You may assume \(k \) is algebraically closed.

1. Let \(F \) be an irreducible projective plane curve. Show that \(F \) has only finitely many singular points.

2. Let \(P \) be a nonsingular (simple) point on a plane curve \(F \). Show that the tangent line to \(F \) at \(P \) is
 \[F_x(P)x + F_y(P)y + F_z(P)z = 0. \]

3. Let \(G \) be an irreducible cubic.

 (a) Show that \(G \) has at most one singular point, and any such singular point must have multiplicity 2.

 (b) Show that if \(G \) has a cusp (i.e., in this case, has a single tangent line of multiplicity 2 at the singular point), then it is projectively equivalent to the curve \(y^2z - x^3 \).

 (Hint: Using a problem from the previous problem set, you can start with the singular point at \([0 : 0 : 1]\) and the tangent line \(y \).)

 (c) Show that if \(G \) has a node (i.e., has two distinct tangent lines at the singular point), then it is projectively equivalent to the curve \(xyz = x^3 + y^3 \).

4. (a) Let \(Y \) be a set of 5 distinct points in \(\mathbb{P}^2 \). Let \(V \) be the linear system of conics that contain \(Y \). Show that \(\dim(V) > 0 \) if and only if at least four of the points are collinear.

 (b) Let \(Z \) be a set of 10 distinct points in \(\mathbb{P}^2 \). Let \(W \) be the (possibly empty!) linear system of cubics that contain \(Z \). Show that \(\dim(W) > 0 \) if and only if at least 6 of the points are collinear or at least 9 of the points lie on a conic.

5. Let \(F \) be an irreducible plane curve of degree \(d \). Assume the partial derivative \(F_x \neq 0 \).

 (a) If \(P \) is a point on \(F \), show that \(m_P(F_x) \geq m_P(F) - 1 \).

 (b) Using part (b) along with Bézout’s theorem, show that
 \[\sum_{P \in \mathbb{V}(F)} m_P(m_P - 1) \leq d(d - 1). \]

 (We’ll show in class that this is actually not the best possible bound.)

 (c) Conclude that \(F \) has at most \(\frac{1}{2}d(d - 1) \) multiple points.