Some simple applications:

1) Of all rectangular boxes of volume V, the cube has the smallest surface area.

2) An “open box” is a rectangular box missing one of its six sides (so that we can put things in and out of the box). Given V, what is the open box of volume V that has minimal surface area? Upon further reflection, can you derive this directly from (1)?

3) Of all triangles of area A, the equilateral triangle has the smallest perimeter.

Some proofs of the inequality and generalizations:

4) Say a real-valued function f on some (possibly infinite) interval I is “midpoint-convex” upwards if

$$f\left(\frac{1}{2}(x + y)\right) \leq \frac{1}{2}\left(f(x) + f(y)\right)$$

for all x, y in I; we say f is strictly midpoint-convex upwards if equality holds only for $x = y$. Prove that if f is midpoint-convex upwards then Jensen’s inequality

$$f\left(\frac{1}{n}(x_1 + x_2 + \cdots + x_n)\right) \leq \frac{1}{n}\left(f(x_1) + f(x_2) + \cdots + f(x_n)\right)$$

holds for all n and for all x_1, \ldots, x_n in I; and that if f is strictly midpoint-convex then equality holds if and only if all the x_i are equal. [Hint: the inequality is trivial for $n = 1$ and the definition of midpoint-convexity for $n = 2$. Prove it first for $n = 4, 8, 16, \ldots$; to get the general case, try first to derive the $n = 3$ case from $n = 4$. Thanks to Zach for reminding me of the AM–GM case of this trick.]

5) Show directly (without calculus etc.) that the functions x^2 and e^x are midpoint-convex upwards on all of \mathbb{R}, that $1/x$ is midpoint-convex upwards on $x > 0$, and that $\sin x$ is midpoint-convex downwards on $0 \leq x \leq \pi$. (Hint: it can be surprisingly useful that $a \geq b$ if and only if $a - b \geq 0$.) Jensen’s inequality for these functions then follows from the previous problem.

6) Suppose w_1, w_2, \ldots, w_n are nonnegative numbers with $w_1 + w_2 + \cdots + w_n = 1$. The weighted average of z_1, z_2, \ldots, z_n with weights w_1, w_2, \ldots, w_n is $w_1z_1 + w_2z_2 + \cdots + w_nz_n$. (For instance, the usual weighted average is recovered by setting each w_i equal $1/n$, and the barycentric coordinates of a point P in triangle ABC are the weights for which P is the weighted average of A, B, C — that’s one reason I didn’t restrict z_1, \ldots, z_n to real numbers.) Jensen’s inequality for weighted averages states that

$$f(w_1x_1 + w_2x_2 + \cdots + w_nx_n) \leq w_1f(x_1) + w_2f(x_2) + \cdots + w_nf(x_n)$$

if f is convex upwards, and likewise

$$f(w_1x_1 + w_2x_2 + \cdots + w_nx_n) \geq w_1f(x_1) + w_2f(x_2) + \cdots + w_nf(x_n)$$

if f is convex downwards. (Again the inequality compares the function of the average with the average of the function.) Prove this inequality: (i) in the same graphical way that we did for the unweighted version; (ii) as a consequence of Jensen (first do the case of rational w_i, then use continuity). If f is strictly convex, when does equality hold?

7) Show that weighted Jensen still reduces to Cauchy–Schwarz for $f(x) = x^2$ or $f(x) = 1/x$.

8) Suppose P is a polynomial with positive coefficients. Prove that $P(x)P(y) \geq (P(\sqrt{xy}))^2$ for all $x, y > 0$. When does equality hold? What are the functions whose convexity you can deduce from that inequality?

9) Suppose $f(x)$ is convex downwards on $a \leq x \leq b$ and we fix some $n \geq 1$ and s between na and nb. Consider the sum $f(x_1) + \cdots + f(x_n)$ subject to $a \leq x_i \leq b$ and $x_1 + \cdots + x_n = s$. Jensen tells us that this is maximized when each x_i equals s/n. What choice of x_1, \ldots, x_n minimizes the sum? For instance, how small can $\sin \alpha + \sin \beta + \sin \gamma + \sin \delta + \sin \epsilon$ get if $0 \leq \alpha, \beta, \gamma, \delta, \epsilon \leq \pi/2$ and $\alpha + \beta + \gamma + \delta + \epsilon = 5$?