Math 55a: Honors Abstract Algebra

Homework Assignment #11 (27 November 2017):

Representations of finite groups

\[i^2 = j^2 = k^2 = ijk = -1 \]

—W.R. Hamilton, 1843 [cut into a stone on Brougham Bridge, Dublin; see also the final two problems].

We start with some applications of the general theory to permutation representations. Recall that if a finite group \(G \) acts on a finite set \(S \) then \(G^S \) is a representation of \(G \) and the associated character takes any \(g \in G \) to the number of fixed points of \(g \).

1. Let \(V = G^S \). Prove that the dimension of the fixed subspace \(V^G \) is the number of orbits of the action of \(G \) on \(S \), both by identifying \(V^G \) explicitly in terms of the orbit decomposition and by using the formula \(\langle \chi, 1 \rangle \) for that dimension. Deduce that \(G \) is transitive \(\iff \dim V^G = 1 \iff \langle \chi, 1 \rangle = 1 \).

2. Suppose then that \(G \) acts transitively on \(S \). Let \(V_0 \) be the orthogonal complement \(\ominus V \ominus V^G \) of \(V^G \) in \(V \), and let \(\chi_0 \) be its character. Determine \(\langle \chi_0, \chi_0 \rangle \), and deduce that \(V_0 \) is irreducible if and only if \(G \) acts doubly transitively on \(S \). [A group action on \(S \) is said to be “doubly transitive” when it is transitive on ordered pairs \((s_1, s_2)\) with \(s_1, s_2 \in S \) and \(s_1 \neq s_2 \).]

3. i) Show that for \(k = 1, 2, 3, \ldots \) the permutation representation of \(G \) on \(S^k \) is isomorphic with \(V^\otimes k \). Deduce a formula for the number of \(G \)-orbits on \(S^k \). (The action of \(G \) on \(S \) is not required to be transitive, and the action on \(S^k \) is coordinatewise.)

ii) Give a similar formula for the number of \(G \)-orbits on the set \(k^S \) of \(k \)-colorings of \(S^2 \).

iii) Use this formula to show that there are 36 carbon tetrahalides. (A “carbon tetrahalide” is a molecule \(CX_4 \) where each \(X \) is one of the four halogens \(F, Cl, Br, I \), and the four \(X \)'s are vertices of a tetrahedron centered on the \(C \) atom.) Verify this count directly. [Note that there are two kinds of \(CFClBrI \) because only orientation-preserving symmetries are allowed, so an asymmetric molecule is distinct from its mirror image (chemists call such mirror images “enantiomers”); that is, the relevant group \(G \) is what Artin calls the tetrahedral group \(T \) of order 12.]

What about the character of \(\chi_0 \)? Here the formulas are more complicated; the character of \(g \in G \) depends on the full characteristic polynomial of \(\rho(g) \), not just its trace. It’s easier to formulate the result in terms of a generating function, which is a formal power series \(X(g) = \sum_{k=0}^\infty \chi_k(g)T^k \) where \(\chi_k(g) \) is the trace of \((\otimes^k\rho)(g) \) or \((\wedge^k\rho)(g) \) respectively.

4. i) For \(\wedge^k \), this generating function is a polynomial of degree \(\dim(V) \), because once \(k > \dim(V) \) the \(k \)-th exterior power is the zero space so the trace is zero as well. Show that this polynomial is the determinant of \(1 + T\rho(g) \).

ii) For \(\otimes^k \), show that \(X(g) = 1 / \det(1 - T\rho(g)) \).

\(^1\)a.k.a. Broom, which sounds the same in one pronunciation of “brougham”, which is a kind of horse-drawn carriage — and the source of “broughammed” (“traveled by brougham”, or possibly “equipped with a brougham”) which is a candidate for the longest English-language monosyllable. But I digress.

\(^2\)Mathematically a “\(k \)-coloring of \(S^n \)” is just a map from \(S \) to a \(k \)-element set \(C \). The name suggests that we think of \(C \) as a set of “colors” that can be used to paint each element of \(S \). Yet another equivalent description is a partition of \(S \) as the disjoint union of sets \(S_c \) where \(c \) ranges over \(C \) and \(S_c \) is the preimage of \(c \) under the map \(S \to C \).
iii) Now let $G = S_3$ and V be the 3-dimensional permutation representation. Thus S_3 acts on the polynomial ring $C[z_1, z_2, z_3] = \bigoplus_{k=0}^\infty \text{Sym}^k V$ by permuting the variables z_1, z_2, z_3. Show that $\dim((\text{Sym}^k V)^G)$ is the X^k coefficient of the generating function \(((1 - X)(1 - X^2)(1 - X^3))^{-1}, \) and explain why this is consistent with the known result that the subring of $C[z_1, z_2, z_3]$ invariant under the action of S_3 consists of polynomials in the elementary symmetric functions $z_1 + z_2 + z_3, z_2z_3 + z_3z_1 + z_1z_2,$ and $z_1z_2z_3$ of degrees 1, 2, 3.

The irreducible representations of the direct product of two finite groups:

5. i) Let \((V_1, \rho_1) \) and \((V_2, \rho_2)\) be complex representations of finite groups G_1, G_2. Define a representation of \((V, \rho)\) of $G := G_1 \times G_2$ by $V = V_1 \otimes V_2$ and $\rho(g_1, g_2) = \rho_1(g_1) \otimes \rho_2(g_2)$ for all $g_1 \in G_1$ and $g_2 \in G_2$. Find the character of (V, ρ), and deduce that (V, ρ) is irreducible if and only if both (V_1, ρ_1) and (V_2, ρ_2) are irreducible.

ii) Prove that every irreducible representation of G arises from the construction in part (i) for some irreducible representations $V_1 = (\rho_1, g_1)$ and $V_2 = (\rho_2, g_2)$. [Hint: first show that if V_1, V_2 are irreducible then $V_1 \otimes V_2$ cannot be isomorphic with $W_1 \otimes W_2$ unless $V_1 \cong W_1$ and $V_2 \cong W_2$.]

The Hamilton quaternions are the skew field \mathbb{H} defined as follows: \mathbb{H} is a 4-dimensional algebra over \mathbb{R} with basis $1, i, j, k$ and multiplication characterized by the properties that where 1 is the multiplicative identity while $i^2 = j^2 = k^2 = \bar{ij} = k = -ij). The quaternion group Q_8 is the subgroup \{±1, ±i, ±j, ±k\} of \mathbb{H}^\ast. In the last two problems you’ll verify that \mathbb{H} is indeed a skew field and construct a representation W of Q_8 over \mathbb{R} that is irreducible over \mathbb{R} but not over \mathbb{C} and has $\text{End}_{Q_8}(W) \cong \mathbb{H}$.

6. i) Let A be the \mathbb{R}-vector space of matrices \(
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\) with $a, b, c, d \in \mathbb{C}$ such that \(\bar{a} = d \) and $\bar{b} = -c$. Prove that A is closed under matrix multiplication, and every nonzero $A \in A$ is invertible.

ii) For $A \in A$ define $\sigma(A) = \text{tr}(A)I - A$. Prove that σ is an anti-involution of A (that is, σ is a vector space involution of A satisfying $\sigma(AA') = \sigma(A')\sigma(A)$ for all $A, A' \in A$). Compute $A\sigma(A)$ and $\sigma(A)A$, and use this to prove that A contains the inverse of every nonzero $A \in A$.

iii) Find an isomorphism between \mathbb{H} and A that identifies σ with the anti-involution taking $1, i, j, k$ to $+1, -i, -j, -k$ respectively. (This anti-involution is called “conjugation” in \mathbb{H}, and denoted by $q \leftrightarrow \bar{q}$ as is done for complex conjugation.)

7. i) The identification of \mathbb{H} with A yields a 2-dimensional complex representation V of \mathbb{H}^\ast, and thus of Q_8. Prove that the character of any $q \in \mathbb{H}^\ast$ is the real number $q + \bar{q}$. Deduce that V is an irreducible representation of Q_8. [You’ll recognize its character if you went to section last week.]

ii) The action of \mathbb{H}^\ast on \mathbb{H} by multiplication from the left gives \mathbb{H} the structure of a 4-dimensional real representation W of \mathbb{H}^\ast, and thus of Q_8. Compute its character for any $q \in \mathbb{H}^\ast$, and verify that it equals $2\chi_V(q)$. On the other hand, multiplication from the right by any $q \in \mathbb{H}$ commutes with our action, and this shows that $\text{End}_{Q_8}(W)$ contains a copy of \mathbb{H}. Prove that in fact $\text{End}_{Q_8}(W) \cong \mathbb{H}$.

iii) Use this to show that W is irreducible as a real representation of Q_8.

[Another route to the result of (iii) starts by using the general theory to find that $W \otimes_R \mathbb{C}$ is isomorphic with $V \oplus V$ as a representation of Q_8; thus if W were reducible it would be a direct sum of two irreducible real representations of Q_8, with $-1 \in Q_8$ acting on both by multiplication by -1. But, as with the “unitary trick” for complex representations, any real representation of a finite group has an invariant orthogonal form, so we’d get a homomorphism $Q_8 \to \text{O}_2(\mathbb{R})$ taking -1 to -1, and this is soon seen to be impossible, e.g. using the facts that $\text{SO}_2(\mathbb{R})$ is commutative and each element of $\text{O}_2(\mathbb{R})$ that is not in $\text{SO}_2(\mathbb{R})$ is an involution.]

This final problem set is due Wednesday, December 6 at 5 P.M.