Mahler’s theorem on continuous p-adic maps via generating functions

Noam D. Elkies

Fix a prime p. Let a_0, a_1, a_2, \ldots be a sequence of p-adic numbers. By induction we may find $b_0, b_1, b_2, \ldots \in \mathbb{Q}_p$ such that

$$a_n = \sum_{i=0}^{\infty} \binom{n}{i} b_i.$$

(The sum is actually finite because $\binom{n}{i}$ vanishes once $i > n$.) If $b_i \to 0$ as $i \to \infty$ then the sum

$$A(x) := \sum_{i=0}^{\infty} \binom{x}{i} b_i \quad (x \in \mathbb{Z}_p)$$

is a uniform limit of polynomials and thus converges to a continuous function from \mathbb{Z}_p to \mathbb{Q}_p such that $A(n) = a_n$ for each $n = 0, 1, 2, \ldots$. Mahler proved that conversely if the function $n \mapsto a_n$ extends to a continuous function from \mathbb{Z}_p to \mathbb{Q}_p then $b_i \to 0$ in \mathbb{Q}_p as $i \to \infty$. We give a direct and simple proof of this using generating functions.

Let $f(t), g(u)$ be the formal power series

$$f(t) = \sum_{n=0}^{\infty} a_n t^n, \quad g(u) = \sum_{i=0}^{\infty} b_i u^i$$

in $\mathbb{Q}_p[[t]]$ and $\mathbb{Q}_p[[u]]$. We have

$$f(t) = \sum_{n=0}^{\infty} \sum_{i=0}^{n} \binom{n}{i} b_i t^n = \sum_{i=0}^{\infty} b_i \sum_{n=i}^{\infty} \binom{n}{i} t^n.$$

The inner sum is the Taylor series for $t^n/(1-t)^{n+1}$. Hence

$$f(t) = \frac{1}{1-t} g\left(\frac{t}{1-t}\right).$$

If $u = t/(1-t)$ then $t = u/(1+u)$. We can thus solve for g:

$$g(u) = \frac{1}{1+u} f\left(\frac{u}{1+u}\right).$$

We may now obtain the b_i explicitly in terms of the a_n by expanding each term $u^n/(1+u)^{n+1}$ in the sum defining $(1+u)^{-1} f(u/(1+u))$:

$$b_i = \sum_{m=0}^{i} (-1)^{m-i} \binom{i}{m} a_i.$$

But for our purposes it is more convenient to use the formula for the generating function $g(u)$.

Suppose now that there exists a continuous map $A : \mathbb{Z}_p \to \mathbb{Q}_p$ that extends the function $n \mapsto a_n$. Since \mathbb{Z}_p is compact, the map is uniformly continuous.
Restricting \(A \) to \(\{0, 1, 2, \ldots \} \) and unwinding the definition of uniform continuity in the \(p \)-adic metric, we conclude that for each integer \(k \) there exists an integer \(r \) such that \(a_n - a_n' \) has \(p \)-adic valuation at least \(k \) for all positive integers \(n, n' \) such that \(n \equiv n' \mod p^r \). We shall show that this implies the existence of an integer \(N(k) \) such that \(b_i \) is a multiple of \(p^k \) for all \(i > N(k) \). (Specifically, we shall obtain \(N(k) = (s + k + 1)p^r \) where \(s \) is a nonnegative integer such that \(p^s a_n \in \mathbb{Z}_p \) for all \(n \).) Since \(k \) is arbitrary, this will verify that \(b_i \to 0 \).

Our assumption that \(v_p(a_n - a_n') \geq k \) when \(v_p(n - n') \geq r \) means that

\[
 f(t) = \frac{P(t)}{1 - p^r} + p^k \alpha(t)
\]

for some polynomial \(P \in \mathbb{Q}_p[t] \) of degree less than \(p^r \) and some power series \(\alpha \in \mathbb{Z}_p[[t]] \). (For instance, we may take \(P(t) = \sum_{n=0}^{p^r-1} a_n t^n \) and \(\alpha(t) = \sum_{n=p^r}^{\infty} p^{-k} (a_n - a_{n'}) t^n \) where \(n' \) is the remainder of \(n \) when divided by \(p^r \).) Then

\[
 g(u) = \frac{1}{1 + u} f\left(\frac{u}{1 + u} \right) = \frac{Q(u)}{(1 + u)^{p^r} - u^{p^r}} + \frac{p^k}{1 + u} \alpha\left(\frac{u}{1 + u} \right),
\]

where

\[
 Q(u) = (1 + u)^{p^r-1} P\left(\frac{u}{1 + u} \right) \in \mathbb{Q}_p[u],
\]

a polynomial of degree less than \(p^r \), and the remainder \(p^k \alpha(u/(1 + u)) / (1 + u) \) is again a power series in \(p^k \mathbb{Z}_p[[u]] \).

Now the key point is that the denominator \((1 + u)^{p^r} - u^{p^r} \) of \(g(u) \) is congruent to 1 mod \(p \). (It is well known that \((X + Y)^p \equiv X^p + Y^p \mod p \) in \(\mathbb{Z}[X,Y] \); it follows by induction on \(r \) that \((X + Y)^{p^r} \equiv X^{p^r} + Y^{p^r} \mod p \); now take \(X = u \) and \(Y = 1 \).) That is,

\[
 (1 + u)^{p^r} - u^{p^r} = 1 + pR(u)
\]

for some polynomial \(R \) with coefficients in \(\mathbb{Z}_p \) and degree \(p^r - 1 \). Therefore

\[
 \frac{Q(u)}{(1 + u)^{p^r} - u^{p^r}} = Q(u) \left(1 + pR(u) + p^2 R^2(u) + p^3 R^3(u) + \cdots \right).
\]

Let \(s \) be a nonnegative integer such that \(p^s Q(u) \in \mathbb{Z}_p[u] \). Then

\[
 \frac{Q(u)}{(1 + u)^{p^r} - u^{p^r}} = Q(u) \sum_{j=0}^{k+s-1} (pR(u))^j + \beta(u)
\]

where

\[
 \beta(u) = Q(u) \sum_{j=k+s}^{\infty} (pR(u))^j \in p^k \mathbb{Z}_p[[u]]
\]

while \(Q(u) \sum_{j=k+s}^{\infty} (pR(u))^j \) is a polynomial, say of degree \(N_k \). We have shown that \(g(u) \) differs from this polynomial by a power series all of whose coefficients have \(p \)-adic valuation at least \(k \). Thus \(v_p(b_i) \geq k \) for all \(i > N_k \). This establishes our claim and completes the proof of Mahler’s theorem.