Math 28: The Theory of Error-Correcting Codes

Positivity of \(N_{m+1} \) for extremal enumerators

Given power series \(F = F_0q^t + O(q^2) \) and \(\Delta = q + O(q^2) \) and an integer \(a \in [0, t) \), for every positive integer \(m \) there is a unique power series \(W_m = 1 + O(q^{m+1}) \) of the form \(W_m = F_0q^t P(F, \Delta) \) where \(P_m \) is a homogeneous polynomial of degree \(m \). We are interested in the coefficients \(N_{m+1}, N_{m+2}, \ldots \) of \(W_m \). We begin with the following more-or-less elementary formula for \(N_{m+1} \):

Lemma 1. \(N_{m+1} \) is \((tm+a)/(tm+t) \) times the \(q^{-1} \) coefficient of \(F_0^{m-a} F^t/\Delta^{m+1} = aF_0q^{t-a}/\Delta^{m+1} \), where \(F^t = dF/dq \).

For example, for the extended binary Golay code \(\mathcal{G}_{24} \) we have \(t = 3, F_0 = 1 + 14q + q^2, a = 0, \) and \(m = 1 \), and calculate that

\[
\frac{F_0^{-a} F'(q)}{\Delta^{m+1}} = \frac{(42 + 6q)F_0^2}{\Delta^2} = 42q^2 + 1518q^{-1} + 19452 + 117828q + \cdots
\]

and indeed \(\frac{3}{6} \times 1518 = 750 \).

Proof of Lemma 1: Let \(z = \Delta/F = q + O(q^2) \). Then \(W_m/(F_0^m F^m) = P(1, z) \), so if we let

\[
\frac{1}{F_0^m F^m} = \sum_{k=0}^{\infty} b_k z^k
\]

be the formal expansion of \(1/(F_0^m F^m) \) in powers of \(z \) then \(P(1, z) = \sum_{k=0}^{m} b_k z^k \). Therefore

\[
1 - W_m = \sum_{k=m+1}^{\infty} b_k z^k.
\]

and in particular \(N_{m+1} \) is just \(-b_{m+1}\). We isolate this coefficient using *invariance of the residue* under locally invertible change of coordinate; that’s a result that’s usually introduced in complex analysis but it can be proved also by formal power-series manipulation.\(^1\) We find that \(-b_{m+1}\) is

\[
- \text{Res} \left(\frac{1}{F_0^m F^m} \frac{dz}{z^{m+2}} \right) = - \text{Res} \left(\frac{(\Delta/F)_m d(\Delta/F)}{F_0^m F^m (\Delta/F)^2} \right) = + \text{Res} \left(\frac{\Delta dF - F d\Delta}{F_0^m \Delta^{m+2}} \right).
\]

But the \(F d\Delta \) and \(\Delta dF \) parts of this formula are related, because \(F_0^a = F^{a/t} \) and \(d(F^{1-(a/t)} \Delta^{-(m+1)}) \) is an exact differential, and thus has residue zero:

\[
\text{Res} \left(\frac{(1 - \frac{a}{t}) \Delta dF - (m + 1) F d\Delta}{F_0^m \Delta^{m+2}} \right) = 0.
\]

Eliminating the \(F d\Delta \) term and writing \(dF = F'(q) dq \), we obtain our Lemma. \(\diamondsuit \)

Now in each of the cases where we want to find \(N_{m+1} \), the power series \(F_0 \) is an enumerator and thus has nonnegative coefficients, while \(1/\Delta \) has an expansion \(q^{-1} + \sum_{k=0}^{\infty} c_k q^k \) in which we prove that every coefficient \(c_k \) is positive by writing \(1/\Delta \) as a product of geometric series. Since \(a \leq t - 1 \), it follows that \(F_0 q^{t-a}/\Delta^{m+1} \) has positive \(q^k \) coefficient for all \(k \geq -(m + 1) \); in particular the \(q^{-1} \) coefficient is positive, so \(N_{m+1} > 0 \).

\(^1\)Over a field \(K \) of characteristic zero we have an exact sequence

\[
0 \to K \to K((q)) \to \Omega^1 K((q)) \to K \to 0,
\]

where the map \(K((q)) \to \Omega^1 K((q)) \) is the differential and the map \(\Omega^1 K((q)) \to K \) is the residue. A change of variable \(z = z_1 q + O(q^2) \) with \(z_1 \in K^* \) preserves everything except possibly the residue map, but then that map must be preserved up to some nonzero scalar, and since \(dz/z \) has the same residue as \(dq/q \) that scalar must be 1.