The “exponential” in question is the complex exponential, which we normalize with a factor of 2π and abbreviate by $e(\cdot)$:

$$e(x) := e^{2\pi i x}$$

(with $x \in \mathbb{R}$ in most cases). On occasion we also use the notation

$$e_m(x) := e(mx) = e^{2\pi imx};$$

note that $e_1(x) = e(x)$ and $e_0(x) = 1$ for all x. An “exponential sum” is a sum of the form $\sum_{n=1}^{N} e(x_n)$ for some real numbers x_n, or more generally $\sum_{n=1}^{N} \chi(a_n)e(x_n)$ for some real x_n, integral a_n, and character χ. (We have already seen the examples of Gauss and Jacobi sums.) The general problem is to find a nontrivial estimate on such a sum, which usually means an upper bound significantly smaller than N on its absolute value. Such problems are ubiquitous in number theory, analytic and otherwise, and occasionally arise in other branches of mathematics (we mentioned [CEP 1996] in the Introduction). Sometimes these sums arise directly or nearly so; for instance, the Lindelöf conjecture concerns the size of

$$\zeta(1/2 + it) = \sum_{n=1}^{N} n^{-1/2-it} + \frac{N^{1/2-it}}{it - 1/2} + O(tN^{-1/2}),$$

so it would follow from a proof of

$$\sum_{n=1}^{[t^2]} n^{-1/2-it} \ll |t|\epsilon,$$

which in turn would follow by partial summation from good estimates on

$$\sum_{n=1}^{M} n^{-it} = \sum_{n=1}^{M} e\left(\frac{t \log n}{2\pi}\right).$$

Likewise the Lindelöf conjecture for a Dirichlet L-series $L(s, \chi)$ hinges on upper bounds on $\sum_{n=1}^{M} \chi(n)e(t \log n/(2\pi))$. Often the translation of a problem to estimating exponential sums takes more work. We have already seen one example, the Pólya-Vinogradov estimate on $\sum_{n=1}^{N} \chi(n)$ (which is already an “exponential sum” as we have defined the term, with all $x_n = 0$, but whose analysis required the Gauss exponential sums). Our next example is Weyl’s criterion for equidistribution mod 1.
A sequence \(c_1, c_2, c_3, \ldots\) of real numbers is said to be equidistributed \textit{mod} 1 if the fractional parts \(\langle c_n \rangle\) cover each interval in \(\mathbb{R}/\mathbb{Z}\) in proportion to its length; that is, if
\[
\lim_{N \to \infty} \frac{1}{N} \# \{ n \leq N : a \leq \langle c_n \rangle \leq b \} = b - a
\]
for all \(a, b\) such that \(0 \leq a \leq b \leq 1\). This is connected with exponential sums via a famous result of Weyl [1914]:

\textbf{Theorem.} For a sequence \(\{c_n\}_{n=1}^{\infty}\) in \(\mathbb{R}\) (or equivalently in \(\mathbb{R}/\mathbb{Z}\)), the following are equivalent:

(i) Condition (1) holds for all \(a, b\) such that \(0 \leq a \leq b \leq 1\);

(ii) For any continuous function \(f : (\mathbb{R}/\mathbb{Z}) \to \mathbb{C}\),
\[
\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(c_n) = \int_{0}^{1} f(t) \, dt; \quad (2)
\]

(iii) For each \(m \in \mathbb{Z}\),
\[
\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} e_m(c_n) = \delta_m \left[= \int_{0}^{1} e_m(t) \, dt \right]. \quad (3)
\]

Note that (iii) is precisely the problem of nontrivially estimating an exponential sum.

\textit{Proof:} (i)\(\Rightarrow\) (ii) Condition (i) means that (ii) holds when \(f\) is the characteristic function of an interval (NB such a function is not generally continuous, but it is integrable, which is enough for the sequel); also both sides of (2) are linear in \(f\), so (ii) holds for finite linear combinations of such characteristic functions, a.k.a. step functions. If \(|f(t)| < \epsilon\) for all \(t \in \mathbb{R}/\mathbb{Z}\) then both sides of (2) are bounded by \(\epsilon\) for all \(N\). Thus (ii) holds for any function on \(\mathbb{R}/\mathbb{Z}\) uniformly approximable by step functions. But this includes all continuous functions.

(ii)\(\Rightarrow\) (i) Estimate the characteristic function of \([a, b]\) from below and above by continuous functions whose integral differs from \(b - a\) by at most \(\epsilon\).

(ii)\(\Rightarrow\) (iii) is clear because (iii) is a special case of (ii).

(iii)\(\Rightarrow\) (ii) follows from Fejér’s theorem: every continuous function on \(\mathbb{R}/\mathbb{Z}\) is uniformly approximated by a finite linear combination of the functions \(e_m\).

[NB the approximation is in general \textit{not} an initial segment of the Fourier series for \(f\). See [Körner 1988], chapters 1–3 (pages 3–13). The existence of uniform approximations is also a special case of the Stone-Weierstrass theorem.]

\textbf{Interlude on the “little oh” notation} \(o(\cdot)\). We have gotten this far without explicitly using the “little oh” notation; this is as good a place as any to
introduce it. The notation $f = o(g)$ means that $^1 (g > 0$ and) $(f/g) → 0$. This begs the question “approaches zero as what?” whose answer should usually be clear from context if it is not stated explicitly. Thus Weyl’s theorem states that \{c_n\} is equidistributed mod 1 if and only if \(\sum_{n=1}^{N} e_m(c_n) = o(N)\) as $N→∞$ for each nonzero $m \in \mathbb{Z}$; that is, if and only if for each $m \neq 0$ we can improve on the trivial bound \(|\sum_{n=1}^{N} e_m(c_n)| \leq N\) by a factor that tends to $∞$ with N.

For instance, we have Weyl’s first application of this theorem: For $r \in \mathbb{R}$ the sequence \(\{nr\}\) is equidistributed mod 1 if and only if $r \notin \mathbb{Q}$. Indeed if r is rational then \(\langle nr\rangle\) takes only finitely many values; but if r is irrational then for each m we have $e_m(r) \neq 1$ and thus

\[
\sum_{n=1}^{N} e_m(nr) = \frac{e_m((N + 1)r) - e_m(r)}{e_m(r) - 1} = O_m(1) = o_m(N).
\]

(As with $O_m(\cdot)$, the subscript in $o_m(\cdot)$ emphasizes that the convergence to 0 may not be uniform in m.) In general, we cannot reasonably hope that \(\sum_{n=1}^{N} e_m(c_n)\) is bounded for each m, but we will be often able to show that the sum is $o(N)$, which suffices to prove equidistribution. For instance, we shall see that if $P \in \mathbb{R}[x]$ is a polynomial at least one of whose nonconstant coefficients is irrational then \(\{P(n)\}\) is equidistributed mod 1. (This was Weyl’s main application of his theorem in [Weyl 1914]; the example of \(\{nr\}\) is the special case of linear polynomials.) We shall also show this for \(\{\log_{10}(n)!\}\) and thus obtain the distribution of the first d digits of $n!$ for each d.

Exercises

1. (An easy variation on Weyl’s theorem.) Let $A_n \subset \mathbb{R}$ be finite subsets with $\#(A_n)→∞$, and say that A_n is asymptotically equidistributed modulo 1 if

\[
\lim_{n→∞} \frac{\#(\{t \in A_n : a ≤ \langle t \rangle ≤ b\})}{\#(A_n)} = b - a
\]

for all a, b such that $0 ≤ a ≤ b ≤ 1$. Prove that this is the case if and only if

\[
\lim_{n→∞} \frac{1}{\#(A_n)} \sum_{t \in A_n} e_m(t) = δ_m.
\]

Show that this condition is satisfied by A_n constructed as follows: let d_n be some positive integers, $q_n = c_n d_n + 1$ be primes such that $q_n/d_n → ∞$, and a_n arbitrary elements of $(\mathbb{Z}/q_n, \mathbb{Z})^*$; and let A_n be the set of $a_n r/q_n$ for representatives r of the c_n residue classes of nonzero d_n-th powers mod q_n.

Presumably such A_n remain asymptotically equidistributed mod 1 if we require only that $q_n \gg d_n^\theta$ for some $θ > 1$, but this is much harder to prove.

1 Sometimes $g = 0$ is allowed, in which case $f = o(g)$ means that $(f/g)→0$, except at points where $g = 0$, at which f must also vanish. Equivalently, for all $ε > 0$ it is true that eventually $|f| ≤ εg$. For instance, we could use this notation to write the definition of the derivative as follows: a function F is differentiable at x if there exists $F'(x)$ such that $F(y) = F(x) + F'(x)(y - x) + o(y - x)$ as $y→x$.

3
2. (Recognizing other distributions mod 1.) In Weyl’s theorem suppose condition (iii) holds for all nonzero $m \neq \pm 1$, but

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} e_{\pm 1}(c_n) = \frac{1}{2}.$$

What can you conclude about the limits in (i) and (ii)? Generalize.

3. (Weyl in higher dimensions.) What should it mean for a sequence of vectors in \mathbb{R}^k to be equidistributed mod \mathbb{Z}^k? Generalize Weyl’s theorem to give a necessary and sufficient condition for equidistribution of a sequence in $(\mathbb{R}/\mathbb{Z})^k$. Deduce a condition on the entries of a vector $r \in \mathbb{R}^k$ that is necessary and sufficient for \{nr\}_{n=1}^{\infty} to be equidistributed mod \mathbb{Z}^k.

4. (An application of equidistribution mod \mathbb{Z}^k.) Prove that $\inf_{t \in \mathbb{R}} |\zeta(\sigma + it)| = \zeta(2\sigma)/\zeta(\sigma)$ for each $\sigma > 1$, and indeed that

$$\liminf_{|t| \to \infty} |\zeta(\sigma + it)| = \zeta(2\sigma)/\zeta(\sigma), \quad \limsup_{|t| \to \infty} |\zeta(\sigma + it)| = \zeta(\sigma).$$

What can you say about the behavior of $\log \zeta(\sigma + it)$, or more generally of $\log L(\sigma + it, \chi)$, for fixed $\sigma > 1$ and Dirichlet character χ?

5. (Basic properties of $o(\cdot)$.) If $f = o(g)$ then $f = O(g)$. If $f = o(g)$ and $g = O(h)$, or $f \ll g$ and $g = o(h)$, then $f = o(h)$ (assuming that the same implied limit is taken in both premises). If $f_1 = o(g_1)$ and $f_2 = O(g_2)$ then $f_1 f_2 = o(g_1 g_2)$; if moreover $f_2 = o(g_2)$ then $f_1 + f_2 = o(g_1 + g_2) = o(\max(g_1, g_2))$. Given a positive function g, the functions f such that $f = o(g)$ constitute a vector space.

6. (Effective and ineffective $o(\cdot)$.) An estimate $f = o(g)$ is said to be effective if for each $\epsilon > 0$ we can compute a specific point past which $|f| < \epsilon g$ (or $|f| \leq \epsilon g$ if $g = 0$ is allowed); otherwise it is ineffective. Show that the transformations in the previous exercise preserve effectivity. Give an example of an ineffective $o(\cdot)$.

References
