Math 55a: Honors Abstract Algebra

Homework Assignment #10 (14 November 2016):
Linear Algebra X (determinants and distances);
representations of finite abelian groups (Discrete Fourier transform)

The fast Fourier transform . . . is the most important numerical algorithm of our lifetime.

Determinants and inner products (and another application of Gram-Schmidt):

1. i) Let $F = \mathbb{R}$ or \mathbb{C}, and $v_1, v_2, \ldots, v_n \in F^n$ the column vectors of an $n \times n$ matrix A.
Prove that
$$|\det A| \leq \prod_{i=1}^{n} ||v_i||$$
where $||\cdot||$ is the usual norm on F^n, with equality if and only if the v_i are orthogonal
with respect to the corresponding inner product.

ii) Deduce that if M is a positive-definite symmetric or Hermitian $n \times n$ matrix with
entries $a_{i,j}$ then
$$\det M \leq \prod_{i=1}^{n} a_{i,i},$$
with equality if and only if M is diagonal.

(We know already that $\det M$ and the diagonal entries $a_{i,i}$ are positive real numbers.)

Some classical product formulas for determinants:

2. For elements x_1, x_2, \ldots, x_n of any field F, let $V(x_1, x_2, \ldots, x_n)$ be the $n \times n$ matrix
whose (i,j) entry is x_j^{i-1}. Find a homomorphism T from the group $(F, +)$ to the
group of upper triangular $n \times n$ matrices over F, such that
$$V(x_1 + t, x_2 + t, \ldots, x_n + t) = V(x_1, x_2, \ldots, x_n) T(t)$$
for all t and x_i. Use this to derive inductively the formula
$$\prod_{i=1}^{n-1} \prod_{j=i+1}^{n} (x_j - x_i)$$
for the Vandermonde determinant $\Delta(x_1, x_2, \ldots, x_n) = \det V(x_1, x_2, \ldots, x_n)$. What
is the determinant of the $n \times n$ matrix whose (j,k) entry is $\sum_{i=1}^{n} x_i^{j+k-2}$?

3. i) Let x_i, y_j ($1 \leq i, j \leq n$) be any elements of a field F such that $x_i + y_j \neq 0$ for each
i, j. Let A be the $n \times n$ matrix whose (i,j) entry is $1/(x_i + y_j)$. Prove that
$$\det(A) = \Delta(x_1, \ldots, x_n) \Delta(y_1, \ldots, y_n) / \prod_{i=1}^{n-1} \prod_{j=1}^{n} (x_i + y_j)$$
where Δ is the Vandermonde determinant of the previous problem.
It follows via Cramer that each entry of A^{-1} is a product of linear polynomials
in the x_i and y_j; in particular this explains the form of the inverse of the Hilbert
matrix, which has $x_i = i$ and $y_j = j - 1.$

ii) In particular, if $F = \mathbb{R}$, $x_i = y_i > 0$ for each i, and the x_i are distinct, deduce that
the symmetric matrix A is positive definite (without invoking the interpretation of
the associated inner product on \mathbb{R}^n given in part (iii)).
iii) Now let V be the inner product space of continuous functions on $(0, 1)$ with $(f, g) = \int_0^1 f(t)g(t)\, dt$, and W the subspace spanned by the functions t^{x_i} for some distinct nonnegative $x_i \in \mathbb{R}$. Give a formula for the distance from W to the element t^x of V for any real $x \geq 0$. [Hint: first find, for any linearly independent vectors x_0, x_1, \ldots, x_n in a real inner product space, a formula for the distance between x_0 to the span of x_1, \ldots, x_n as a quotient of determinants.]

This is the key to one of the proofs we’ll give next term of Mintz’s theorem on sequences $\{x_i\}$ such that the span of $\{t^{x_i}\}$ is dense in the space of continuous functions on $[0, 1]$.

The remaining problems concern Fourier analysis on finite abelian groups, which is a bridge between linear algebra and representation theory.

The Pontryagin dual \hat{G} of a finite abelian group G is the set of homomorphisms from G to the multiplicative group \mathbb{C}^\times. 1 Pointwise multiplication gives \hat{G} the structure of an abelian group (that is, the product of $\hat{g}_1, \hat{g}_2 \in \hat{G}$ is the homomorphism $g \mapsto \hat{g}_1(g)\hat{g}_2(g)$, and likewise for the identity and group inverse). While the definition doesn’t say this, any \hat{g} must be a root of unity, because $g^n = 1$ for some integer $n > 0$, whence $(\hat{g}(g))^n = \hat{g}(g^n) = 1$. It follows that $|\hat{g}(g)| = 1$ for all $g \in G$ and $\hat{g} \in \hat{G}$. Elements of \hat{G} are also called “characters” of G. We next explore Pontryagin duality for finite abelian groups and some applications.

4. i) Prove that if $G = \mathbb{Z}/n\mathbb{Z}$ for some positive integer n then $\hat{G} \cong \mathbb{Z}/n\mathbb{Z}$.

ii) Prove that if G_1, G_2, \ldots, G_r are any finite abelian groups then the Pontryagin dual of $G_1 \times G_2 \times \cdots \times G_r$ is $\hat{G}_1 \times \hat{G}_2 \times \cdots \times \hat{G}_r$.

Thus if G is the product of groups $Z/n_j Z$ then $\hat{G} \cong G$. In particular $\#(\hat{G}) = \#(G)$. It turns out that every finite abelian group G is of the form $\prod_{j=1}^r Z/n_j Z$, but we won’t need this to prove that $\#(\hat{G}) = \#(G)$ because we will obtain this fact in the course of proving the next few results.

5. i) Suppose $\hat{g} \in \hat{G}$ is not the identity character. Prove that $\sum_{g \in G} \hat{g}(g) = 0$.

ii) Let C^G be the complex inner product space of functions $G \to \mathbb{C}$ with the usual inner product $\langle f_1, f_2 \rangle = \sum_{g \in G} f_1(g)\overline{f_2(g)}$. Prove that distinct characters of G, considered as elements of C^G, are orthogonal. Deduce that $\#(\hat{G}) \leq \#(G)$.

6. i) Let $\varphi : H \to G$ be any homomorphism of finite abelian groups. Obtain a dual homomorphism $\hat{\varphi} : \hat{G} \to \hat{H}$, and construct an isomorphism between $\ker(\hat{\varphi})$ and the Pontryagin dual of the quotient group $G/\varphi(H)$.

ii) Deduce that if $0 \to H \to G \to Q \to 0$ is a short exact sequence of finite abelian groups, and $\#(\hat{G}) = \#(G)$, then the dual homomorphisms $0 \to \hat{Q} \to \hat{G} \to \hat{H} \to 0$ also form a short exact sequence, and moreover $\#(\hat{H}) = \#(H)$ and $\#(\hat{Q}) = \#(Q)$.

iii) Show that for any finite abelian group G there is a surjective homomorphism $\hat{G} \to G$ for some abelian group \hat{G} of the form $\prod_{j=1}^r Z/n_j Z$. Deduce that $\#(\hat{G}) = \#(G)$, and thus that the dual of any short exact sequence of finite abelian groups is again exact. [Hint: It’s easy to construct a surjective homomorphism $\hat{G} \to G$ if you don’t mind r being quite large.]

1 The “ya” in “Pontryagin” (transliterated a single Russian letter that looks like a backward R) is sometimes written “ia” or “ja”.

2 The standard proof is to let $N = \#(G)$ and consider the $N + 1$ group elements $1, g, g^2, \ldots, g^N$. By the pigeonhole principle, two of them must coincide, say $g^n = g^b$ with $a < b$, and then $g^{b-a} = 1$. In fact we may always take $n = N$, but this will not be needed here.

Fourier analysis leads to a more general notion of Pontryagin dual of an arbitrary “locally compact” abelian group, such as \mathbb{Z} or \mathbb{R}, and in that setting one must explicitly impose the condition that $|\hat{g}(g)| = 1$.

7. i) Let \(G \) be any finite abelian group. Construct a homomorphism from \(G \) to the Pontryagin dual of \(\hat{G} \), and prove that this homomorphism is an isomorphism.

ii) The discrete Fourier transform is a linear transformation \(C^G \rightarrow C^\hat{G}, f \mapsto \hat{f} \) defined by \(\hat{f}(\hat{g}) = \sum_{g \in G} \hat{g}(g) f(g) \); we call \(\hat{f} \) the “(discrete) Fourier transform of \(f \). By the previous two problems this transformation is invertible (and indeed \(f \mapsto (\#(G))^{-1/2} \hat{f} \) is an isometry). Construct an explicit inverse by showing that the Fourier transform of \(\hat{f} \) is \(g \mapsto \#(G) f(g-1) \) [using the identification of \(G \) with the dual of \(\hat{G} \) from part (i)].

With respect to the natural bases on \(C^G \) and \(C^\hat{G} \), the matrix of the discrete Fourier transform (DFT for short) has \(\hat{g}(g) \) in the \((g, \hat{g})\) entry. So for example if \(G = (\mathbb{Z}/2\mathbb{Z})^r \) we get a matrix each of whose entries is \(\pm 1 \) that achieves the bound \(N^{N/2} \) from problem 1 on the absolute value of the determinant of an \(N \times N \) matrix all of whose entries are \(\pm 1 \). This \(G \) is about as far as a finite abelian group can get from being cyclic; we next explore and exploit the DFT in the cyclic case.

8. i) Fix \(N > 0 \) and let \(\zeta = e^{2\pi i/N} \), an \(N \)-th root of unity. Let \(A \) be the \(N \times N \) matrix whose \((j,k)\) entry is \(\zeta^{jk} \). Use the result of the previous problem to evaluate \(A^2 \) and deduce that \(A^4 = N^2 \), and thus that \(C^N \) is the direct sum of its \(\lambda \)-eigenspaces for \(\lambda = \pm N^{1/2} \) and \(\lambda = \pm iN^{1/2} \) (why does this follow)? Use this to show that \(N^{-1/2} \sum_{j=1}^N \zeta^{j^2} \) has integer real and imaginary parts.

ii) Now suppose \(N \) is an odd prime. Prove that \(\left(\sum_{j=1}^N \zeta^{j^2} \right)^2 = \epsilon N \) where \(\epsilon = \pm 1 \) and is chosen so that \(\epsilon \equiv N \mod 4 \). Evaluate \(\det A \) and use it to determine the square root of \(\epsilon N \) that equals \(\sum_{j=1}^N \zeta^{j^2} \). [Hint: you can already deduce the value of \(|\det A| \) from (i), so need only determine where on the unit circle \(\det A/|\det A| \) lies.]

The value of \(\sum_{j=1}^N \zeta^{j^2} \) is known for all \(N \), but this more-or-less elementary approach does not generalize easily from the prime case.

This problem set is due Monday, 21 November, at the beginning of class.