The expression δ_{ij} is called the Kronecker delta (after the mathematician Leopold Kronecker [1823–1891], who made more substantial contributions to mathematics than this).1

— Corwin and Szczarba, *Calculus in Vector Spaces*, p.124

A bit more about the structure of infinite-dimensional vector spaces:

1. i) Prove that a vector space with a countable2 spanning set over a countable field is countable.

 ii) Prove that a vector space with a countable spanning set over any field does not have an uncountable linearly independent set.

 iii) Prove that if a vector space V has a countable spanning set S then some subset of S is a basis for V.

2. Suppose V is a vector space and U a subspace with basis B_0. Suppose that for some (finite) n we can extend B_0 by n vectors to obtain a basis for V. Prove that if B is any basis for U, and B' any basis for V that contains B, then $\{v \in B': v \notin B\}$ has cardinality n. U, and thus also V, is finite dimensional), once we’ve shown that the dimension is well-defined when finite; but the point is that the result still holds without that assumption.]

Some basics about linear transformations and their matrices:

3.–4. Solve Exercises B-11 (page 68) and D-9, 10, 16 (page 89) from Chapter 3 of the textbook. For B-11, if $S_1 \cdots S_n$ is injective, what if anything can be said of S_1, S_2, \ldots, S_n? For the other three exercises, note that “$L(V)$” is Axler’s abbreviation for “$\mathcal{L}(V, V)$” (it is also known as $\text{End}(V) = \text{Hom}(V, V)$).

5. Let P_n be the (\mathbb{R}- or \mathbb{C}-)vector space of polynomials of degree at most n, and $L : P_n \to P_n$ be the linear transformation taking any polynomial $P(x)$ to the polynomial

\[
(L(P))(x) = (x - 3)P''(x)
\]

(here P'' is the second derivative d^2P/dx^2). Exhibit a matrix for L relative to a suitable basis for P_n, and determine the kernel, image, and rank of L.

1It is the (i,j) entry of an identity matrix, that is, $\delta_{ij} = 1$ if $i = j$ and 0 otherwise; also $\delta_{ij} = \varphi_j(\nu_i)$ where $(\nu_i)_{i=1}^n$ is a basis for a finite-dimensional vector space, and $(\varphi_j)_{j=1}^m$ its dual basis, see 3.96 on page 102.

2For us “countable” means “finite or countably infinite.”
6. Let \(V, W \) be arbitrary vector spaces over the same field. Show that, for any vector \(v \) in \(V \), the evaluation map \(E_v : \mathcal{L}(V, W) \to W \) defined by \(E_v(L) = L(v) \) for all \(L \in \mathcal{L}(V, W) \) is a linear transformation. If \(V, W \) are finite dimensional, what is the dimension of \(\ker E_v \)?

7. Let \(V, W \) be vector spaces over the rational field \(\mathbb{Q} \). Prove that a map \(T : V \to W \) is linear if and only if \(T(v + v') = Tv + Tv' \) for all \(v, v' \in V \).

(Cf. the italicized note to Exercise 9 on p.58 of the textbook.)

More about duality:

8. We saw that, for any vector spaces \(V, W \), the dual of \(V \oplus W \) is naturally identified with \(V^* \oplus W^* \). What is the dual of \(\oplus_{i \in I} V_i \)? Use this to construct a vector space \(V \) over some field \(F \) such that \(V \) is not isomorphic with \(V^* \).

9. Let \(x_0, \ldots, x_m \) be distinct elements of \(F \). Recall that the \(m + 1 \) vectors \(v_i := (x_0^i, x_1^i, \ldots, x_m^i) \) \((0 \leq i \leq m)\) constitute a basis of \(F^{m+1} \). Describe the dual basis.

10. Finally, suppose \(F \) is a finite field of \(q \) elements, and let \(e \) be a positive integer such that \(2e < q \). Then we can regard \(\mathcal{P}_{q-2e} \) as a subspace of \(F^F \) by evaluation at the elements of \(F \). Call this subspace \(U \). Show that for any \(v \in V \) there is at most one \(u \in U \) that differs from \(v \) in fewer than \(e \) coordinates; that is, there is at most one polynomial \(P \in \mathcal{P}_{q-2e} \) such that \(P(x) \neq v_x \) holds for fewer than \(e \) elements \(x \in F \). Suppose such \(P \) exists and is nonzero, and let \(d < e \) be the number of \(x \in F \) such that \(P(x) \neq v_x \).

Prove that \(d \) is also the smallest integer \(n \) such that the intersection of \(\mathcal{P}_{q-2e+d} \) with the vector space \(\mathcal{P}_d \) : \(\{ Pv : P \in \mathcal{P}_d \} \) contains some vector \(w \neq 0 \). Explain how this can be used to recover \(u \) in fewer than \(q \) calculations of such \(w \).

(The point of this is that each such calculation can be done “in polynomial time” [i.e. there exist \(C \) and \(k \) such that the calculation requires at most \(Cq^k \) field operations in \(F \), regardless of what \(q, e, v \) might be — one way to do this is “Gaussian elimination”; while trying all \(e \)-element subsets of \(F \) certainly cannot be done in polynomial time. Of course the exceptional case \(u = P = 0 \) can be detected in polynomial time.)

Problem set is due Friday, Sep. 22 in class.