1. Let \(k \) be a field and \(R = k[x_1, \ldots, x_n] \). Verify the following statements from class.

 (a) Let \(\{I_\alpha\} \) be a collection of ideals in \(R \). Show that \(\bigcap_\alpha V(I_\alpha) = V(\bigcup_\alpha I_\alpha) \).

 (b) Let \(I, J \subset R \) be ideals. Show that \(V(IJ) = V(I) \cup V(J) \).

2. Let \(f \in k[x, y] \) be a polynomial of degree \(n > 0 \), and \(C = V(f) \). Let \(L \) be a line in \(\mathbb{A}_k^2 \) such that \(L \) is not contained in \(C \). Show that \(L \cap C \) is a finite set of no more than \(n \) points.

3. Show that the following are algebraic sets:

 (a) \(\{(t, t^2, t^3) \in \mathbb{A}_k^3 \mid t \in k\} \).

 (b) The set of \(m \times n \) matrices over \(k \) with rank \(\leq r \).

 (c) The set of points in \(\mathbb{A}_k^2 \) whose polar coordinates \((r, \theta)\) satisfy \(r = \sin(\theta) \).

 (d) \(V \times W \subset \mathbb{A}^{n+m} \), where \(V \) and \(W \) are algebraic sets in \(\mathbb{A}^n \) and \(\mathbb{A}^m \), respectively.

4. Show that the following are not algebraic sets:

 (a) \(\{(x, y) \in \mathbb{A}_k^2 \mid y = \sin(x)\} \)

 (b) The closed unit ball \(\{P \in \mathbb{A}_k^n \mid \|P\| \leq 1\} \).

5. Show that \(I = (x^2 + 1) \subset \mathbb{R}[x] \) is a radical ideal, but \(I \) is not the ideal of any set in \(\mathbb{A}^1_\mathbb{R} \).

6. Let \(J \subset k[x_1, \ldots, x_n] \) be an ideal and \(X \) and \(Y \) algebraic sets. Verify the following statements.

 (a) \(V(I(V(J))) = V(J) \).

 (b) \(I(V(I(X))) = I(X) \).

 (c) \(X = Y \) if and only if \(I(X) = I(Y) \).