Algebra Detour

We need to develop some algebraic tools in order to finish the proof of the Nullstellensatz. Specifically, we want to show:

Thm: If \(k \) is algebraically closed, the maximal ideals of \(k[x_1, \ldots, x_n] \) are of the form \((x_i - a_i, \ldots, x_n - a_n) \), where \(a_i \in k \).

Rings + Modules

S a ring, \(R \subseteq S \) a subring.

We can treat \(S \) as an \(R \)-module.

Def: If \(S \) is a finitely generated \(R \)-module, then \(S \) is **module-finite** over \(R \).

Def: \(S \) is **ring-finite** over \(R \) if \(S = R[v_1, \ldots, v_n] \) for some \(v_1, \ldots, v_n \in S \).

In general, \(R[v_1, \ldots, v_n] \subseteq S \) is the subring generated by \(R, v_1, \ldots, v_n \).

Def: \(v \in S \) is **integral** over \(R \) if there is a monic polynomial \(f \in R[x] \) s.t. \(f(v) = 0 \). (algebraic, if \(R \) and \(S \) are fields). \(S \) is integral over \(R \) if every \(v \in S \) is.

Check:
1) Each of these finiteness properties is a transitive relation
2) Module-finite \(\Rightarrow \) ring-finite
Ex: $R[x]$ is ring-finite over R but not module-finite or integral.

\[\frac{R[x]}{(x^2)} = R + R\overline{x} \] is module-finite over R.

Prop: $\mathcal{S} \subseteq \mathcal{S}$, \mathcal{S} an integral domain, $v \in \mathcal{S}$. TFAE:

1. v is integral over R.
2. $R[v]$ is module-finite over R.
3. There's a subring $R' \subseteq \mathcal{S}$ containing $R[v]$ that's module-finite over R.

Pf:

1. \Rightarrow 2.) $v^n + a_1 v^{n+1} + \ldots + a_n = 0$, $a_i \in R$

 \[\Rightarrow v^n \in R + Rv + \ldots + Rv^{n-1} \Rightarrow \text{any power of } v \text{ is in there} \]

 \[\Rightarrow R[v] \text{ is module-finite.} \]

2. \Rightarrow 3.) $R' = R[v]$

3. \Rightarrow 1.) Suppose R' is gen as an R-module by w_1, \ldots, w_n. Then $v w_i = a_{i1} w_1 + \ldots + a_{in} w_n$, $a_{ij} \in R$.

\[(a_{i1} \quad \cdots \quad a_{in}) \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} v \\ \vdots \\ 0 \end{pmatrix} \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} \]
\[vI - (a_{ij}) \text{ has } \begin{pmatrix} w_1 & \vdots & w_n \end{pmatrix} \text{ in its kernel, so it has zero determinant} \]
\[\implies v^n + \text{lower deg terms} = 0 \implies v \text{ is integral over } R. \qed \]

Cor: The set of elements of \(S \) that are integral over \(R \) is a subring of \(S \) containing \(R \) (called the integral closure of \(R \) in \(S \)).

Pf: \(a, b \) integral over \(R \).
\[\implies R[a] \text{ module-finite over } R, \text{ and } b \text{ integral over } R[a] \]
\[\implies R[a, b] \text{ is module-finite over } R[a] \text{ and thus over } R. \]
If \(R' = R[a, b] \) and \(v = a \cdot b \text{ or } a \pm b \) and we apply the Prop, \(v \) is integral over \(R \). \qed

Cor: \(S \) ring-finite over \(R \). Then
\[S \text{ module-finite over } R \iff S \text{ integral over } R. \]

Assume \(S \) module-finite over \(R \).
Then if \(a \in S \), \(R[a] \subseteq S \), so \(a \) is integral over \(R \).

Now assume \(S \) is integral over \(R \).
If we write \(S = R[v_1, \ldots, v_n] \), then \(R[v_i] \) is mod-finite over \(R \).
Assume \(R[x_1, \ldots, v_k] \) is mod-finite over \(R \).
\(v_{k+1} \) is integral over \(R[v_1, \ldots, v_k] \) so \(R[v_1, \ldots, v_{k+1}] \) is module-finite over \(R \). Done by induction. \(\square \)

Fields

If \(K \subseteq L \) are fields, \(K(v_1, \ldots, v_n) \) is the field of fractions/quotient field of \(K[v_1, \ldots, v_n] \) (also the smallest field containing \(K, v_1, \ldots, v_n \)).

Def: \(L \) is a **finitely generated field extension of \(K \)** if
\(L = K(v_1, \ldots, v_n) \) for some \(v_1, \ldots, v_n \in L \).

\(L \) is an **algebraic extension of \(K \)** if all the elements of \(L \) are integral over \(K \).

Ex: \(\mathbb{Q}[(\sqrt{5})] \) \((= \mathbb{Q}(\sqrt{5})) \) is an algebraic extension of \(\mathbb{Q} \) (elts of the form \(\alpha + \beta \sqrt{5}, \alpha, \beta \in \mathbb{Q} \)). In fact it's module-finite over \(\mathbb{Q} \).

\(\mathbb{Q}(\pi) \) is not algebraic/\(\mathbb{Q} \).

Check: If \(K \subseteq L \) are fields, then the elements of \(K \) that are algebraic over \(K \) form a subfield.

Claim: Although \(k(x) \) is a finitely generated field extension of \(k \), it's not ring-finite over \(k \).

Pf: Suppose \(k(x) = k[v_1, \ldots, v_n] \).
Thus \(\exists b \in k[x] \) s.t. \(bv_i \in k[x] \) \(\forall v_i \) (i.e. clear denominators)

Let \(c \in k[x] \) be irreducible s.t. \(c \) doesn't divide \(b \).

we can write \(\frac{1}{c} \) as a \(k \)-linear combination of monomials in the \(v_i \)'s.

\[\Rightarrow \exists N > 0 \text{ s.t. } \frac{b^N}{c} \in k[x], \text{ a contradiction.} \]

Claim: \(k[x] \) is its own integral closure in \(k(x) \).

Pf: let \(z \in k(x) \) integral over \(k[x] \).

Then \(z^n + a_{n-1}z^{n-1} + \ldots + a_0 = 0, a_i \in k[x] \).

If we write \(z = \frac{f}{g} \), \(f, g \in k[x] \) rel. prime, then multiplying through by \(g^n \) we get:

\[f^n + a_{n-1}f^{n-1}g + \ldots + a_0g^n = 0 \Rightarrow g \text{ divides } f^n \text{ so } g \in k. \]

Thus we need one big theorem before we can finish the proof of the Nullstellensatz:

Thm: let \(K \subset L \) be fields. If \(L \) is ring-finite over \(K \), then \(L \) is module-finite (and thus algebraic) over \(K \).
Pf: Let \(L = K[v_1, ..., v_n] \). We'll prove by induction on \(n \).

If \(n = 1 \), consider \(K[x] \rightarrow K[v_i] \)

\(K[v_i] \) is a field, so \(K[v_i] \cong K[x]/(f), \ f \neq 0 \).

Thus \(f(v_i) = 0 \Rightarrow v_i \) is algebraic over \(K \Rightarrow K[v_i] \) is module-finite over \(K \).

Now assume the statement holds for extensions gen. by \(n-1 \) elts.

Then \(L = K(v_1)[v_2, ..., v_n] \) is module-finite over \(K(v_1) \)

\(\Rightarrow L \) algebraic over \(K(v_1) \).

Case 1: \(v_i \) algebraic over \(K \). Then \(K(v_i) \) is alg. over \(K \).

By transitivity of integrality, \(L \) is algebraic and thus module-finite over \(K \), and we're done.

Case 2: \(v_i \) not algebraic over \(K \).

Then \(K(x) \rightarrow K(v_i) \) is injective, so it's an isomorphism.

Each \(v_i \) satisfies \(v_i^{n_i} + a_i v_i^{n_i-1} + ... + a_i n = 0 \), \(a_i \in K(v_i) \).

Choose \(a \in K[v_i] \) that is a multiple of all denominators of the \(a_{ij} \).

Multiplying by \(a^{n_i} \), we get
\[(av_i)^n + qa_{i1}(av_i)^n - 1 + \ldots = 0,\] where all coeffs are now in \(k[v_i].\)

Thus, \(av_i\) is integral over \(k[v_i].\)

Moreover, for \(z \in L, \exists N > 0\) s.t. \(a^Nz \in k[v_i][av_2, av_3, \ldots, av_n].\)

Thus, since integral elts form a ring \(\Rightarrow a^Nz\) is integral over \(k[v_i].\)

Set \(z = \frac{1}{c} \in k(v_i)\) where \(c \in k[v_i]\) is rel. prime to \(a.\)

Then \(\frac{a^N}{c}\) is integral over \(k[v_i]\), some \(N > 0.\) So \(\frac{a^N}{c} \in k[v_i],\)
a contradiction by the above claim. \(\square\)

Now we can prove the following, completing our proof of the Nullstellensatz:

Thm: If \(k\) is algebraically closed and \(m \subseteq k[x_1, \ldots, x_n]\) a max'l ideal, then \(m = (x_1 - a_1, \ldots, x_n - a_n),\) where \(a_i \in k.\)

Pf: Let \(L = \frac{k[x_1, \ldots, x_n]}{m}.\) \(L\) is a field and \(k \subseteq L.\)

\(L\) is ring-finite over \(k,\) so \(L\) is algebraic over \(k.\)

If \(z \in L,\) then \(f(z) = 0,\) some \(f \in k[x],\) but \(k\) is alg. closed
\(\Rightarrow f = (x - a_1) \ldots (x - a_m),\) \(a_i \in k,\) so \(z = a_i \in k,\) so \(L = k.\)
Thus, \(\forall i \in \mathbb{k} \) s.t. \(\overline{x_i} = \overline{a_i} \) in \(L \Rightarrow x_i - a_i \in \mathfrak{m} \)

\[(x_1 - a_1, \ldots, x_n - a_n) \subseteq \mathfrak{m}, \text{ but is a maximal ideal, so they're equal.} \]