Math 250b: Higher Algebra

Problem Set #4 (13 March 2002):

More basics about Lie groups and algebras, and some SL₂ "plethysm"

1.-4. Solve problems 9.5, 9.23, 9.25*, and 10.21 in the Fulton-Harris textbook (pages 124, 131, and 145).

For the next two problems, let V be a two-dimensional vector space over \mathbb{C} , and let G be the Lie group $\mathrm{SL}(V) \cong \mathrm{SL}_2$. Recall that $\mathrm{Sym}^n(V)$ may be regarded as the space of homogeneous polynomials of degree n in two variables x, y.

- 5. i) Determine for each n = 0, 1, 2, ... a generator B_n for the one-dimensional space of G-maps from $\operatorname{Sym}^n(V) \otimes \operatorname{Sym}^n(V)$ to \mathbf{C} . Check that your map B_n is symmetric or alternating according as n is even or odd.
 - ii) Now suppose $P \in \operatorname{Sym}^4(V)$ has distinct roots. Prove that $B_4(P \otimes P) = 0$ if and only if these roots have tetrahedral symmetry, i.e., iff P is equivalent with $x^4 xy^3$ under $\operatorname{GL}(V)$.
- 6. Show that for any nonnegative integers a, b the Jacobian determinant

$$(P,Q)\mapsto rac{\partial P}{\partial x}rac{\partial Q}{\partial y}-rac{\partial P}{\partial y}rac{\partial Q}{\partial x}$$

yields a map from $\operatorname{Sym}^a(V) \otimes \operatorname{Sym}^b(V)$ to $\operatorname{Sym}^{a+b-2}(V)$ considered as representations of G, and thus generates the one-dimensional space of G-maps from $\operatorname{Sym}^a(V) \otimes \operatorname{Sym}^b(V)$ to $\operatorname{Sym}^{a+b-2}(V)$. If a=b, why does this yield a map from $\wedge^2(\operatorname{Sym}^a(V))$ to $\operatorname{Sym}^{2a-2}(V)$?

Problem set is due in class Friday the 22nd of March.