$.

$$
\begin{array}{c}
\text{It remains to show that this data defines an absolute right lifting. Given a 2-cell}
\end{array}
$$

$$
\begin{array}{c}
\xymatrix{ X \ar[r]^b \ar[d]_c & B \ar[d]_{f \downarrow g} \ar[d]_{\psi X} \ar[r]^f & B \ar[d]_{\psi f} \\
C \ar[r]^g & A \ar[r]^k & C \ar[r]^g & A}
\end{array}
$$

the lifting problem

$$
\begin{array}{c}
\xymatrix{ X \amalg X \ar[r]^{x \amalg kc} \ar[d] & f \downarrow g \ar[d]_{q_0} \ar[d]_{q_1} \ar[r] & B \ar[d]_{\psi f} \\
X \times \Delta^1 \ar[r]_{\pi_X} & X \ar[r]^c & C }
\end{array}
$$

has a solution because the final vertex of the image of each cell of $X \times \Delta^1$ missing from $X \times \partial \Delta^1$ is in the image of k and therefore terminal in the appropriate slice quasi-category. The lift ϵ represents a 2-cell $\epsilon: x \Rightarrow kc$ which whiskers with q_1 to id_c. Define τ to be ϵ whiskered with q_0. By construction

$$
\begin{array}{c}
\xymatrix{ X \ar[r]^b \ar[d]_c & B \ar[d]_{f \downarrow g} \ar[d]_{\psi X} \ar[r]^f & B \ar[d]_{\psi f} \\
C \ar[r]^g & A \ar[r]^k & C \ar[r]^g & A}
\end{array}
$$

so we have factored χ through λ.

It remains to show that τ is the unique 2-cell $b \Rightarrow \ell c$ with this property. By fullness of the smothering functor $\text{hom}_2((f\downarrow g)^X) \to \text{hom}_2(f^X) \downarrow \text{hom}_2(g^X)$, the morphism $(\tau, \text{id}_c): \chi \to \lambda c$ lifts to a 2-cell $\epsilon: x \Rightarrow kc$ over C. Because q_1 is an isofibration, we can chose a representing 1-simplex $\epsilon: X \times \Delta^1 \to f \downarrow g$ which post-composes with q_1 to the degenerate 1-simplex at c, not just something homotopic to it: the proof of proposition [3.4.7] generalises to show that $h(\text{hom}_C^\infty(c, q_1)) \to \text{hom}_C^\infty(c, q_1)$ is a smothering functor. We can prove uniqueness of τ by showing that any two such representatives ϵ and ϵ', for possibly different factorizations of χ, are homotopic.
This is achieved by solving the lifting problem

\[
\begin{array}{c}
X \times \partial \Delta^2 \xrightarrow{(e, e', \text{id}_x)} f \downarrow \text{id}\vspace{1em} \\
\xrightarrow{\pi_X} X \xrightarrow{c} C
\end{array}
\]

Again observe that the top horizontal carries the vertex of any simplex of \(X \times \Delta^2\) missing from \(X \times \partial \Delta^2\) to a vertex in the image of \(k\) and hence to a vertex terminal in some \(f_{/gc}\). Hence, the indicated lift exists, defining the desired homotopy. \(\square\)

Theorem 6.1.3 provides a useful criterion for the existence of absolute lifting diagrams. The following corollary supplies the corresponding detection result, identifying when a candidate lifting diagram has the desired universal property.

6.1.7. Corollary. A triangle

\[
\begin{array}{c}
\rotatebox{90}{ℓ} \downarrow \text{id} \\
C \xrightarrow{g} A
\end{array}
\]

displays \(\ell\) as an absolute right lifting of \(g\) through \(f\) if and only if it has that property pointwise.

Proof. The only if direction is provided by observation 6.1.1. Conversely, the assumed pointwise lifting tells us, in particular, that for each object \(c\) in \(C\) the slice quasi-category \(f_{/gc} \simeq f_{/gc}\) has a terminal object. Consequently, we may apply theorem 6.1.3 to construct a functor \(\ell': C \to A\) and 2-cell \(\lambda': f\ell' \Rightarrow g\) which displays \(\ell'\) as an absolute right lifting of \(g\) through \(f\).

The universal property of \((\ell', \lambda')\) applied to the triangle \((\ell, \lambda)\) provides us with a unique 2-cell \(\tau: \ell \Rightarrow \ell'\) with the defining property that \(\lambda' \cdot f\tau = \lambda\). Now both of the 2-cells \(\lambda\) and \(\lambda'\) possess the pointwise lifting property, the first by assumption and the second by construction. In other words, for all objects \(c\) in \(C\) the 2-cell \(\lambda c: f\ell c \Rightarrow gc\) (respectively \(\lambda' c: f\ell' c \Rightarrow gc\)) displays \(\ell c\) (respectively \(\ell' c\)) as an absolute right lifting of \(gc\) through \(f\) for all objects \(c\) of \(C\). Furthermore, the defining property of \(\tau\) whiskers to tell us that \(\lambda c \cdot f(\tau c) = \lambda c\), so since \(\lambda c\) and \(\lambda' c\) both possess the absolute right lifting property it follows that \(\tau c\) is an isomorphism. Applying observation 3.2.3, we find that \(\tau: \ell \Rightarrow \ell'\) is an isomorphism and thus that the given triangle is isomorphic to the absolute right lifting that we constructed and is thus itself an absolute right lifting. \(\square\)

Proposition 5.2.10, which states that a quasi-category admits limits of a family of diagrams of a fixed shape if and only if it admits limits of each individual diagram in the family, is a special case of theorem 6.1.3.

Proof of proposition 5.2.10. If \(A\) admits limits of each diagram in a family \(k: K \to A^X\), then observation 5.2.7 implies that for each vertex \(\bar{d} \in K\), \(c_{/\bar{d}}\) has a terminal object. By
6.1.3, it follows that \(k \) admits an absolute right lifting along \(c : A \to A^X \), i.e., \(A \) admits limits of the family of diagrams \(k : K \to A^X \).

6.2. Simplicial Quillen adjunctions are adjunctions of quasi-categories

Now we use theorem 6.1.3 to prove the assertions made in example 4.0.4: namely that any simplicial Quillen adjunction between simplicial model categories descends to an adjunction of quasi-categories. Another proof of this result is given in [11, 5.2.4.6].

Recall that the quasi-category associated to a simplicial model category \(\mathcal{A} \) is defined by restricting to the full simplicial subcategory \(\mathcal{A}_{cf} \) of fibrant-cofibrant objects and then applying the homotopy coherent nerve \(N : sSet\text{-Cat} \to sSet \).

6.2.1. Theorem

A simplicial Quillen adjunction

\[\begin{array}{ccc} \mathcal{A} & \xleftarrow{f} & \mathcal{B} \\ \downarrow \hspace{1cm} & \downarrow u \hspace{1cm} & \downarrow \hspace{1cm} \\ N\mathcal{A}_{cf} & \xrightarrow{f} & N\mathcal{B}_{cf} \end{array} \]

between simplicial model categories gives rise to an adjunction between the quasi-categories \(N\mathcal{A}_{cf} \) and \(N\mathcal{B}_{cf} \).

Proof. We introduce a pair of simplicial categories \(\text{coll}(f, \mathcal{A}) \) and \(\text{coll}(\mathcal{B}, u) \), with \(\mathcal{B} \) and \(\mathcal{A} \) as full subcategories that are jointly surjective on objects. Declare the hom-spaces from \(a \in \mathcal{A} \) to \(b \in \mathcal{B} \) to be empty and define

\[\text{coll}(f, \mathcal{A})(b, a) := \mathcal{A}(fb, a) \quad \text{coll}(\mathcal{B}, u)(b, a) := \mathcal{B}(b, ua). \]

The simplicial adjunction \(f \dashv u \) is encoded in the proposition that the simplicial categories \(\text{coll}(f, \mathcal{A}) \) and \(\text{coll}(\mathcal{B}, u) \) are isomorphic under \(\mathcal{B} \biguplus \mathcal{A} \).

Now write \(\text{coll}(f, \mathcal{A})_{cf} \cong \text{coll}(\mathcal{B}, u)_{cf} \) for the full simplicial sub-categories spanned by the fibrant-cofibrant objects of \(\mathcal{A} \) and \(\mathcal{B} \). Via these restrictions, we obtain a diagram

\[\begin{array}{ccc} \mathcal{B}_{cf} & \xhookleftarrow{\text{coll}(f, \mathcal{A})_{cf}} & \xhookrightarrow{\text{coll}(\mathcal{B}, u)_{cf}} \mathcal{A}_{cf} \end{array} \]

of locally Kan simplicial categories. Applying the homotopy coherent nerve, we have a pair of isomorphic cospans in \(\text{qCat}_{\mathcal{A}} \):

\[\begin{array}{ccc} \mathcal{B}_{cf} & \xrightarrow{\pi \beta} & N\mathcal{B}_{cf} \\ \mathcal{A}_{cf} & \xleftarrow{\pi \psi} & N\mathcal{A}_{cf} \end{array} \]

Our objective is to define an absolute left lifting \((f, \psi) \) and an absolute right lifting \((\overline{\pi}, \beta) \). Proposition 5.1.11 and its dual then provides a fibred equivalence

\[\overline{\pi} \downarrow N\mathcal{A}_{cf} \cong N\mathcal{B}_{cf} \downarrow \overline{\pi} \]

over \(N\mathcal{A}_{cf} \times N\mathcal{B}_{cf} \), which by proposition 4.3.3 implies that \(\overline{\pi} \downarrow \overline{\pi} : N\mathcal{A}_{cf} \to N\mathcal{B}_{cf} \) is an adjunction of quasi-categories.

The arguments building the absolute right lifting diagram \((\overline{\pi}, \beta) \) and the absolute left lifting diagram \((f, \psi) \) are entirely dual. Interpreting the statement of theorem 6.1.3 in this
context, we are asked to produce, for each fibrant-cofibrant object \(a \in A \), a terminal object \(q \in A \), defined to be the pullback of the slice quasi-category \((N \text{coll}(B, u)_{cf})/a \) along the natural inclusion \(i: NB_{cf} \to N \text{coll}(B, u)_{cf} \). To that end, choose a cofibrant replacement \(q: t \to ua \) in the model category \(B \) such that the map \(q \) is a trivial fibration. It follows that whenever \(b \in B \) is cofibrant, the natural map \(q_*: B(b, t) \to B(b, ua) \) is a trivial fibration between Kan complexes. We claim that \(q \) is terminal in \(i/ua \).

Let \(C \) denote the left adjoint to the homotopy coherent nerve. Unpacking the definition, an \(n \)-simplex in \(i/ua \) is

\[
\begin{array}{ccc}
\Delta^n & \rightarrow & NB_{cf} \\
\delta^{n+1} & & \downarrow \\
\Delta^n \times \Delta^0 & \cong & \Delta^{n+1} \\
\uparrow & & \downarrow \\
\Delta^{n+1} & \rightarrow & N \text{coll}(B, u)_{cf}
\end{array}
\]

The vertex \(q \in N \text{coll}(B, u)_{cf} \) is terminal if and only if we can extend any diagram of simplicial functors

\[
\begin{array}{ccc}
C \partial \Delta^n & \rightarrow & B_{cf} \\
\downarrow & & \downarrow i \\
C \Lambda^{n+1, n+1} & \rightarrow & \text{coll}(B, u)_{cf} \\
\downarrow & & \downarrow \text{last} \\
C \Delta^{n+1} & \rightarrow & B_{cf}
\end{array}
\]

in which the unique vertex in the hom-space between the objects \(n \) and \(n + 1 \) in the simplicial category \(C \Lambda^{n+1, n+1} \) is mapped to \(q \in B(t, ua) \).

The simplicial categories \(C \Lambda^{n+1, n+1} \) and \(C \Delta^{n+1} \) have objects \(0, \ldots, n + 1 \) and all but two of the same hom-spaces, the only exceptions being the hom-spaces from \(0 \) to \(n \) and to \(n + 1 \). We have \(C \Delta^{n+1}(0, n) \cong (\Delta^1)^{n-1} \) and \(C \Delta^{n+1}(0, n + 1) \cong (\Delta^1)^n \), while \(C \Lambda^{n+1, n+1}(0, n) \cong \partial(\Delta^1)^{n-1} \) and \(C \Lambda^{n+1, n+1}(0, n + 1) \) is the open box \(B \hookrightarrow (\Delta^1)^n \) with the interior of the \(n \)-cube and one face removed [11, 1.1.5.10] and [20, 16.5.10]. In this way, writing \(b \in B \) for the image of the object \(0 \), the extension problem (6.2.2) in the category of simplicial
categories reduces to an extension problem

\[
\partial(\Delta^1)^{n-1} \to B(b,t) \\
\downarrow \downarrow \downarrow \downarrow \\
B \to B(b,ua) \\
(\Delta^1)^{n-1} \to (\Delta^1)^n
\]

in the category of simplicial sets. For the reader’s convenience, we have used the standard decorations to mark cofibrations, fibrations, and weak equivalences in Quillen’s model structure on simplicial sets.

The extension (6.2.2) may be achieved by first extending along the map \(B \to (\Delta^1)^n \) in the Kan complex \(B(b,ua) \). This chooses an image under the map \(q_* \) for the \((n-1)\)-cube missing from the box \(B \). An \((n-1)\)-cube in \(B(b,t) \) with this image can be found by lifting the cofibration \(\partial(\Delta^1)^{n-1} \to (\Delta^1)^{n-1} \) against the trivial fibration \(q_* \).

\[\square\]

Appendix A. Geometry

Our approach to developing the category theory of quasi-categories makes use of the enriched category theories of 2-categories and simplicial categories. Traditional accounts of quasi-category theory have instead employed “décalage” constructions to define and develop the theory of limits and colimits, adjunctions, and so forth. In this appendix, we demonstrate that these approaches are entirely equivalent by showing that décalage constructions may be obtained, in an up to equivalence sense, using constructions involving the comma quasi-categories introduced in definition 3.3.17.

The literature already contains a proof that these two constructions are equivalent; see for instance Lurie [11, 4.2.1.5]. However, given the importance of this result to our work, we beg the indulgence of the reader and devote this appendix to providing a very concrete, explicit, and self-contained presentation of this result.

We begin in section A.1 by reviewing Joyal’s join and slice constructions, the décalage-style constructions mentioned above. The left and right slices associated to a map \(f: X \to A \) whose codomain is a quasi-category can be interpreted as the quasi-category of cones under and over \(f \) respectively. In section A.2 we described a variant “fat cone” construction as a comma quasi-category. The quasi-categories of fat cones appeared in the definition of limits and colimits expressed by proposition 5.2.6. In section A.3 we introduce a fattened version of the join and slice constructions and prove that the fat slice construction is isomorphic to the fat cone construction. It remains only to show that ordinary slices and fat slice are equivalent. We prove this in section A.4 by proving that a natural map from the fat join to the join is an equivalence for any pair of simplicial sets.
A.1. Joins and slices.

A.1.1. Recall (joins and décalage). The algebraists’ skeletal category \(\Delta_+ \) of all finite ordinals and order preserving maps supports a canonical strict (non-symmetric) monoidal structure \((\Delta_+, \oplus, [-1])\) in which \(\oplus \) denotes the ordinal sum given

- for objects \([n], [m] \in \Delta_+\) by \([n] \oplus [m] := [n + m + 1]\),
- for arrows \(\alpha: [n] \to [n'], \beta: [m] \to [m']\) by \(\alpha \oplus \beta: [n + m + 1] \to [n' + m' + 1]\) defined by

\[
\alpha \oplus \beta(i) = \begin{cases}
\alpha(i) & \text{if } i \leq n, \\
\beta(i - n - 1) + n' + 1 & \text{otherwise.}
\end{cases}
\]

By Day convolution, this bifunctor extends to a (non-symmetric) monoidal closed structure \((sSet_+, \star, \Delta^{-1}, \text{dec}_l, \text{dec}_r)\) on the category of augmented simplicial sets. Here the monoidal operation \(\star\) is known as the simplicial join and its closures \(\text{dec}_l\) and \(\text{dec}_r\) are known as the left and right décalage constructions, respectively. To fix handedness, we declare that for each augmented simplicial set \(X\) the functor \(\text{dec}_l(X, -)\) (resp. \(\text{dec}_r(X, -)\)) is right adjoint to \(X \star -\) (resp. \(- \star X\)).

If \(X\) and \(Y\) are augmented simplicial sets then their join \(X \star Y\) may be described explicitly as follows:

- it has simplices pairs \((x, y) \in (X \star Y)_{r+s+1}\) with \(x \in X_r, y \in Y_s\),
- if \((x, y)\) is a simplex of \(X \star Y\) with \(x \in X_r\) and \(y \in Y_s\) and \(\alpha: [n] \to [r + s + 1]\) is a simplicial operator in \(\Delta_+\), then \(\alpha\) may be uniquely decomposed as \(\alpha = \alpha_1 \star \alpha_2\) with \(\alpha_1: [n_1] \to [r]\) and \(\alpha_2: [n_2] \to [s]\), and we define \((x, y) \cdot \alpha := (x \cdot \alpha_1, y \cdot \alpha_2)\).

Furthermore, if \(f: X \to X'\) and \(g: Y \to Y'\) are simplicial maps then the simplicial map \(f \star g: X \star Y \to X' \star Y'\) simply carries the simplex \((x, y) \in X \star Y\) to the simplex \((f(x), g(y)) \in X' \star Y'\).

A.1.2. Definition (décalage and slices). In [5], Joyal introduces a slice construction for maps \(f: X \to A\) of simplicial sets. To describe this construction, we start by identifying the category of simplicial sets \(sSet\) with the full subcategory of terminally augmented simplicial sets in \(sSet_+,\) fixing a simplicial set \(X\) and defining a functor

\[- \to \mathbf{sSet}: sSet \longrightarrow X/sSet \quad \text{(resp. } X \to \mathbf{sSet}: sSet \longrightarrow X/sSet)\]

which carries a simplicial set \(Y \in sSet\) to the object \(* \to X: X \cong \Delta^{-1} \star X \to Y \star X\) (resp. \(* \star X: X \cong X \star \Delta^{-1} \to X \star Y\)) induced by the map \(*: \Delta^{-1} \to Y\) corresponding to the unique \((-1)\)-simplex of \(Y\). Now we may show that this functor preserves all colimits, from which fact we may infer that it possesses a right adjoint \(\text{slc}_r^X(-)\) (resp. \(\text{slc}_l^X(-)\)).

However, we prefer to derive these right adjoints from the décalage construction of recollection [A.1.1]. Specifically, observe that the \((-1)\)-dimensional simplices of \(\text{dec}_r(X, A)\) (resp. \(\text{dec}_l(X, A)\)) are in bijective correspondence with simplicial maps \(f: X \to A\). So if we are given such a simplicial map we may, by recollection [2.1.3] extract the component of \(\text{dec}_r(X, A)\) (resp. \(\text{dec}_l(X, A)\)) consisting of those simplices whose \((-1)\)-face is \(f\), which we denote by \(A_{/f}\) (resp. \(f/A\)) and call the slice of \(A\) over (resp. under) \(f\). Now it is a matter of
an easy calculation to demonstrate directly that \(A/f\) (resp. \(f/A\)) has the universal property required of the right adjoint to \(-\otimes X\) (resp. \(X\otimes-\)) at the object \(f: X \to A\) of \(X/sSet\).

In other words, these décalages admit the following canonical decompositions as disjoint unions of (terminally augmented) slices:

\[
de_{r}(X, A) = \bigsqcup_{f: X \to A} (A/f) \quad \text{de}_{l}(X, A) = \bigsqcup_{f: X \to A} (f/A)
\]

We think of the slice \(f/A\) as being the simplicial set of cones under the diagram \(f\) and we think of the dual slice \(A/f\) as being the simplicial set of cones over the diagram \(f\).

A.1.3. Observation (slices of quasi-categories). A direct computation from the explicit description of the join construction given above demonstrates that the Leibniz join (see recollection [2.2.5]) of a horn and a boundary \((\Lambda^{n,k} \hookrightarrow \Delta^{n}) \hat{\otimes} (\partial \Delta^{m} \hookrightarrow \Delta^{m})\) is again isomorphic to a single horn \(\Lambda^{n+m+1,k} \hookrightarrow \Delta^{n+m+1}\). Dually the Leibniz join \((\partial \Delta^{n} \hookrightarrow \Delta^{n}) \hat{\otimes} (\Lambda^{m,k} \hookrightarrow \Delta^{m})\) is isomorphic to the single horn \(\Lambda^{n+m+1,n+k+1} \hookrightarrow \Delta^{n+m+1}\).

Combining these computations with the properties of the Leibniz construction developed in [23, section 4], we may show that an augmented simplicial set \(A\) has the right lifting property with respect to all (inner) horn inclusions then so do the left and right décalages \(de_{l}(X, A)\) and \(de_{r}(X, A)\) for any augmented simplicial set \(X\). In particular, this tells us that if \(f: X \to A\) is any map of simplicial sets and \(A\) is a quasi-category then the slices \(f/A\) and \(A/f\) are also quasi-categories.

Working in the marked context, we may extend this result to Leibniz joins with specially marked outer horns. That then allows us to prove that if \(p: A \to B\) is an isofibration of quasi-categories and \(f: X \to A\) is any simplicial map then the induced simplicial maps \(slc^{X}_{c}(p): A/f \to B/pf\) and \(slc^{X}_{l}(p): f/A \to pf/B\) are also isofibrations of quasi-categories.

A.2. Fat cones.

A.2.1. Observation (internal homs and fat cones). It is common in category theory to define a cone over (resp. cone under) a diagram \(f: X \to A\) with vertex \(a \in A\) to be a natural transformation \(\pi: a \Rightarrow f\) (resp. \(\iota: f \Rightarrow a\)). Here we use the notation \(a\) to denote both an object of \(A\) and the corresponding constant functor \(X \to A\) at that object.

We might reasonably hope to generalise this notion of cone to the quasi-categorical context, by saying that cone over (resp. under) a diagram \(f: X \to A\), whose target is a quasi-category \(A\), with vertex \(a \in A_{0}\), is a simplicial map \(\pi: X \times \Delta^{1} \to A\) (resp. \(\iota: X \times \Delta^{1} \to A\)) for which \(a = \pi \circ (X \times \delta^{1})\) and \(f = \pi \circ (X \times \delta^{0})\) (resp. \(f = \iota \circ (X \times \delta^{1})\) and \(a = \iota \circ (X \times \delta^{0})\)). Here again, we use the notation \(a\) to denote the constant simplicial map which carries every \(n\)-simplex \(x\) of \(X\) to the degenerate \(n\)-simplex on the vertex \(a\). This cone notion gives rise to a different construction which is designed to look and behave like a quasi-category of cones over (or under) a diagram.

We may make this intuition precise using the comma objects of definition [3.3.17]. To that end suppose that \(f: X \to A\) is a simplicial map which we can regard equally as being a 0-simplex of the internal hom \(A^{X}\) or as a simplicial map \(\Delta^{0} \to A^{X}\). Define the constant diagram map \(c: A \to A^{X}\) to be the adjoint transpose of the projection \(\pi_{A}: A \times X \to A\).
We may form the comma object \(f \downarrow c \) in the following pullback

\[
\begin{array}{ccc}
\Delta^0 & \xrightarrow{f} & A^X \\
p & \downarrow & \downarrow \{(p_1, p_0)\} \\
A \times \Delta^0 & \xrightarrow{c \times f} & A^X \times A^X
\end{array}
\]

and we choose to call this the simplicial set of fat cones under the diagram \(f : X \to A \). Dually we call the comma object \(c \downarrow f \) the simplicial set of fat cones over the diagram \(f \).

Unwinding this definition, we find that a 0-simplex of \(f \downarrow c \), that is to say a fat cone under \(f \), is no more nor less than a cone in the sense just discussed.

A.2.3. Observation (fat cones and quasi-categories). Because \(A \) is supposed to be a quasi-category then we know by the comments at the end of recollection 2.2.4 that \(A^X \) is also a quasi-category, as is \(\Delta^0 \). So the discussion in definition 3.3.17 tells us that the simplicial set of fat cones \(f \downarrow c \) (resp. \(c \downarrow f \)) is again a quasi-category. Furthermore, if \(p : A \to B \) is an isofibration between quasi-categories then the map \(p^X : A^X \to B^X \) is also an isofibration by observation 2.2.8. So we may apply the result of observation 3.3.18 to the diagram

\[
\begin{array}{ccc}
\Delta^0 & \xrightarrow{f} & A^X \\
p^X & \downarrow & \downarrow \{p\} \\
\Delta^0 & \xrightarrow{c \times p} & A^X \times A^X
\end{array}
\]

to show that the induced maps \(f \downarrow c \to pf \downarrow c \) and \(c \downarrow f \to c \downarrow pf \) between the quasi-categories of fat cones are also isofibrations.

A.3. Fat joins and fat slices.

A.3.1. Remark (relating slices and fat cone constructions). One might naively expect that the two cone notions we have met thus far, these being Joyal’s slices and our fat cone construction respectively, actually coincide. In general this is certainly a forlorn hope, as fat cones contain many more simplices than the corresponding Joyal cones. However in the case where \(A \) is actually a category it is a classical fact that these notions are isomorphic, and we might at least hope that they are also related up to equivalence in the quasi-categorical context.

This kind of result is of great significance to the study limits and colimits in quasi-categories. In order to take advantage of the weak universal properties of the comma quasi-category construction, we have defined a limit (resp. colimit) of a diagram \(f : X \to A \) to be a terminal (resp. initial) object in the quasi-category \(c \downarrow f \) (resp. \(f \downarrow c \)) of fat cones. On the other hand, in Joyal [5] and Lurie [11] one finds a limit (resp. colimit) of \(f \) defined to be a terminal (resp. initial) object in the slice \(A_{/f} \) (resp. \(f/A \)). To reconcile these definitions it will be enough to demonstrate that the slice and fat cone constructions are related by appropriate equivalences of quasi-categories.
A.3.2. **Definition** (fat join and fat décalage). We define the *fat join* of two simplicial sets \(X \) and \(Y \) to be the simplicial set \(X \diamond Y \) constructed by means of the following pushout:

\[
\begin{array}{ccc}
(X \times Y) \sqcup (X \times Y) & \xrightarrow{\pi_X \sqcup \pi_Y} & X \sqcup Y \\
\downarrow & & \downarrow \\
X \times \Delta^1 \times Y & \xrightarrow{\pi} & X \circ Y
\end{array}
\]

(A.3.3)

We may extend this construction to simplicial maps in the obvious way to give us a bi-

functor \(\diamond : \sSet \times \sSet \to \sSet \), and it is clear that this preserves connected

colimits in each variable. We might caution the reader here in regard to the preservation of

all colimits in each variable; this result does not hold simply because the coproduct bifunctor \(\sqcup \) (as used

in the top right hand corner of the defining pushout above) fails to preserve coproducts in

each variable (while it does preserve connected colimits). In particular, a fat join of a sim-

plicial set \(X \) with the empty simplicial set is not itself empty: it is canonically isomorphic

to \(X \) itself.

Now if we again identify the category of simplicial sets \(\sSet \) with the full subcategory

of terminally augmented simplicial sets then we may extend our fat join to a bifunctor on

augmented simplicial sets. To do this we start by observing that every augmented simplicial

set \(X \) may be written canonically as a coproduct \(\bigsqcup_{i \in I} X_i \) in \(\sSet_+ \) of

terminally augmented simplicial sets. So if \(X = \bigsqcup_{i \in I} X_i \) and \(Y = \bigsqcup_{j \in J} Y_j \),

are two augmented simplicial sets with

terminally augmented components \(X_i \) and \(Y_j \), then we define \(X \diamond Y \) to be

the coproduct \(\bigsqcup_{i \in I, j \in J} X_i \circ Y_j \) in \(\sSet_+ \). We extend this to maps of augmented simplicial sets in the

obvious way, using the fact that we may decompose such maps into families of maps

between terminally augmented components. It is now a routine matter to verify that,

when regarded as being a bifunctor on \(\sSet_+ \), the fat join does indeed preserve all colimits

in each variable. Consequently, since \(\sSet_+ \) is a presheaf category, it follows that the fat

join bifunctor on \(\sSet_+ \) has both left and right closures \(\text{fatdec}^l(X, A) \) and \(\text{fatdec}^r(X, A) \),

called left and right fat décalage respectively, which notation we fix by declaring that if \(X \)

is an augmented simplicial set then \(X \diamond - \vdash \text{fatdec}^l(X, -) \) and \(- \diamond X \vdash \text{fatdec}^r(X, -) \).

Returning to the defining pushout (A.3.3) it will be of use to observe that the fat join of

two *non-empty* simplicial sets \(X \) and \(Y \) may be described more concretely as the simplicial

set obtained by taking the quotient of \(X \times \Delta^1 \times Y \) under the simplicial congruence relating

the pairs of \(r \)-simplices

\[
(x, 0, y) \sim (x, 0, y') \quad \text{and} \quad (x, 1, y) \sim (x', 1, y)
\]

(A.3.4)

where 0 and 1 denote the constant operators \([r] \to [1]\). We use square bracketed triples

\([x, \beta, y] \sim\) to denote equivalence classes under \(\sim \).

A.3.5. **Definition** (fat slice). Replaying Joyal’s slice construction of definition[A.1.2] if \(X \)

is a simplicial set, we may use the fat join to construct a functor

\[
- \circ - : \sSet \longrightarrow X/\sSet \quad \text{(resp. } X \circ - : \sSet \longrightarrow X/\sSet \text{)}
\]
which carries a simplicial set $Y \in \text{sSet}$ to the object $\ast \star X \colon X \cong \Delta^{-1} \circ X \to Y \circ X$ (resp. $X \star \ast \colon X \cong X \circ \Delta^{-1} \to X \circ Y$) and use fat décalage to show that it has a right adjoint $\text{fatslc}^X_\ast (-)$ (resp. $\text{fatslc}^X_\ast (-)$). The value of this right adjoint at an object $f : X \to A$ of X/sSet is denoted $A_{/f}$ (resp. $f/_{/A}$) and is called the fat slice of A over (resp. under) f.

A.3.6. Observation (fat slice vs fat cone). If Y is any simplicial set and $f : X \to A$ is a simplicial map, then simplicial maps $Y \to A_{/f}$ are in bijective correspondence with simplicial maps $k : Y \star X \to A$ for which the following square commutes:

$$
\begin{array}{ccc}
\Delta^{-1} \circ X & \cong & X \\
\ast \star X & \downarrow & \downarrow f \\
Y \star X & \to & A
\end{array}
$$

Using the universal property of the defining pushout (A.3.3) we see that such maps are themselves in bijective correspondence with pairs of maps $k : Y \star X \to A$ and $g : Y \to A$ which make the square commute. Taking the transpose $\hat{k} : Y \to (A^{X})^{\Delta^1}$ of k under the adjunction $- \times \Delta^1 \times X \dashv \left((-)^{X}\right)^{\Delta^1}$ we see that the above square commutes if and only if the dual square

$$
\begin{array}{ccc}
Y \times \Delta^1 \times X & \cong & X \\
\star \times \Delta^1 \times X & \downarrow & \downarrow (g,f) \\
Y \times \Delta^1 \times X & \to & A
\end{array}
$$

commutes. Finally, consulting the defining pullback (A.2.2) for the fat cone construction, we see that pairs (g, \hat{k}) which make the square above commute are in bijective correspondence with simplicial maps $Y \to c \downarrow f$.

With this argument we have proven:

A.3.7. Proposition. The fat slice construction $A_{/f}$ (resp. $f/_{/A}$) is isomorphic to the fat cone construction $c \downarrow f$ (resp. $f \downarrow c$).

□

A.4. Relating joins and fat joins.

A.4.1. Observation (comparing join constructions). When $\beta : \lfloor n \rfloor \to \lfloor 1 \rfloor$ is a simplicial operator let \hat{n}_β denote the largest integer in the set $\{-1\} \cup \{i \in \lfloor n \rfloor \mid \beta(i) = 0\}$ and let $\check{n}_\beta = n - 1 - \hat{n}_\beta$. Define an associated pair $\hat{\beta} : [\hat{n}_\beta] \to \lfloor n \rfloor$ and $\check{\beta} : [\check{n}_\beta] \to \lfloor n \rfloor$ of simplicial face operators in Δ_+ by $\hat{\beta}(i) = i$ for all $i \in [\hat{n}_\beta]$ and $\check{\beta}(j) = j + \check{n}_\beta + 1$ for all $j \in [\check{n}_\beta]$.

Now if X and Y are (terminally augmented) simplicial sets we may define a map $\bar{s}^{X,Y}$ which carries an n-simplex (x, β, y) of $X \times \Delta^1 \times Y$ to the n-simplex $(x \cdot \hat{\beta}, y \cdot \hat{\beta})$ of $X \star Y$. A straightforward calculation, using the explicit description of the simplicial action on $X \star Y$ given at the end of recollection A.1.1, demonstrates that this map commutes with the simplicial actions on these sets and is thus a simplicial map. Furthermore, the family of simplicial maps $\bar{s}^{X,Y}: X \times \Delta^1 \times Y \to X \star Y$ is natural in X and Y.

Of course, since X and Y are terminally augmented, we also have canonical maps $l^{X,Y}: X \sim \Delta^0 \to X \star Y$ and $r^{X,Y}: Y \sim \Delta^0 \star Y \to X \star Y$ and we may assemble all these maps together into a commutative square

$$
\begin{array}{ccc}
(X \times Y) \sqcup (X \times Y) & \xrightarrow{\pi_X \sqcup \pi_Y} & X \sqcup Y \\
\downarrow & & \downarrow \\
X \times \Delta^1 \times Y & \xrightarrow{\bar{s}^{X,Y}} & X \star Y
\end{array}
$$

whose maps are all natural in X and Y. Using the defining universal property of fat join, as given in (A.3.3), these squares induce maps $s^{X,Y}: X \triangleright Y \to X \star Y$ which are again natural in X and Y. Should we so wish, we may now take suitable coproducts of these maps to canonically extend this family of simplicial maps to a natural transformation between the extended fat join and join bifunctors on augmented simplicial sets.

More explicitly, if $n, m \geq 0$, then $\bar{s}^{n,m}: \Delta^n \times \Delta^1 \times \Delta^m \to \Delta^{n+m+1}$ is the unique simplicial map determined by the (order preserving) action on vertices given by:

$$
s^{n,m}(i, j, k) = \begin{cases}
 i & \text{if } j = 0, \\
 k + n + 1 & \text{if } j = 1.
\end{cases}
$$

This takes simplices related under the congruence defined in (A.3.3) of definition A.3.2 to the same simplex and thus induces a unique map $s^{n,m}: \Delta^n \triangleright \Delta^m \to \Delta^n \star \Delta^m$ on the quotient simplicial set.

Our immediate aim, achieved in proposition A.4.11, is to show that the maps $s^{X,Y}$ are weak equivalences in the Joyal model structure for any pair of simplicial sets X and Y. To that end, we will use explicit cylinder objects for the model structure of naturally marked quasi-categories to prove that certain maps are weak equivalences in the Joyal model structure. We first consider the naïve choice and then use lemma 2.3.8 to construct the cylinder object which we will make use of below.

A.4.4. Observation. When $n = 1$, the two specially marked 1-horn inclusions are simply the inclusion maps $\delta^1, \delta^0: \Delta^0 \hookrightarrow (\Delta^1)^i$; by recollection 2.3.6 these are trivial cofibrations in the model structure of naturally marked quasi-categories. So if X is any marked simplicial set then the canonical “end point” inclusions $i_0, i_1: X \hookrightarrow X \times (\Delta^1)^i$ are both trivial cofibrations, simply because they are isomorphic to the maps obtained by taking the product of the cofibrant object X with the trivial cofibrations $\delta^1, \delta^0: \Delta^0 \hookrightarrow (\Delta^1)^i$ in a cartesian model structure. It follows then that the maps $i_0, i_1: X \hookrightarrow X \times (\Delta^1)^i$ and the projection map
\(\pi : X \times (\Delta^1)^2 \to X \) display \(X \times (\Delta^1)^2 \) as a canonical cylinder object for \(X \) in the model structure of naturally marked quasi-categories.

A.4.5. Definition. For a marked simplicial set \(X \), define \(\text{cyl}(X) \) to be the marked simplicial set derived from \(X \times \Delta^1 \) by also marking any 1-simplex of the form \((x \cdot \sigma^0, \text{id}[,1]) \) for some 0-simplex \(x \in X \). Observe that \(\text{cyl}(X) \) is a marked superset of \(X \times \Delta^1 \) and a marked subset of \(X \times (\Delta^1)^2 \). Consequently the projection map \(\pi : X \times (\Delta^1)^2 \to X \) restricts to a map \(\pi_0 : \text{cyl}(X) \to X \) and the “end point” inclusion maps \(i_0, i_1 : X \hookrightarrow X \times \Delta^1 \) extend to maps \(i_0, i_1 : X \hookrightarrow \text{cyl}(X) \).

A.4.6. Lemma. The end point inclusion maps \(i_0, i_1 : X \hookrightarrow \text{cyl}(X) \) and the projection map \(\pi : \text{cyl}(X) \to X \) present \(\text{cyl}(X) \) as a cylinder object for \(X \) in the model structure of naturally marked quasi-categories.

Proof. This is mostly immediate from the definitions above, but we do need to demonstrate that the map \(\pi : \text{cyl}(X) \to X \) is a weak equivalence in the model structure of naturally marked quasi-categories. Equivalently, by the 2-of-3 property for weak equivalences, we may show that either of the inclusions \(i_0, i_1 : X \hookrightarrow \text{cyl}(X) \) is a trivial cofibration in that model structure. In other words, we must show that \(i_0 \) possesses the left lifting property with respect to all isofibrations \(p : A \to B \) of naturally marked quasi-categories.

The proof of this lifting result is illustrated in the following diagram:

\[
\begin{array}{ccc}
X & \xrightarrow{u} & A \\
\downarrow{i_0} & & \downarrow{p} \\
\text{cyl}(X) & \xleftarrow{v} & B \\
\end{array}
\]

Here we are asked to construct a lift in the square of maps whose horizontals are labelled \(u \) and \(v \) and whose verticals are \(i_0 \) and \(p \). So we start by observing that the dotted extension \(v' \) of \(v \) along the inclusion \(\text{cyl}(X) \hookrightarrow X \times (\Delta^1)^2 \) exists by lemma \(2.3.8 \) and the assumption that \(B \) is a naturally marked quasi-category. As just observed, the inclusion \(i_0 : X \hookrightarrow \text{cyl}(X) \hookrightarrow X \times (\Delta^1)^2 \) is a trivial cofibration in the model structure of naturally marked quasi-categories. So the dashed lift \(l \) exists, because \(p \) is an isofibration by assumption, and we may restrict that map along the inclusion \(\text{cyl}(X) \hookrightarrow X \times (\Delta^1)^2 \) to give the required lift for our original square. \(\square \)

The following combinatorial proposition is absolutely crucial in the proof that the join and fat join constructions are equivalent.

A.4.7. Proposition. For all \(n, m \geq 0 \), the comparison simplicial map \(s^{n,m} : \Delta^n \diamond \Delta^m \to \Delta^n \star \Delta^m \) is a deformation retraction in the Joyal model structure and in particular is a weak equivalence. Furthermore, if \(n \) or \(m \) is equal to \(-1 \) then \(s^{n,m} \) is an isomorphism.

Proof. We start by thinking of the map \(s^{n,m} : \Delta^n \times \Delta^1 \times \Delta^m \to \Delta^{n+m+1} \) in terms of its action on 0-simplices. In other words, we regard it as being the order preserving map from
\[\begin{align*}
\text{now we may define an order preserving endo-map } \bar{u}^{m,n} \text{ on } [n] \times [1] \times [m] \text{ by }
\bar{u}^{m,n}(i,j,k) &= \begin{cases}
(i,0,0) & \text{if } j = 0 \\
(i,1,k) & \text{if } j = 1.
\end{cases}
\end{align*} \]

and observe that in the pointwise ordering on such maps we have \(\bar{u}^{m,n} \leq \bar{t}^{m,n} \circ \bar{s}^{m,n} \) and \(\bar{u}^{m,n} \leq \id_{[n] \times [1] \times [m]} \). Taking nerves, the map \(\bar{t}^{m,n} \) becomes a simplicial map from \(\Delta^{n+1} \to \Delta^n \times \Delta^1 \times \Delta^m \), the map \(\bar{u}^{m,n} \) becomes a simplicial endo-map on \(\Delta^n \times \Delta^1 \times \Delta^m \) and the inequalities of the last sentence become 1-simplices \(\bar{h}^{m,n}, \bar{k}^{n,m} \) in \((\Delta^n \times \Delta^1 \times \Delta^m) \Delta^n \times \Delta^1 \times \Delta^m \)

which connect the 0-simplices \(\bar{u}^{m,n} \) to \(\bar{t}^{m,n} \circ \bar{s}^{m,n} \) and \(\id_{\Delta^n \times \Delta^1 \times \Delta^m} \) respectively. The composites \(\bar{h}^{m,n} \circ (\bar{t}^{m,n} \times \Delta^1), \bar{k}^{n,m} \circ (\bar{t}^{m,n} \times \Delta^1) : \Delta^{n+1} \times \Delta^1 \to \Delta^n \times \Delta^1 \times \Delta^m \) are both equal to the degenerate 1-simplex derived from the 0-simplex \(\bar{t}^{m,n} \) in \((\Delta^n \times \Delta^1 \times \Delta^m) \Delta^{n+1} \).

Passing to quotients under the congruence \(\sim \) defined in \((A.3.4) \), it is easily verified that these maps induce simplicial maps \(t^{m,n} : \Delta^n \times \Delta^m \to \Delta^n \circ \Delta^m, u^{n,m} : \Delta^n \circ \Delta^m \to \Delta^n \circ \Delta^m \), and \(h^{n,m}, k^{n,m} : (\Delta^n \circ \Delta^m) \times \Delta^1 \to \Delta^n \circ \Delta^m \) which also satisfy the algebraic identities discussed in the last paragraph. Now if we are to use this data to show that \(s^{m,n} \) is a deformation retraction in Joyal’s model structure, then we must show that the maps \(h^{n,m} \) and \(k^{n,m} \) give rise to homotopies between the map \(u^{n,m} \) and the maps \(t^{m,n} \circ s^{n,m} \) and \(\id_{\Delta^n \circ \Delta^m} \) respectively. To that end, lemma \((A.4.6) \) tells us that it would be enough to show that the maps \(h^{n,m} \) and \(k^{n,m} \) extend along the inclusion \((\Delta^n \circ \Delta^m) \times \Delta^1 \to \text{cyl}(\Delta^n \circ \Delta^m) \).

On consulting definition \((A.4.5) \), we find that we must verify that for each 0-simplex \([i,j,k] \) of \(\Delta^n \circ \Delta^m \) the 1-simplex \((\sim \cdot \sigma^0, \id_{[i]}) \) of \((\Delta^n \circ \Delta^m) \times \Delta^1 \) is mapped by \(h^{n,m} \) and \(k^{n,m} \) to marked, and thus degenerate, simplices in \(\Delta^n \circ \Delta^m \). This, however, is a matter of routine verification, which we leave to the reader. \(\square \)
We will extend this result to all simplicial sets presently, but first we shall need the following technical result. A review of the Reedy category theory necessary to understand its statement and proof, written in part for this purpose, can be found in [23].

A.4.8. \textbf{Lemma.} If \(i: X \hookrightarrow Y \) and \(j: U \hookrightarrow V \) are both monomorphisms of terminally augmented simplicial sets, then so is their Leibniz join \((i: X \hookrightarrow Y) \Join (j: U \hookrightarrow V)\) and their Leibniz fat join \((i: X \hookrightarrow Y) \Join (j: U \hookrightarrow V)\). In particular, it follows that the latching maps of the associated functors \(F_\ast, F_\circ: \Delta_+ \times \Delta_+ \to \sSet_+ \) given by \(F_{n,m} := \Delta^n \ast \Delta^m \) and \(F_{n,m} := \Delta^n \circ \Delta^m \) are monomorphisms.

\textbf{Proof.} The explicit descriptions of the join and fat join given in recollection A.1.1 and observation A.3.2 provide us with natural isomorphisms

\[
(X \ast U)_n \cong X_n \cup \left(\prod_{i=0, \ldots, n-1} X_{n-i-1} \times U_i \right) \sqcup U_n
\]

\[
(X \circ U)_n \cong X_n \cup (X_n \times D_n \times U_n) \sqcup U_n
\]

when \(n \geq 0 \) where \(D_n \) denotes the set of those \(n \)-simplices of \(\Delta^1 \) which are neither of the constant operators \(0, 1: [n] \to [1] \). Using these expressions, it is easy to verify that each map in the commutative squares

\[
\begin{array}{ccc}
(X \ast U)_n \xrightarrow{(X \ast j)_n} (X \ast V)_n & \quad & (X \circ U)_n \xrightarrow{(X \circ j)_n} (X \circ V)_n \\
(i \ast U)_n \downarrow \quad & \quad & \downarrow (i \circ U)_n \\
(Y \ast U)_n \xrightarrow{(Y \ast j)_n} (Y \ast V)_n & \quad & (Y \circ U)_n \xrightarrow{(Y \circ j)_n} (Y \circ V)_n \\
\end{array}
\]

is a monomorphism and that both squares are pullbacks in \(\Set \). By the pasting property of such squares in \(\Set \), the pushouts of the upper horizontal and left-hand vertical maps may be constructed as the joint images of their lower horizontal maps and their right hand vertical maps within the sets in their lower right hand corners. However, since the pushouts of \(\sSet \) are constructed pointwise in \(\Set \), it follows that the Leibniz join \(i \Join j \) and Leibniz fat join \(i \Join j \), which are induced out of these particular pushouts by these squares, may be written as inclusions of simplicial subsets into the simplicial sets \(Y \ast V \) and \(Y \circ V \), and hence are monomorphisms.

Now on consulting observation 3.15 and example 4.6 in [23], we see that the latching maps of the functors \(F_\ast \) and \(F_\circ \) at \(([n], [m]) \in \Delta_+ \times \Delta_+ \) may be expressed in terms of the weighted colimit formulae:

\[
L^{n,m}F_\ast \cong (\partial \Delta^n \hookrightarrow \Delta^n) \times (\partial \Delta^m \hookrightarrow \Delta^m) \ast_{\Delta_+ \times \Delta_+} F_\ast \text{ and}
\]

\[
L^{n,m}F_\circ \cong (\partial \Delta^n \hookrightarrow \Delta^n) \times (\partial \Delta^m \hookrightarrow \Delta^m) \ast_{\Delta_+ \times \Delta_+} F_\circ
\]

(A.4.9)

Here we are using \(\times \) to denote the exterior product; cf. [23, 4.2]. Now, a routine application of Yoneda’s lemma, in the form given in [23, example 1.14], and a calculation using the fact that the join and fat join operations are cocontinuous in each variable (as bifunctors on
the category of augmented simplicial sets) reveals that we have canonical isomorphisms:

\[
X \ast U \cong \int_{[n],[m] \in \Delta_+} (X_n \times U_m) \ast (\Delta^n \ast \Delta^m) \cong (X \times U) \otimes_{\Delta_+ \times \Delta_+} F_* \quad \text{and}
\]

\[
X \odot U \cong \int_{[n],[m] \in \Delta_+} (X_n \times U_m) \ast (\Delta^n \odot \Delta^m) \cong (X \times U) \otimes_{\Delta_+ \times \Delta_+} F_\odot
\]

(A.4.10)

These pass to isomorphisms of the corresponding Leibniz operations and we may then apply them to show that the expressions (A.4.9) reduce to:

\[
L_{n,m} F_\ast \cong (\partial \Delta^n \hookrightarrow \Delta^n) \hat{\ast} (\partial \Delta^m \hookrightarrow \Delta^m) \quad \text{and} \quad L_{n,m} F_\odot \cong (\partial \Delta^n \hookrightarrow \Delta^n) \hat{\odot} (\partial \Delta^m \hookrightarrow \Delta^m)
\]

Now apply the result established in the first part of the lemma to conclude that these latching maps are monomorphisms as stated.

\[\square\]

A.4.11. Proposition. For all simplicial sets \(X\) and \(Y\), the map \(s^{X,Y} : X \odot Y \to X \ast Y\) is a weak equivalence in the Joyal model structure.

Proof. From (A.4.10) we know that \(X \ast Y\) and \(X \odot Y\) are naturally isomorphic to the colimits of the functors \(F_\ast, F_\odot : \Delta_+ \times \Delta_+ \to \mathsf{sSet}\) weighted by \(X \times Y\). Furthermore, the natural transformation \(s^{X,Y} : X \odot Y \to X \ast Y\) restricts to give a natural transformation \(s : F_\odot \to F_\ast\) and the naturality of \(s^{X,Y}\) ensures that the canonical isomorphisms fit into a commutative square:

\[
\begin{array}{ccc}
X \odot Y & \cong & (X \times Y) \otimes_{\Delta_+ \times \Delta_+} F_\odot \\
\downarrow{s^{X,Y}} & & \downarrow{(X \times Y) \otimes_{\Delta_+ \times \Delta_+} s} \\
X \ast Y & \cong & (X \times Y) \otimes_{\Delta_+ \times \Delta_+} F_\ast
\end{array}
\]

When \(\mathsf{sSet}\) carries the Joyal model structure, lemma A.4.8 asserts that \(F_\ast\) and \(F_\odot\) are cofibrant in the corresponding Reedy model structure on \(\mathsf{sSet}_{\Delta_+ \times \Delta_+}\), and proposition A.4.7 tells us that \(s : F_\odot \to F_\ast\) is a pointwise weak equivalence.

Now the Eilenberg-Zilber lemma (cf. [3, II.3.1, pp. 26-27]) implies that the latching maps of any (augmented) double simplicial set are monomorphisms. In particular, \(X \times Y\) is Reedy cofibrant, and we may apply [23, proposition 9.1] to show that the functor \((X \times Y) \otimes_{\Delta_+ \times \Delta_+} -\) is a left Quillen functor. Consequently, Ken Brown’s lemma (see [1, 1.1.12] for example) now applies to show that \((X \times Y) \otimes_{\Delta_+ \times \Delta_+} -\) carries the pointwise weak equivalence \(s : F_\odot \to F_\ast\) of Reedy cofibrant objects to a weak equivalence in \(\mathsf{sSet}\). However, the commutative square above tells us that this latter map is isomorphic to \(s^{X,Y} : X \odot Y \to X \ast Y\) which is thus also a weak equivalence as postulated. \[\square\]
A.4.12. Lemma. For any simplicial set X, the slice and fat slice adjunctions

\[
\begin{array}{ccc}
X/\sSet & \xleftarrow{\perp} & \sSet \\
\text{slc}_l^X & & \\
\end{array}
\quad \begin{array}{ccc}
\sSet & \xleftarrow{\perp} & X/\sSet \\
\text{slc}_r^X & & \\
\end{array}
\quad \begin{array}{ccc}
X/\sSet & \xleftarrow{\perp} & \sSet \\
\text{fatslc}_l^X & & \\
\end{array}
\quad \begin{array}{ccc}
\sSet & \xleftarrow{\perp} & X/\sSet \\
\text{fatslc}_r^X & & \\
\end{array}
\]

of definitions [A.1.2 and A.3.5] are Quillen adjunctions with respect to the Joyal model structure on \sSet and the corresponding sliced model structure on X/\sSet.

Proof. By [7, 7.15] it is enough to check that in each of these adjunctions the left adjoint preserves cofibrations and the right adjoint preserves fibrations between fibrant objects. Preservation of cofibrations by these left adjoints follows immediately from lemma A.4.8, since in the Joyal model structure they are simply the monomorphisms of simplicial sets. Preservation of fibrations of fibrant objects by these right adjoints follows immediately from observations A.1.3 and A.2.3: if $p: A \rightarrow B$ is an isofibration of quasi-categories and $f: X \rightarrow A$ is any simplicial map, then the induced simplicial maps $\text{slc}_l^X(p): A/\overline{f} \rightarrow B/\overline{p}$ and $\text{slc}_r^X(p): \overline{f}/A \rightarrow \overline{p}/B$ are also isofibrations of quasi-categories and similarly for fat slices. □

Finally, we arrive at the advertised comparison result relating the slice and fat slice constructions.

A.4.13. Proposition (slices and fat slices of a quasi-category are equivalent). Suppose that X is any simplicial set, that \sSet carries the Joyal model structure, and that X/\sSet carries the associated sliced model structure. Then the comparison maps $s^{X,Y}: X \circ Y \rightarrow X \star Y$ furnish us with natural transformations $s^{X,-}: X \circ - \rightarrow X \star -$ and $s^{-X}: - \circ X \rightarrow - \star X$ which are pointwise weak equivalences. Furthermore, these induce natural transformations $e^l_X: \text{slc}_l \rightarrow \text{fatslc}_l^X$ and $e^r_X: \text{slc}_r^X \rightarrow \text{fatslc}_r$ on corresponding right adjoints, whose components $e^l: f/\overline{f} \rightarrow f/\overline{f} \cong f \downarrow c$ and $e^l: A/\overline{f} \rightarrow A/\overline{f} \cong c \downarrow f$ at an object $f: X \rightarrow A$ of X/\sSet are equivalences of quasi-categories whenever A is a quasi-category.

Proof. The assertions involving left adjoints were proven in proposition A.4.11. The result described in the last sentence of the statement then follows from from the fact that, by lemma A.4.12, all of these adjunctions are Quillen adjunctions. Specifically, that fact allows us to apply the standard result in model category theory [3, 1.4.4] that a natural transformation between left Quillen functors has components which are weak equivalences at each cofibrant object (which fact we have already established) if and only if the induced natural transformation between the corresponding right Quillen functors has components which are weak equivalences at each fibrant object. Now simply observe that an object $f: X \rightarrow A$ is fibrant in X/\sSet if and only if A is a quasi-category. □
A.4.14. Remark. Suppose that $f : B \to A$ and $g : C \to A$ are two simplicial maps. We
generalise our slice and fat slice notation by using $g_{/f}$, $g_{//f}$, $f_{/g}$ and $f_{//g}$ to denote
the objects constructed in the following pullback diagrams

$$
\begin{array}{cccc}
g_{/f} & \to & A_{/f} & \quad \quad g_{//f} & \to & A_{//f} & \quad \quad f_{/g} & \to & f_{/A} & \quad \quad f_{//g} & \to & f_{//A} \\
\downarrow & & \downarrow \pi & & \downarrow & \quad \quad \downarrow & & \downarrow \pi & & \downarrow & \quad \quad \downarrow & \quad \quad \downarrow \pi \\
C & \to & A & & C & \to & A & & C & \to & A & & C & \to & A
\end{array}
$$

(A.4.15)

in which the maps labelled π denote the various canonical projection maps. We call these
the slices and fat slices of g over and under f respectively. We have isomorphisms $g_{/f} \cong (f_{/g})^{op}$ and $g_{//f} \cong (f_{//g})^{op}$. Similarly $g^{op} \downarrow f^{op} \cong (f \downarrow g)^{op}$. The canonical isomorphisms
of proposition A.3.1 may be pulled back to provide us with canonical isomorphisms $g_{/f} \cong cg \downarrow f$ and $f_{//g} \cong f \downarrow cg$.

When A is a quasi-category the projection maps π are all isofibrations that commute
with the comparison equivalences $e_{lf} : f_{/A} \to f_{//A}$ and $e_{rf} : A_{/f} \to A_{//f}$ of proposition A.4.11.

In other words, these comparisons are fibred equivalences (cf. definition B.4.12), which pull
back to define equivalences $e_{lf} : f_{/g} \to f_{//g}$ and $e_{rf} : g_{/f} \to g_{/f}$ between slices of the map
g under and over f. (Alternatively, these maps are equivalences of fibrant objects in the
sliced Joyal model structure on $sSet/A$. Pullback along any map in a model category is
always a right Quillen functor of sliced model structures, so Ken Brown’s lemma tells us
that the pullbacks are again equivalences.)

References

Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
E-mail address: eriehl@math.harvard.edu

Centre of Australian Category Theory, Macquarie University, NSW 2109, Australia
E-mail address: dominic.verity@mq.edu.au