
The Mandelbrot set is universal

Curtis T. McMullen∗

24 February, 1997

Abstract

We show small Mandelbrot sets are dense in the bifurcation locus

for any holomorphic family of rational maps.

1 Introduction

Fix an integer d ≥ 2, and let pc(z) = zd + c. The generalized Mandelbrot set
Md ⊂ C is defined as the set of c such that the Julia set J(pc) is connected.
Equivalently, c ∈ Md iff pn

c (0) does not tend to infinity as n → ∞. The
traditional Mandelbrot set is the quadratic version M2.

A holomorphic family of rational maps over X is a holomorphic map

f : X × Ĉ → Ĉ

where X is a complex manifold and Ĉ is the Riemann sphere. For each t ∈ X
the family f specializes to a rational map ft : Ĉ → Ĉ, denoted ft(z). For
convenience we will require that X is connected and that deg(ft) ≥ 2 for all
t.

The bifurcation locus B(f) ⊂ X is defined equivalently as the set of t such
that:

1. The number of attracting cycles of ft is not locally constant;

2. The period of the attracting cycles of ft is locally unbounded; or

3. The Julia set J(ft) does not move continuously (in the Hausdorff topol-
ogy) over any neighborhood of t.

It is known that B(f) is a closed, nowhere dense subset of X; its complement
X − B(f) is also called the J-stable set [MSS], [Mc2, §4.1].

As a prime example, pc(z) = zd + c is a holomorphic family parameterized
by c ∈ C, and its bifurcation locus is ∂Md. See Figure 1.

In this paper we show that every bifurcation set contains a copy of the
boundary of the Mandelbrot set or its degree d generalization. The Man-
delbrot sets Md are thus universal; they are initial objects in the category

∗Research partially supported by the NSF. 1991 Mathematics Subject Classification:

Primary 58F23, Secondary 30D05.

1



2 The Mandelbrot set is universal

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 1. Mandelbrot sets of degrees 2, 3 and 4.

of bifurcations, providing a lower bound on the complexity of B(f) for all
families ft.

For simplicity we first treat the case X = ∆ = {t : |t| < 1}.

Theorem 1.1 For any holomorphic family of rational maps over the unit
disk, the bifurcation locus B(f) ⊂ ∆ is either empty or contains the quasi-
conformal image of ∂Md for some d.

The proof (§4) shows that B(f) contains copies of ∂Md with arbitrarily
small quasiconformal distortion, and controls the degrees d that arise. For
example we can always find a copy of ∂Md with d ≤ 22 deg(ft)−2, and generically
B(f) contains a copy of ∂M2 (see Corollary 4.4). Since the Theorem is local
we have:

Corollary 1.2 Small Mandelbrot sets are dense in B(f).

There is also a statement in the dynamical plane:

Theorem 1.3 Let f be a holomorphic family of rational maps with bifurca-
tions. Then there is a d ≥ 2 such that for any c ∈Md and m > 0, the family
contains a polynomial-like map fn

t : U → V hybrid conjugate to zd + c with
mod(U − V ) > m.

Corollary 1.4 If f has bifurcations then for any ǫ > 0 there exists a t such
that ft(z) has a superattracting basin which is a (1 + ǫ)-quasidisk.

Proof. The family contains a polynomial-like map fn
t : U → V hybrid

conjugate to p0(z) = zd, a map whose superattracting basin is a round disk.
Since mod(V −U) can be made arbitrarily large, the conjugacy can be made
nearly conformal, and thus ft has a superattracting basin which is a (1 + ǫ)-
quasidisk.
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For applications to Hausdorff dimension we recall:

Theorem 1.5 (Shishikura) For any d ≥ 2, the Hausdorff dimension of
∂Md is two. Moreover H. dim(J(pc)) = 2 for a dense Gδ of c ∈ ∂Md.

This result is stated for d = 2 in [Shi2] and [Shi1] but the argument generalizes
to d ≥ 2. Quasiconformal maps preserve sets of full dimension [GV], so from
Theorems 1.1 and 1.3 we obtain:

Corollary 1.6 For any family of rational maps f over ∆, the bifurcation set
B(f) is empty or has Hausdorff dimension two.

Corollary 1.7 If f has bifurcations, then H. dim(J(ft)) = 2 for a dense set
of t ∈ B(f).1

For higher-dimensional families one has (§5):

Corollary 1.8 For any holomorphic family of rational maps over a complex
manifold X, either B(f) = ∅ or H. dim(B(f)) = H. dim(X) = 2 dimC X.

Similar results on Hausdorff dimension were obtained by Tan Lei, under a
technical hypothesis on the family f [Tan].

A family of rational maps f is algebraic if its parameter space X is a
quasi-projective variety (such as Cn) and the coefficients of ft(z) are rational
functions of t. For example, pc(z) = zd + c is an algebraic family over X = C.
Such families almost always contain bifurcations [Mc1]:

Theorem 1.9 For any algebraic family of rational maps, either

1. The family is trivial (ft and fs are conformally conjugate for all t, s ∈
X); or

2. The family is affine (every ft is critically finite and double covered by a
torus endomorphism); or

3. The family has bifurcations (B(f) 6= ∅).

Corollary 1.10 With rare exceptions, any algebraic family of rational maps
exhibits small Mandelbrot sets in its parameter space.

1This set of t can be improved to a dense Gδ using Shishikura’s idea of hyperbolic

dimension.
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This Corollary was our original motivation for proving Theorem 1.1.
As another application, for t ∈ Cd−1 let

ft(z) = zd + t1z
d−2 + · · · + td−1

and let
Cd = {t : J(ft) is connected}

denote the connectedness locus. Then we have:

Corollary 1.11 (Tan Lei) The boundary of the connectedness locus has full
dimension; that is, H. dim(∂Cd) = H. dim(Cd) = 2d− 2.

Proof. Consider the algebraic family ga(z) = zd + azd−1, which for a 6= 0
has all but one critical point fixed under ga. By Theorem 1.9, this family has
bifurcations at some a ∈ C. Then there is a neighborhood U of (a, 0, . . . , 0) ∈
Cd−2 such that for t ∈ U all critical points of ft save one lie in an attracting
or superattracting basin. If t ∈ B(f) ∩ U , then the remaining critical point
has a bounded forward orbit under ft, but under a small perturbation tends
to infinity. It follows that B(f) ∩ U = ∂Cd ∩ U 6= ∅, and thus dim(∂Cd) ≥
dimB(f) = 2d− 2.

Remark. Rees has shown that the bifurcation locus has positive measure
in the space of all rational maps of degree d [Rs]; it would be interesting to
known general conditions on a family f such that B(f) has positive measure
in the parameter space X.

Acknowledgements. I would like to thank Tan Lei for sharing her re-
sults which prompted the writing of this note. Special cases of Theorem 1.1
were developed independently by Douady and Hubbard [DH, pp.332-336] and
Eckmann and Epstein [EE].

2 Families of rational maps

In this section we begin a more formal study of maps with bifurcations.

Definitions. A local bifurcation is a holomorphic family of rational maps
ft(z) over the unit disk ∆, such that 0 ∈ B(f).

The following natural operations can be performed on f to construct new
local bifurcations:

1. Coordinate change: replace ft by mt ◦ ft ◦m
−1
t , where m : ∆ × Ĉ → Ĉ

is a holomorphic family of Möbius transformations.

2. Iteration: replace ft(z) by fn
t (z) for a fixed n ≥ 1.
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3. Base change: replace ft(z) by fφ(t)(z), where φ : ∆ → ∆ is a noncon-
stant holomorphic map with φ(0) ∈ B(f).

The first two operations leave the bifurcation locus unchanged, while the last
transforms B(f) to φ−1(B(f)).

Marked critical points. We will also consider pairs (f, c) consisting of

a local bifurcation and a marked critical point; this means c : ∆ → Ĉ is
holomorphic and f ′

t(ct) = 0. The operations above also apply to (f, c); a
coordinate change replaces ct with mt(ct) and a base change replaces ct with
cφ(t).

Misiurewicz points. A marked critical point c of f is active if its forward
orbit

〈fn
t (ct) : n = 1, 2, 3, . . .〉

fails to form a normal family of functions of t on any neighborhood of t = 0
in ∆. A parameter t is a Misiurewicz point for (f, c) if the forward orbit of ct
under ft lands on a repelling periodic cycle. If t = 0 is a Misiurewicz point,
then either c is active or ct is preperiodic for all t.

Proposition 2.1 If c is an active critical point, then (f, c) has a sequence
of distinct Misiurewicz points tn → 0.

Proof. This is a traditional normal families argument. Choose any 3 distinct
repelling periodic points {a0, b0, c0} for f0, and let {at, bt, ct} be holomorphic
functions parameterizing the corresponding periodic points of ft for t near
zero. Since 〈fn

t (ct)〉 is not a normal family, it cannot avoid these three points,
and any parameter t where fn

t (ct) meets at, bt or ct is a Misiurewicz point.

Ramification. Next we discuss the existence of univalent inverse branches
for a single rational map F (z). Let d = deg(F, z) denote the local degree of

F at z ∈ Ĉ; we have d > 1 iff z is a critical point of multiplicity (d − 1).
We say y is an unramified preimage of z if for some n ≥ 0, F n(y) = z and
deg(F n, y) = 1. We say z is unramified if it has infinitely many unramified
preimages. In this case its unramified preimages accumulate on the full Julia
set J(F ).

Proposition 2.2 If z has 5 distinct unramified preimages then it has in-
finitely many.

Proof. Let E be the set of all unramified preimages of z, and let C be the
critical points of F . Then F−1(E) ⊂ E ∪ C, so if |E| is finite then

d|E| =
∑

z∈F−1(E)

1 + mult(f ′, z) ≤ |F−1(E)| + 2d− 2 ≤ |E| + 4d− 4

and therefore |E| ≤ 4.
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Corollary 2.3 Let (f, c) be a local bifurcation with marked critical point.
Then the set of t such that ct is ramified for ft is either discrete or the whole
disk.

Proof. By the previous Proposition, the ramified parameters are defined by
a finite number of analytic equations in t.

Proposition 2.4 After a suitable base change, any local bifurcation f can be
provided with an active marked critical point c such that c0 is unramified for
f0.

Remark. It is possible that all the active critical points are ramified at
t = 0. The base change in the Proposition will generally not preserve the
central fiber f0.

Proof. The set C = {(t, z) ∈ ∆ × Ĉ : f ′

t(z) = 0} is an analytic variety with
a proper finite projection to ∆. By Puiseux series, after a base change of the
form φ(t) = ǫtn all the critical points of f can be marked by holomorphic
functions {c1t , . . . , c

m
t }. Since t = 0 is in the bifurcation set, by [Mc2, Thm.

4.2], there is an i such that 〈fn
t (cit)〉 is not a normal family at t = 0. That is,

ci is an active critical point.
Next we show ci can be chosen so that for generic t it is disjoint from the

forward orbits of all other critical points. If not, there is a cj and n ≥ 1 such
that fn

t (cjt ) = cit for all t. Then cj is also active and we may replace ci with cj.
If the replacement process were to cycle, then ci would be a periodic critical
point, which is impossible because it is active. Thus we eventually achieve
a ci which is generically disjoint from the forward orbits of the other critical
points.

In particular, there is a t such that cit is unramified for ft. By Corollary 2.3,
the set R ⊂ ∆ of parameters where cit is ramified is discrete. By Proposition
2.1, there are Misiurewicz points tn for (f, ci) with tn → 0. Choose n such
that tn 6∈ R, and make a base change moving tn to zero; then ci is active, and
ci0 is unramified for f0.

Misiurewicz bifurcations. Let (f, c) be a local bifurcation with a marked
critical point. We say (f, c) is a Misiurewicz bifurcation of degree d if

M1. f0(c0) is a repelling fixed-point of f0;

M2. c0 is unramified for f0;

M3. ft(ct) is not a fixed-point of ft, for some t; and

M4. deg(ft, ct) = d for all t sufficiently small.
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Proposition 2.5 For any local bifurcation (f, c) with c active and c0 unram-
ified, there is a base change and an n > 0 such that (fn, c) is a Misiurewicz
bifurcation.

Remark. The delicate point is condition (M4). The danger is that for every
Misiurewicz parameter t, the forward orbit of ct might accidentally collide
with another critical point before reaching the periodic cycle. We must avoid
these collisions to make the degree of fn

t at ct locally constant.

Proof. There are Misiurewicz points tn → 0 for (f, c), and ct is unramified
for all t near 0, so after a base change and replacing f with fn we can arrange
that (f, c) satisfies conditions (M1), (M2) and (M3).

We can also arrange that deg(ft, ct) = d for all t 6= 0. However (M4)
may fail because deg(ft, ct) may jump up at t = 0. This jump would occur if
another critical of ft coincides with ct at t = 0.

To rule this out, we make a further perturbation of f0. Let at locally
parameterize the repelling fixed-point of ft such that f0(c0) = a0. Choose a
neighborhood U of a0 such that for t small, ft is linearizable on U and U is
disjoint from the critical points of ft. (This is possible since f ′

0(a0) 6= 0.)
Let bt ∈ U − {at} be a parameterized repelling periodic point close to at.

Then bt has preimages in U accumulating on at. Choose s near 0 such that
fs(cs) hits one of these preimages (such an s exists by the argument principle
and (M3)). For this special parameter, cs first maps close to as, then remains
in U until it finally lands on bs. Since there are no critical points in U , we
have deg(f i

s, c) = d for all i > 0.
Making a base change moving s to t = 0, we find that (fn, c) satisfies

(M1-M4) for n a suitable multiple of the period of bs.

3 The Misiurewicz cascade

In this section we show that when a Misiurewicz point bifurcates, it produces
a cascade of polynomial-like maps.

Definitions. A polynomial-like map g : U → V is a proper, holomorphic
map between simply-connected regions with U compact and U ⊂ V ⊂ C

[DH]. Its filled Julia set is defined by

K(g) =
∞⋂

1

g−n(V );

it is the set of points that never escape from U under forward iteration.
Any polynomial such as pc(z) = zd + c can be restricted to a polynomial-

like map pc : U → V of degree d with the same filled Julia set. Moreover
small analytic perturbations of pc : U → V are also polynomial-like.
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A degree d Misiurewicz bifurcation (f, c) gives rise to polynomial-like maps
fn

t : B0 → Bn, by the following mechanism. For small t, a small ball B0 about
the critical point ct maps to a small ball B1 close to, but not containing, the
fixed-point of ft. The iterates Bi = f i

t (B) then remain near the fixed-point
for a long time, ultimately expanding by a large factor. Finally for suitable t,
as Bi escapes from the fixed-point it maps back over B0, resulting in a degree
d map fn

t : B0 → Bn ⊃ B0. Since most of the images 〈Bi〉 lie in the region
where ft behaves linearly, the first-return map fn

t : B0 → Bn behaves like a
polynomial of degree d.

This scenario leads to a cascade of families of polynomial-like maps, in-
dexed by the return time n. Here is a precise statement.

Theorem 3.1 Let (f, c) be a degree d Misiurewicz bifurcation, and fix R > 0.
Then for all n ≫ 0, there is a coordinate change depending on n such that
ct = 0 and

fn
t (z) = zd + ξ +O(ǫn)

whenever |z|, |ξ| ≤ R. Here t = tn(1 + γnξ), tn and γn are nonzero, and γn,
tn and ǫn tend to zero as n→ ∞.

The constants in O(·) above depend on f and R but not on n.
The proof yields more explicit information. Let λ0 = f ′

0(f0(c0)) be the
multiplier of the fixed-point on which c0 lands, and let r be the multiplicity
of intersection of the graph of ct and the graph of this fixed-point at t = 0.
Then for t = tn, the critical point ct is periodic with period n, and we have:

tn ∼ Cλ
−n/r
0 , (3.1)

γn = C ′λ
−n/(d−1)
0 , and (3.2)

ǫn = n(|λ0|
−n/r + |λ0|

−n/(d−1)), (3.3)

for certain constants C,C ′ depending on f . Due to the choice of roots, there
are r possibilities for tn and (d−1) for γn; the Theorem is valid for all choices.
Finally for ξ fixed and t = tn(1 + γnξ), the map fn

t is polynomial-like near ct
for all n≫ 0, and in the original z-coordinate its filled Julia set satisfies

diamK(fn
t ) ≍ |λ0|

−n/(d−1).

Notation. We adopt the usual conventions: an = O(bn), an ≍ bn, an ∼ bn
and n ≫ 0 mean |an| < C|bn|, (1/C)|bn| < |an| < C|bn|, an/bn → 1 and
n ≥ N , where C and N are implicit constants.

Proof. We will make several constructions that work on a small neighbor-
hood of t = 0. First, let at parameterize the repelling fixed-point of ft such
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that a0 = f0(c0). Let λt = f ′

t(at) be its multiplier. There is a holomorphically
varying coordinate chart u = φt(z) defined near z = at such that

φt ◦ ft ◦ φ
−1
t (u) = λtu (3.4)

for u near 0. We call u = φt(z) the linearizing coordinate; note that u = 0 at
at.

We next arrange that u = 1 is an unramified preimage of ct. Since c0
is unramified by (M2), its unramified preimages accumulate on a0. Let b0
be one such preimage, with f p

0 (b0) = c0 and b0 in the domain of φ0. Then
b0 prolongs to a holomorphic function bt with f p

t (bt) = ct. Replacing φt by
φt(z)/φt(bt), we can assume u = φt(bt) = 1.

For small t, the composition f p
t ◦ φ−1

t is univalent near u = 1. By apply-
ing a coordinate change z 7→ mt(z), where mt is a Möbius transformation
depending on t, we can arrange that ct = 0 and that

f p
t ◦ φ−1

t (u) = (u− 1) +O((u− 1)2) (3.5)

on B(1, ǫ).
Since deg(ft, 0) = d for t near 0 by (M4), we have

φt ◦ ft(z) =
∑

Ai(t)z
i (3.6)

= A0(t) + Ad(0)zd (1 +O(|z| + |t|)) (3.7)

with Ad(0) 6= 0. Here A0(t) = ft(0) is the u-coordinate of the critical value.
By (M3), ct is not pre-fixed for all t, so there is an r > 0 such that

A0(t) = trB(t) (3.8)

where B(0) 6= 0.

Figure 2. Visiting the repelling fixed-point

Next for n≫ 0 we choose tn such that

f 1+n+p
t (ct) = ct when t = tn. (3.9)
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More precisely, for t = tn we will arrange that ct maps first close to at, then
lands after n iterates on bt, and thus returns in p further iterates to ct; see
Figure 2. In the u-coordinate system, ft is linear and bt = 1, so the equation
fn+1

t (ct) = bt becomes

λn
t A0(t) = 1 when t = tn. (3.10)

By the argument principle, for n≫ 0 this equation has a solution tn close to
any root of the approximation λn

0 t
rB(0) = 1 obtained from (3.8). Moreover

tn ∼ B(0)−1λ
−n/r
0

(verifying (3.1)), and tn satisfies (3.9) because f p
t (bt) = ct. (There are actually

be r solutions for tn for a given n; any one of the r solutions will do.)
We now turn to the estimate of f 1+n+p

t (z) for (t, z) near (tn, 0). We will
assume throughout that t = tn + s and that:

|z| and |s/tn| are O(Λ−n/(d−1)) (3.11)

where Λ = |λ0| > 1. (To see this is the correct scale at which to work,
suppose diam(B) ≍ diam f 1+n+p

t (B), where B is a ball centered at z = 0.
Then diam ft(B) ≍ (diamB)d, and fn

t is expanding by a factor of about
Λn, while f p

t is univalent, so we get diamB ≍ Λn(diamB)d, or diamB ≍
Λ−n/(d−1). Similarly |f 1+n+p

t (0)| ≍ Λn(s/tn)trn ≍ (s/tn) = O(diamB) when s
is as above.)

It is also convenient to set

Λ̃ = min(Λ1/(d−1),Λ1/r) > 1,

so that we may assert:
z and t are O(Λ̃−n). (3.12)

By (3.11) the n iterates of ft(z) lie within the domain of linearization, so
by (3.7) we have

φt ◦ f
1+n
t (z) = λn

t A0(t) + λn
tA0(d)zd(1 +O(|z| + |t|)).

The first term is approximately 1. Indeed, λn
t = λn

tn(1 + O(ns)), so by (3.8)
we have

λn
t A0(t) = λn

t (tn + s)rB(tn + s)

= λn
tn(1 +O(ns)) · trn

(
1 +

s

tn

)r

· B(tn)(1 +O(s))

= λn
tnA0(tn)

(
1 + r

s

tn
+O((s/tn)2) +O(ns)

)

= 1 + r
s

tn
+O((s/tn)2) +O(ns)
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by (3.10). Similarly, λn
t = λn

0 (1 +O(t)), so

φt ◦ f
1+n
t (z) − 1 =

λn
0A0(d)zd(1 +O(|z| + |nt|)) + r

s

tn
+O((s/tn)2) +O(ns) =

λn
0A0(d)zd + r

s

tn
+O(nΛ−n/(d−1)Λ̃−n),

using (3.11) and (3.12). The expression above as a whole is O(Λ−n/(d−1)), so
composing with the univalent map f p

t ◦φ
−1
t introduces (by (3.5)) an additional

error of size O(Λ−2n/(d−1)), which is already accounted for in the O(·) above.
Thus the expression above also represents f 1+n+p

t (z).
Finally we make a linear change of coordinates of the form z 7→ αnz,

conjugating the expression above to

f 1+n+p
t (z) = α1−d

n λn
0A0(d)zd + αnr

s

tn
+O(nαnΛ−n/(d−1)Λ̃−n).

Setting αn = (λn
0A0(d))1/(d−1) to normalize the coefficient of zd, we have

|αn| ≍ Λn/(d−1) and thus:

f 1+n+p
t (z) = zd + αnr

s

tn
+O(nΛ̃−n)

= zd + ξ +O(ǫn)

with t = tn(1 + γnξ), γn and ǫn as in (3.2) and (3.3). Notice that if |z| and
|ξ| are bounded by R in the expression above, then (3.11) is satisfied in our
original coordinates. Reindexing n, we obtain the Theorem.

4 Small Mandelbrot sets

We now show the Misiurewicz cascade leads to small Mandelbrot sets in pa-
rameter space. From this we deduce Theorems 1.1 and 1.3 of the Introduction.

Hybrid conjugacy. Let g1, g2 be polynomial-like maps of the same degree.
A hybrid conjugacy is a quasiconformal map φ between neighborhoods of
K(g1) and K(g2) such that φ ◦ g1 = g2 ◦ φ and ∂φ|K(g1) = 0. We say g1

and g2 are hybrid equivalent if such a conjugacy exists. By a basic result
of Douady and Hubbard, every polynomial-like map g of degree d is hybrid
equivalent to a polynomial of degree d, unique up to affine conjugacy if K(g)
is connected [DH, Theorem 1].
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Theorem 4.1 Let (f, c) be a degree d Misiurewicz bifurcation. Then the pa-
rameter space ∆ contains quasiconformal copies Mn

d of the degree d Mandel-
brot set Md, converging to the origin, with ∂Mn

d contained in the bifurcation
locus B(f).

More precisely, for all n≫ 0 there are homeomorphisms

φn : Md → Mn
d ⊂ ∆

such that:

1. fn
t is hybrid equivalent to zd + ξ whenever t = φn(ξ);

2. d(0,Mn
d) ≍ |λ0|

−n/r;

3. diam(Mn
d)/d(0,Mn

d) ≍ |λ0|
−n/(d−1);

4. φn extends to a quasiconformal map of the plane with dilatation bounded
by 1 +O(ǫn); and

5. ψ−1
n ◦ φn(ξ) = ξ +O(ǫn), where ψn(ξ) = tn(1 + γnξ).

The notation is from (3.1) – (3.3).
We begin by recapitulating some ideas from [DH]. Let ∆(R) = {z : |z| <

R}, and let
gξ(z) = zd + ξ + h(ξ, z)

be a holomorphic family of mappings defined for (ξ, z) ∈ ∆(R)×∆(R), where
R > 10 and g′ξ(0) = 0. Let M ⊂ ∆(R) be the set of ξ such that the forward
orbit gn

ξ (0) remains in ∆(R) for all n > 0.

Lemma 4.2 There is a δ > 0 such that if sup |h(ξ, z)| = ǫ < δ then there is
a homeomorphism

φ : Md → M

such that for all ξ ∈Md, gφ(ξ) is hybrid equivalent to zd +ξ, |φ(ξ)−ξ| < O(ǫ),
and φ extends to a 1 + O(ǫ)-quasiconformal map of the plane.

Proof. Let pξ(z) = zd + ξ. Since R > 10 we have Md ⊂ ∆(R) and K(pξ) ⊂
∆(R) for all ξ ∈ Md; indeed these sets have capacity one, so their diameters
are bounded by 4 [Ah]. In addition, for ξ ∈ Md the map pξ : U → ∆(R)
is polynomial-like, where U = p−1

ξ (∆(R)). By continuity, when sup |h| is
sufficiently small, M is compact and gξ is polynomial-like for all ξ ∈ M.

By results of Douady and Hubbard, we can also choose δ small enough
that |h| < δ implies there is a homeomorphism

φ : Md → M
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such that gφ(ξ) is hybrid equivalent to zd + ξ [DH, Prop. 21].
Now assume |h| < ǫ < δ. For t ∈ ∆ let Mt denote the parameters where

the critical point remains bounded for the family

gξ,t = zd + ξ + t
δ

ǫ
h(ξ, z),

and define φt : Md → Mt as above. Then φt is a family of injections, with
φ0(z) = z, and φt(ξ) is a holomorphic function of t for every ξ. (For example
this is clear at ξ ∈ ∂Md because Misiurewicz points are dense in ∂Md; for the
general case see [DH, Prop. 22].)

By a theorem of S lodkowski [Sl] (cf. [Dou], [BR]), φt(z) prolongs to a holo-
morphic motion of the entire plane, and its complex dilatation µt = ∂φt/∂φt

gives a holomorphic map of the unit disk into the unit ball in L∞(Ĉ). By
the Schwarz lemma, ‖µt‖∞ ≤ |t|; since φ = φǫ/δ, we obtain a quasiconformal
extension of φ with dilatation 1 + O(ǫ). The bound on |φ(ξ) − ξ| similarly

results by applying the Schwarz Lemma to the map ∆ → Ĉ−{0, 1,∞} given
by t 7→ φt(ξ), once three points have been normalized to remain fixed during
the motion.

Proof of Theorem 4.1. Fix R > 10. For all n ≫ 0, Theorem 3.1 provides
a family of rational maps of the form

gξ(z) = fn
t (z) = zd + ξ +O(ǫn)

defined for (ξ, z) ∈ ∆(R) × ∆(R), where t = ψn(ξ) = tn(1 + γnξ). The

preceding Lemma gives homeomorphisms φ̃n : Md → M̃n
d ⊂ ∆(R) for all

n ≫ 0. Setting φn = ψn ◦ φ̃n, the Theorem results from the Lemma and the
bounds (3.1) – (3.3).

Example. The quadratic family (f, c) = (z2 + t − 2, 0) is a Misiurewicz
bifurcation of degree d = 2, with λ0 = 2 and r = 1. Thus M2 contains small
copies Mn

2 of itself near c = −2, with d(Mn
2 ,−2) ≍ 4−n and diamMn

2 ≍ 16−n.

Consequences. Assembling the preceding results, we may now prove the
Theorems stated in the Introduction. Here is a more precise form of Theorem
1.1:

Theorem 4.3 Let f be a holomorphic family of rational maps over the unit
disk with bifurcations. Then there is a nonempty list of degrees

D ⊂ {2, 3, . . . , 22deg(ft)−2}

such that for any ǫ > 0 and d ∈ D, B(f) contains the image of ∂Md under a
(1 + ǫ)-quasiconformal map.

If the critical points of f are marked {c1t , . . . , c
m
t } such that



14 The Mandelbrot set is universal

(i ≤ N) ⇐⇒ ci is active and cit is unramified for some t,

then we may take

D = {inf
t

sup
k

deg(fk
t , c

i
t) : i ≤ N}.

Proof. Let B0 = B(f). After a base change we can assume that f is a local
bifurcation with critical points marked as above. By Proposition 2.4, there is
at least one active, unramified critical point, so N ≥ 1. For any i ≤ N , we can
make a base change so cit is active and unramified; then by Proposition 2.5,
a further base change makes (fn, ci) into a degree d Misiurewicz bifurcation.

Let di = inft supk deg(fk
t , c

i
t). We claim d = di ≤ 22 deg(ft)−2. Indeed,

deg(fn
t , c

i
t) assumes its minimum outside a discrete set, and it is equal to d

near t = 0, so di ≥ d. On the other hand, ci0 lands on a repelling periodic cycle,
so deg(fk

0 , c
i
0) = d for all k > n, and therefore di ≤ d. Finally d is largest if ci

hits all the other critical points of f before reaching the repelling cycle; in this
case d = (p1+1)(p2+1) · · · (pm+1) for some partition p1+p2+· · ·+pm = 2d−2.
The product is maximized by the partition 1 + 1 + · · ·+ 1, so d ≤ 22 deg(ft)−2.

By Theorem 4.1, the bifurcation locus B(f) contains almost conformal
copies ∂Mn

d of ∂Md accumulating at t = 0, with diam(Mn
d) ≪ d(0,Mn

d).
Letting φ : ∆ → ∆ denote the composition of all the base-changes occurring
so far, we have B(f) = φ−1(B0). Then φ is univalent and nearly linear on
Mn

d for n≫ 0, so φ(∂Mn
d) ⊂ B0 is a (1 + ǫ)-quasiconformal copy of ∂Md.

Let Ratd be the space of all rational maps of degree d; it is a Zariski-open
subset of P2d+1. We now make precise the statement that a generic family
contains a copy of the standard Mandelbrot set.

Corollary 4.4 There is a countably union of proper subvarieties R ⊂ Ratd

such that for any local bifurcation, either ft ∈ R for all t, or B(f) contains a
copy of ∂M2.

Proof. On a finite branched cover X of Ratd, the critical points of f ∈ Ratd

can be marked {c1(f), . . . , c2d−2(f)}. Clearly deg(fn, ci(f)) = 2 outside a
proper subvariety Vn,i of X. Let R be the union of the images of these
varieties in Ratd, and apply the preceding argument to see D = {2} if some
ft 6∈ R.

Proof of Theorem 1.3. The proof follows the same lines as that of Theorem
4.3; to get mod(V −U) large one takes R large in Theorem 3.1. Thus Theorem
1.3 also holds for all d ∈ D.
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5 Hausdorff dimension

In this section we prove Corollary 1.8: for any holomorphic family f of rational
maps over a complex manifold X, we have H. dim(B(f)) = H. dim(X) if
B(f) 6= ∅.

Recall that the Hausdorff dimension of a metric space X is the infimum of
the set of δ ≥ 0 such that there exists coverings X =

⋃
Xi with

∑
(diamXi)

δ

arbitrarily small.

Lemma 5.1 Let Y be a metric space, X a subset of Y × [0, 1]. Then

H. dim(X) ≥ 1 + inf H. dim(Xt)

where Xt = {y : (y, t) ∈ X}.

Here Y × [0, 1] is given the product metric.

Proof. Fix δ with δ + 1 > H. dim(X). For any n there is a covering X ⊂⋃
B(yi, ri) × Ii with |Ii| = ri and

∑
rδ+1
i < 4−n. Note that

Xt ⊂
⋃

t∈Ii

B(yi, ri)

and ∫ 1

0

∑

t∈Ii

rδ
i dt =

∑
rδ+1
i < 4−n.

Let En be the set of t where the integrand exceeds 2−n; then
∑
m(En) <∑

2−n < ∞. Thus almost every t belongs to at most finitely many En, so
almost every Xt admits infinitely many coverings with

∑
rδ
i < 2−n → 0.

Therefore δ ≥ inf H. dim(Xt), and the Theorem follows.

The Lemma above is related to the product formula

H. dim(X × Y ) ≥ H. dim(X) + H. dim(Y );

see [Fal, Ch. 5] and references therein.

Proof of Corollary 1.8. Suppose B(f) 6= ∅. Then there is a t0 ∈ B(f) and
a locally parameterized periodic point a(t) of period n such that a(t) changes
from attracting to repelling near t0 [MSS], [Mc2, §4.1]. More formally this
means the multiplier λ(t) = (fn)′(a(t)) is not locally constant and |λ(t0)| = 1.

Choosing local coordinates we can reduce to the case X = ∆n and t0 = 0.
Let ∆s = ∆ × {s} for s ∈ ∆n−1. For coordinates in general position, λ(t)
is nonconstant on ∆0. Shrinking the ∆n−1 factor, we can also assume a(t)
changes from attracting to repelling in the family f |∆s for all s. Then

B(f)s = B(f) ∩ ∆s ⊃ B(f |∆s) 6= ∅
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and H. dimB(f |∆s) = 2 by Corollary 1.6. Applying the Lemma above to
B(f) ⊂ ∆ × ∆n−1 we find

H. dim(B(f)) ≥ (2n− 2) + inf
s

H. dimB(f)s = 2n = H. dim(X).

References

[Ah] L. Ahlfors. Conformal Invariants: Topics in Geometric Function The-
ory. McGraw-Hill Book Co., 1973.

[BR] L. Bers and H. L. Royden. Holomorphic families of injections. Acta
Math. 157(1986), 259–286.

[Dou] A. Douady. Prolongement de mouvements holomorphes (d’après
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