Math 55b: Honors Real and Complex Analysis

Homework Assignment #7 (20 March 2017):
Univariate integral calculus

Bitte ve[r]giß alles, was Du auf der Schule gelernt hast;
dennDu hast ist nicht gelernt. Emil Landau

Admittedly that’s a bit extreme, but it is true that for many of you Stieltjes integrals,
especially of vector-valued functions, are a new path in the familiar territory of integration,
and might require a different kind of thinking. This problem set consists of only
eight problems including four from Rudin, but most are geared towards developing
such “new kinds of thinking”, and a few are somewhat open-ended to suggest further
directions in analysis that we won’t pursue in Math 55.

The first few problems are from Rudin pages 138–139:2

1. [Rudin #3] Define functions \(\beta_j : \mathbb{R} \to \mathbb{R} \) (\(i = 1, 2, 3 \)) as follows: for each \(j \), set \(\beta_j(x) = 0 \) for \(x < 0 \) and \(\beta_j(x) = 1 \) for \(x > 0 \); but \(\beta_1(0) = 0, \beta_2(0) = 1, \beta_3(0) = 1/2 \). Let \(f : [-1, 1] \to \mathbb{R} \) be any bounded function.
 a) Prove that \(f \in \mathcal{R}(\beta_1) \) iff \(f(0) = \lim_{x \to 0^+} f(x) \), and then \(\int_{-1}^1 f \, d\beta_1 = f(0) \);
 b) State and prove a similar result for \(\mathcal{R}(\beta_2) \);
 c) Prove that \(f \in \mathcal{R}(\beta_3) \) iff \(f \) is continuous at 0, in which case \(\int_{-1}^1 f \, d\beta_j = f(0) \) for each \(j = 1, 2, 3 \).

2. [Rudin #8; “integral test” for convergence of a positive series \(\sum_{n>n_0} f(n) \)] Let \(\alpha : [a, \infty) \to \mathbb{R} \) be an increasing function. Suppose \(f : [a, \infty) \in \mathcal{R}(\alpha) \) on \([a, b] \) for each \(b > a \). The “improper Riemann-Stieltjes integral” \(\int_a^\infty f(x) \, d\alpha(x) \) is then defined as \(\lim_{b \to \infty} \int_a^b f(x) \, d\alpha(x) \) if the limit exists [and is finite]. In that case we say the integral converges; we say it converges absolutely if \(\int_a^\infty |f(x)| \, d\alpha(x) \) also converges. Naturally the “improper Riemann integral” is the special case of this where \(\alpha(x) = x \) for all \(x \). [Likewise for \(\int_a^\infty f \, d\alpha \) converges to \(f_{\alpha}^a - f_{\alpha}^\infty f \, d\alpha \) if both integrals converge.]
 Suppose further that \(f(x) \geq 0 \) and \(f \) is monotone decreasing on \(x \geq 1 \). Prove that \(\int_{-1}^\infty f(x) \, dx \) converges if and only if \(\sum_{n=1}^{\infty} f(n) \) converges.

3. [Integration by parts for improper integrals] Show that in some cases integration
 by parts can be applied to the “improper” integrals defined in the previous problem;
 that is, state appropriate hypotheses, formulate a theorem, and prove it.
 Your hypotheses should be applicable in the following special case: the improper
 integrals \(\int_0^\infty \cos(x) \, dx/(x+1) \) and \(\int_0^\infty \sin(x) \, dx/(x+1) \) converge and are equal.
 Show that one of these two integrals (which one?) converges absolutely, but the
 other does not.

1Quote taken from Chapter 10 of M. Artin’s Algebra. It roughly translates as “Please forget all
that you have learned in school, for you haven’t [really] learned it.” Don’t complain about the German
transcription, which is presumably of some local dialect — even I recognize that this isn’t the the
German we auf der Schule lernen.

2For the first of these, cf. also Rudin #1: Suppose \(\alpha : [a, b] \to \mathbb{R} \) is increasing, and continuous
at \(x_0 \). Define \(f : [a, b] \to \mathbb{R} \) by \(f(x) = 0 \) if \(x \neq x_0 \) and \(f(x_0) = 1 \). Then \(f \in \mathcal{R}(\alpha) \) [i.e. \(f \) is integrable with respect to \(\alpha \)], and \(\int_a^b f(x) \, d\alpha = 0 \).
4. [Bernoulli polynomials] Prove that for each positive integer m there exists a polynomial B_m such that $\sum_{i=1}^n i^{m-1} = B_m(n)$ for all positive integers n. [Hint: What must the polynomial $B_m(x) - B_m(x-1)$ be? The map taking any polynomial $P(x)$ to the polynomial $Q(x) := P(x) - P(x-1)$ is linear.] Determine the leading coefficient of B_m, and deduce the value of $\int_0^b x^{m-1} \, dx$ for any $b > 0$ (and thus also of $\int_a^b x^{m-1} \, dx$) without using the Fundamental Theorem of Calculus. Beyond the leading term, what further patterns can you detect in the coefficients of B_m? Can you prove any of these patterns? (You may need to go at least to $m = 6$ or $m = 7$ to see what’s going on; a computer algebra system could help to handle the linear algebra manipulations.)

5. [Fermat] Prove using the Riemann-sum definition of the integral that $\int_a^b x^{r-1} \, dx = (b^r - a^r)/r$ for every nonzero rational number r and all real a, b such that $0 < a < b$. [Note: since Fermat predated Newton, the solution cannot use the Fundamental Theorem of Calculus. Besides the special case that r is a positive integer, addressed in the previous problem, you might also find a solution for the special case that $1/(r-1)$ is a positive integer — but this will not directly lead you to a solution of the general case.]

6. In the vint handout on integration of vector-valued functions, you might have expected a theorem to the effect that such a function is integrable (as defined there) with integral I if and only if for each $\epsilon > 0$ there exists a partition P of whose Riemann sums differ from I by vectors of norm at most ϵ. Certainly the existence of such P is a consequence of integrability, but in fact the converse implication does not hold! Prove this by finding a normed vector space V and a function $f : [0, 1] \rightarrow V$ such that $\Delta(P) = 1$ for any partition P (and thus $f \notin \mathscr{A}$), but nevertheless for each ϵ there exist partitions P such that every Riemann sum $R(P, \bar{f})$ for $\int_0^1 f(x) \, dx$ has norm at most ϵ. [Hints: f cannot be continuous or even nearly (e.g. piecewise) continuous, because then our vector version of Thm. 6.8 would yield integrability; in fact the function I have in mind is discontinuous everywhere. Moreover, V cannot be finite dimensional. Thus the example is rather pathological — but it is also simple enough that it can be described and proved in a short paragraph.]

Finally, (indefinite) integration of arbitrary rational functions:

7. [Partial fractions] Let k be an algebraically closed field. Let $K = k(x)$, the field of rational functions in one variable x with coefficients in k. Show that the following elements of K constitute a basis for K as a vector space over k: x^n for $n = 0, 1, 2, 3, \ldots$, and $1/(x - x_0)^n$ for $x_0 \in k$ and $n = 1, 2, 3, \ldots$. (Linear independence is easy. To prove that the span is all of K, consider for any polynomial $Q \in k[x]$ the subspace $V_Q := \{ P/Q : P \in k[x], \deg(P) < \deg(Q) \}$ of K, and compare its dimension with the number of basis vectors in V_Q.)

8. Prove that the integral of any $f \in \mathbb{R}(x)$ is a rational function plus a linear combination of functions of the form $\log |x - x_0|$, $\log((x - x_0)^2 + c)$, and $\tan^{-1}(ax + b)$ ($x_0, a, b, c \in \mathbb{R}$, $c > 0$).

This problem set due Monday, 27 March, at the beginning of class.

3 Not that it matters for our purposes, but the “Bernoulli polynomials” usually seen in the literature differ from our B_m by an additive constant.

4 Along the way we again encounter a natural example of a vector space with an uncountable algebraic basis (assuming k is uncountable, e.g. $k = \mathbb{C}$).