Math 55b: Honors Real and Complex Analysis

Homework Assignment #9 (25 March 2011):
Multivariate differential calculus

Mathematicians have long regarded it as demeaning to work on problems related to elementary geometry in two or three dimensions, in spite of the fact that it is precisely this sort of mathematics which is of practical value.
— B. Grünbaum and G.C. Shephard, in Handbook of Applied Mathematics

[But then there isn’t much new to be done in 2D or 3D geometry, and higher-dimensional geometry can have practical uses too — see the last two problems.]

1. Solve Problems 7 and 10 on page 239.

2. Solve Problems 17 and 18 on page 241 (and see #5 below; yes, 17a was in effect done in class).

3. [Multivariate Taylor expansions] solve Problem 30 on pages 243–4. (NB What Rudin calls “$C^{(m)}(E)$” is our “$C^m(E, \mathbb{R})$”; as usual this works with \mathbb{R} replaced by an arbitrary normed vector space.)

4. The Laplacian Δf of a C^2 function f on $E \subset \mathbb{R}^n$ is defined by

$$\Delta f := \sum_{j=1}^{n} \frac{\partial^2 f}{\partial x_j^2} = \sum_{j=1}^{n} D_{jj} f.$$

Let $A : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be a linear transformation. Show that $\Delta(f \circ A) = (\Delta f) \circ A$ for all $f \in C^2$ if and only if A is orthogonal. In particular, the “harmonic functions” (those in the kernel of Δ, i.e. C^2 functions f with $\Delta f = 0$) are preserved by orthogonal changes of variable.

5. [Cauchy-Riemann equations] The usual identification of \mathbb{C} with \mathbb{R}^2 (identify the complex number $z = x + iy$ with the vector (x, y)) lets us regard any map $w : \mathbb{C} \rightarrow \mathbb{C}$ as a map of \mathbb{R}^2 to \mathbb{R}^2, or equivalently as a pair of real-valued functions $u(x, y) = \text{Re } f(x + iy), v(x, y) = \text{Im } f(x + iy)$ on \mathbb{R}^2. Prove the following criterion for a C^1 function w to be differentiable as a map from \mathbb{C} to \mathbb{C}, i.e., for there to exist a function $w' : \mathbb{C} \rightarrow \mathbb{C}$ such that $w(z+h) = w(z) + hw'(z) + o(|h|)$ as $h \rightarrow 0$: the functions u, v must satisfy the Cauchy-Riemann equations

$$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Show that this is the case if w is any polynomial in z with complex coefficients, or the exponential function $w(z) = e^z = e^{x}(\cos y + i \sin y)$. Prove that such u, v, w are necessarily harmonic functions on \mathbb{C}. [We shall see that conversely every harmonic function on \mathbb{C} is the real part of a differentiable function of a complex variable.]
6. [A foray into algebraic geometry] Recall that as an example of an implicit function we used the “folium of Descartes” consisting of all \((x, y) \in \mathbb{R}^2\) such that \(x^3 + y^3 = 3xy\). For \(y \neq 0\) let \(t = x/y\) and solve for \(x, y\) as functions of \(t\). Use this and the Inverse Function Theorem to obtain another proof of the differentiability of \(y\) with respect to \(x\) at all but two points of the “folium”. Explain what happens at those two points in terms of these functions \(x(t), y(t)\). [Careful around \((0, 0)\)!]

7. Let \(E\) be the subspace of the \((n + 1)\)-dimensional real vector space \(P_n\) consisting of the polynomials of degree \(n\), i.e. \(E = \{ \sum_{j=0}^{n} a_jT^j : a_n \neq 0 \}\). Fix \(P_0 \in E\) and a real root \(t_0\) of \(P_0\). Give necessary and sufficient conditions on \(P_0, t_0\) for there to exist a \(C^1\) real-valued function \(t\) on a neighborhood of \(P_0\) such that \(t(P_0) = t_0\) and \(t(P)\) is a root of \(P\) for each \(P\) in the neighborhood. What is the derivative \(t'(P_0)\)?

8. Let \(M_0\) be an \(n \times n\) matrix, and \(\lambda_0 \in \mathbb{R}\) an eigenvalue of \(M_0\) that is a simple root of the characteristic polynomial of \(M_0\). Let \(v_0\) be a \(\lambda_0\)-eigenvector of \(M_0\). Regard \(M_0\) as an element of the \(n^2\)-dimensional vector space \(\mathcal{M}_n\) of \(n \times n\) matrices. Prove that there is a neighborhood \(U\) of \(M_0\) in \(\mathcal{M}_n\) and \(C^1\) functions \(\lambda : U \to \mathbb{R}\) and \(v : U \to \mathbb{R}^n\) such that \(\lambda(M_0) = \lambda_0, v(M_0) = v_0\), and, for all \(M \in U\), \(\lambda(M)\) is an eigenvalue of \(M\) with eigenvector \(v(M)\). What is the derivative \(\lambda'(M_0)\)? What can you say about \(v'(M_0)\)?

This problem set, and the problem you may have postponed from the previous problem set, is due at the beginning of class on Friday, 1 April (no fooling).