Math 55a: Honors Abstract Algebra

Homework Assignment #5 (1 October 2010):
Linear Algebra V: tensors, more eigenstuff, and a bit on inner products

The terms “proper value”, “characteristic value”, “secular value”, and “latent-value” or “latent root” are sometimes used [for “eigenvalue”] by other authors. The latter term is due to Sylvester [Collected Papers III, 562–4] because such numbers are “latent in a somewhat similar sense as vapour may be said to be latent in water or smoke in a tobacco-leaf.” We will not adhere to his terminology.

We begin with some basic problems on tensors and tensor products. For the first of these, recall that the “rank” of a linear transformation \(T : U \rightarrow V \) is the dimension of its image \(T(U) \); the rank of a matrix is the rank of the linear transformation it represents.

1. Let \(\{ u_i \}_{i=1}^m \) and \(\{ v_j \}_{j=1}^n \) be bases of the \(F \)-vector spaces \(U \) and \(V \), and consider the general element \(w = \sum_i \sum_j w_{ij} (u_i \otimes v_j) \) of \(U \otimes V \). Prove that \(w \) is the sum of \(r \) pure tensors if and only if the matrix \((w_{ij}) \) has rank at most \(r \).

2. Let \(V \) be a vector space of finite dimension \(n \) over a field \(F \). We constructed a linear map, the trace, from \(\mathcal{L}(V) \) to \(F \). Hence the map from \(\mathcal{L}(V) \times \mathcal{L}(V) \) to \(F \) taking \((S, T) \) to the trace of \(ST \) is bilinear. Prove that it is symmetric. For what \(n \) can there exist \(S, T \in \mathcal{L}(V) \) such that \(ST - TS \) is the identity map? (By comparison, observe that the operators \(P \mapsto dP/dz \) and \(P \mapsto zP \) on the infinite-dimensional space \(\mathcal{P} = F[z] \) satisfy \(ST - TS = I \).)

Tensors and eigenstuff:

3. Fix \(a \in \mathbb{C} \), and let \(T : \mathbb{C} \rightarrow \mathbb{C} \) be the map \(z \mapsto az \). This is an \(\mathbb{R} \)-linear operator, so we may consider the linear operator \(T' = T \otimes 1 \) on the complex vector space \(\mathbb{C} \otimes_\mathbb{R} \mathbb{C} \). What are the eigenvalues and eigenvectors of \(T' \)? (Warning: The answer depends on whether \(a \in \mathbb{R} \).)

4. Let \(U, V \) be vector spaces over a field \(F \), equipped with linear operators \(S \in \mathcal{L}(U) \), \(T \in \mathcal{L}(V) \). Consider \(S \otimes T \in \mathcal{L}(U \otimes V) \).
 i) If \(\lambda \in F \) is an eigenvalue of \(S \), and \(\mu \in F \) is an eigenvalue of \(T \), prove that \(\lambda \mu \) is an eigenvalue of \(S \otimes T \).
 ii) If \(U, V \) are finite dimensional and \(F \) is algebraically closed, prove that every eigenvalue of \(S \otimes T \) is the product of an eigenvalue of \(S \) with an eigenvalue of \(T \).
 iii) Show, by constructing a counterexample with finite-dimensional vector spaces \(S, T \) over \(\mathbb{R} \), that (ii) no longer holds when the hypothesis on \(F \) is dropped.

5. Let \(V \) be a finite-dimensional vector space over an algebraically closed field \(F \), and fix \(A, B \in \mathcal{L}(V) \). Consider the linear operator \(T = T_{A,B} : X \mapsto AX + XB \) on \(\mathcal{L}(V) \).
i) Express T in terms of tensor products (via the identification of $\mathcal{L}(V)$ with $V^* \otimes V$).

ii) Describe the eigenvalues of T in terms of the eigenvalues of A and B.

iii) Prove that if $F = C$ and all eigenvalues of A, B has positive real part then every $M \in \mathcal{L}(V)$ can be written uniquely as $AX + XB$ for some $X \in \mathcal{L}(V)$.

Apropos eigenstuff... The next result generalizes what we proved in class about involutions (which are the special case $m = 2, \lambda_i = \pm 1$).

6. Suppose V is a vector space over a field F and T is a linear operator on V such that \(\prod_{i=1}^{m}(T - \lambda_i I) = 0 \) for some distinct $\lambda_i \in F$. Prove that V is the direct sum of the λ_i-eigenspaces of T. [NB: V may not be assumed finite-dimensional.]

Tensor products of A-modules. Like direct sums, quotient spaces, and duals, tensor products can be defined in the same way for modules over rings A that need not be fields. Basic properties such as $M \otimes (N \oplus N') \cong (M \otimes N) \oplus (M \otimes N')$ hold in this more general setting, and for much the same reason; but some new phenomena emerge, as in parts (ii) and (iii) of the next problem:

7. i) Show that if A is a commutative ring with unit, and $I \subseteq A$ is an ideal (an additive subgroup such that $aI \subseteq I$ for all $a \in A$, or equivalently a submodule of the A-module A), then $(A/I) \otimes_A (A/I)$, the tensor product of the quotient A-module A/I with itself, is isomorphic with A/I.

ii) On the other hand, show that $(\mathbb{Z}/2\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/3\mathbb{Z})$ is the trivial \mathbb{Z}-module $\{0\}$.

iii) For positive integers m, n, what is the \mathbb{Z}-module $(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z})$?

Finally, a bit about inner products:

8. Solve Exercises 7 and 13 on pages 122, 123 of Axler. For #13, V is either a real or complex inner-product space, which need not be finite dimensional.

9. Is the symmetric bilinear pairing constructed in Problem 2 nondegenerate? When $F = \mathbb{R}$, is it positive definite?

Axler’s exercise #7, as well as the more familiar #6, is often referred to as the “polarization identity”. This shows that a linear transformation preserves the norm if and only if it preserves the inner product [more precisely, it shows the harder, “only if” part of this result]. These are basically also the identities used to prove Propositions 2 and 4 in the next chapter (pages 129, 130).

This problem set is due Friday, 8 October, at the beginning of class.