As always, assume all rings are commutative, and k is a field.

1. Let $X \subset A^n$ be a set. The **Zariski closure** of X, denoted \overline{X}, is the intersection of all Zariski closed sets containing X. Show that $V(I(X)) = \overline{X}$.

2. A ring R is **reduced** if for all $f \in R$ and $n \in \mathbb{N}$,

 $$f^n = 0 \iff f = 0.$$

 Let $I \subset R$ be an ideal. Show that R/I is reduced if and only if I is a radical ideal.

3. Let I be an ideal in a ring R. Show that there is a one-to-one correspondence between radical ideals in R containing I and radical ideals in R/I.

4. Let $a_1, a_2, \ldots, a_n \in k$. Show that $(x_1 - a_1, \ldots, x_n - a_n) \subset k[x_1, \ldots, x_n]$ is a maximal ideal. (Hint: reduce to the case where the a_i are all 0.)

5. Show that a ring R is Noetherian if and only if every strictly increasing sequence of ideals $I_1 \subsetneq I_2 \subsetneq \ldots$ is finite.

6. Let $k = \mathbb{R}$.

 (a) Show that $I(V(x^2 + y^2 + 1)) = (1)$.

 (b) Show that every algebraic set in $\mathbb{A}_\mathbb{R}^2$ is equal to $V(f)$ for some $f \in \mathbb{R}[x, y]$.

7. Assume k is infinite.

 (a) Show $I(\mathbb{A}_k^n) = (0)$.

 (b) Show \mathbb{A}_k^n is irreducible.

 (c) Show that neither (a) nor (b) holds if k is finite.