1. Let \(f(x) = x^2 \).

 (a) Carefully write down each step of the calculation of \(f'(1) \) from definition.

 (b) Sketch the graph of the function \(\frac{f(x) - f(1)}{x - 1} \).

Definition

We write

\[
\text{the number which } f(x) \text{ approaches as } x \text{ gets really close, but not equal to, } a.
\]

... to mean “the number which \(f(x) \) approaches as \(x \) gets really close, but not equal to, \(a \). It is the limit of \(f(x) \) as \(x \) approaches \(a \).
2. What is $\lim_{x \to 0} f(x)$ in each of the following cases? How about $f(0)$?

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)
3. (Food for thought)

Let

\[f(x) = \begin{cases}
1 & \text{if } x = \pm \frac{1}{n} \text{ for some integer } n \\
0 & \text{otherwise}
\end{cases} \]

be a function defined for all real numbers. What is \(\lim_{x \to 0} f(x) \)?

Definition

- The limit of \(f(x) \) as \(x \) approaches infinity

is the number that \(f(x) \) approaches as \(x \) gets arbitrarily large.

- The limit of \(f(x) \) as \(x \) approaches negative infinity

is the number that \(f(x) \) approaches as \(x \) gets arbitrarily negative.

4. What is \(\lim_{x \to \infty} f(x) \) and \(\lim_{x \to -\infty} f(x) \) in each of the following cases?

(a) ![Graph](image1)

(b) ![Graph](image2)
Definition

- The limit of $f(x)$ as x approaches a from the left,

is the number that $f(x)$ approaches as x gets really close to a, while remaining slightly less than a.

- The limit of $f(x)$ as x approaches a from the right,

is the number that $f(x)$ approaches as x gets really close to a, while remaining slightly greater than a.

5. (a) Sketch the graph of $|x|$ and $\frac{|x|}{x}$.

Determine the followings

(b) $\lim_{x \to 0^+} \frac{|x|}{x}$
(c) $\lim_{x \to 0^-} \frac{|x|}{x}$
(d) $\lim_{x \to 0} \frac{|x|}{x}$

(e) What is the derivative of $f(x) = |x|$?
Limits – Solutions

1. (a)
\[f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x + 1)(x - 1)}{x - 1} = \lim_{x \to 1}(x + 1) = 2 \]

(b)

2. (a) \(\lim_{x \to 0} f(x) = 2 \), \(f(0) \) does not exist.
 (b) \(\lim_{x \to 0} f(x) = 2 \), \(f(0) = 0 \).
 (c) \(\lim_{x \to 0} f(x) = 1 \), \(f(0) = 1 \).
 (d) \(\lim_{x \to 0} f(x) \) does not exist, \(f(0) = 1.5 \).
 (e) \(\lim_{x \to 0} f(x) \) does not exist, \(f(0) \) does not exist.
 (f) \(\lim_{x \to 0} f(x) = 0 \), \(f(0) \) does not exist.
 (g) \(\lim_{x \to 0} f(x) \) does not exist (with the type of infinity), \(f(0) \) does not exist.
 (h) \(\lim_{x \to 0} f(x) \) does not exist, \(f(0) \) does not exist.

3. \(\lim_{x \to 0} f(x) \) does not exist. The reason is that no matter how close \(x \) gets to 0, if we get a little bit more closer to some \(x = \frac{1}{2^n} \), \(f(x) \) jumps away from 0 to 1. Here is an illustrating picture
4. (a) \(\lim_{x \to \infty} f(x) = 0, \lim_{x \to -\infty} f(x) = 0 \).
(b) \(\lim_{x \to \infty} f(x) = 1, \lim_{x \to -\infty} f(x) \) does not exist.

5. (a) The graph of \(|x| \) is

(b) \(\lim_{x \to 0^+} \frac{|x|}{x} = 1 \).
(c) \(\lim_{x \to 0^-} \frac{|x|}{x} = -1 \).

(d) \(\lim_{x \to 0} \frac{|x|}{x} \) does not exist.

(e)

\[
 f'(x) = \begin{cases}
 1 & x > 0 \\
 -1 & x < 0
\end{cases}
\]