Irreducible algebraic sets

Let X be an algebraic set.

Def: X is **reducible** if $X = X_1 \cup X_2$ where $X_1, X_2 \not\subseteq X$ are algebraic sets. Otherwise X is irreducible.

Ex: $V(xy) = V(x) \cup V(y)$, but the only algebraic sets in $V(x)$ are finite, so $V(x)$ is irreducible.

Def: If $X = X_1 \cup \ldots \cup X_m$, where each X_i is irreducible and $X_i \not\subseteq X_j$ for $i \neq j$, the X_i's are called **irreducible components** of X.

We can always find such a decomposition:

Thm: X an algebraic set.

a.) We can write $X = X_1 \cup \ldots \cup X_m$ where the X_i are irreducible components.

b.) The decomposition in a.) is unique.

Pf: a.) If X is irreducible, we're done. Otherwise $X = Y \cup Z$, Y and Z both proper algebraic subsets.

We can continue by decomposing Y or Z, stopping when...
all alg. sets are irreducible.

If the process never stops, we get an infinite sequence

\[X \supsetneq X_1 \supsetneq X_2 \supsetneq \ldots \]

which can't happen by the Hilbert Basis Theorem.

6.) Suppose \(X = X_1 \cup \ldots \cup X_r \) and \(X = Y_1 \cup \ldots \cup Y_s \) are two irreducible decompositions.

For each \(X_i \), we can write \(X_i = \bigcup_{j=1}^{s} (Y_j \cap X_i) \).

Since \(X_i \) is irreducible, \(X_i \subseteq Y_j \), some \(j \).

Similarly, \(Y_j \subseteq X_k \), some \(k \). \(\Rightarrow \) \(X_i \subseteq X_k \), so \(i = k \)

\(\Rightarrow \) \(X_i = Y_j \). \(\square \)

We already know that each algebraic set \(X \) gives us an ideal \(I(X) \). If \(X \) is irreducible, we can say more:

Prop: \(X \) is irreducible \(\iff \) \(I(X) \) is prime.

(Recall \(J \) is prime if for \(f, g \in J \), \(fg \in J \) or \(g \in J \).

Pf: Assume \(X \) is reducible. Then \(X = X_1 \cup X_2 \), and
\[I(X_1), I(X_2) \nsubseteq I(X). \]

Since \(x_1 \not\in X \), let \(f_i \in I(X_i) \setminus I(X) \).

Then for \(P \in X \), \(f_i(P) = 0 \) or \(f_2(P) = 0 \) \(\Rightarrow (f_1f_2)(P) = 0 \).

\[\Rightarrow f_1f_2 \in I(X) \text{ so } I(X) \text{ is not prime.} \]

Now assume \(I(X) \) is not prime. Then \(\exists f, g \notin I(X) \) s.t. \(fg \in I(X) \).

\[\Rightarrow X \subseteq V(fg) = V(f) \cup V(g) , \text{ but } X \notin V(f) \text{ or } V(g). \]

\[\Rightarrow X = (V(f) \cap X) \cup (V(g) \cap X) \Rightarrow X \text{ is reducible.} \]

Q: If \(J \) is a prime ideal, is \(V(J) \) irreducible?

No:

Ex: Consider \(f = y^2 + x^2(\alpha - 1)^2 \in \mathbb{R}[x,y] \)

\(f \) is irreducible, so \((f) \) is prime (exer)

But \(V(f) = \{(0,0), (1,1)\} = V(x, y) \cup V(\alpha - 1, y). \)

Dimension: \(k = \text{alg. closed} \)

If \(X \subseteq \mathbb{A}^n \) is an alg. set, we can write \(X \supseteq X_1 \supseteq X_2 \supseteq \ldots \supseteq X_0 \supseteq \emptyset \)

where \(X_i \) is an irr. alg. set.
The maximum such d is the **dimension** of X.

Ex: $\dim A^f = 1$. We know $\dim A^n \geq n$, but we can't quite show equality yet.

More generally (over any k), $\dim X =$ maximum length of chain of prime ideals containing $I(X)$. These agree when $k = \overline{k}$.