2^k-class groups of imaginary quadratic fields

Alexander Smith

19 January 2019
Cohen-Lenstra heuristics for imaginary quadratic fields

Given a number field K, $\text{Cl} K$ will denote its class group. For any positive integer n, $\text{Cl} K[n]$ will denote the n-torsion of this group.

Conjecture (Cohen-Lenstra 1983)

Take p to be an odd prime, and take H to be a finite abelian p-group. Then

$$\lim_{N \to \infty} \frac{\# \{ 0 < d < N : \text{Cl} \mathbb{Q}(\sqrt{-d})[p^\infty] \cong H \}}{N} \propto \frac{1}{|\text{Aut} H|}.$$

This conjecture made no prediction for what happens for $p = 2$.
Choose a sequence \(p_1, \ldots, p_r \) of distinct primes, and take \(d \) to be their product. For simplicity, assume that \(d \) equals 3 mod 4.

As an \(\mathbb{F}_2 \) vector space, \(\text{Cl} \mathbb{Q}(\sqrt{-d})[2] \) is \(r - 1 \) dimensional, with a basis of ideals

\[
(p_1, \sqrt{-d}), \quad (p_2, \sqrt{-d}), \quad \ldots, \quad (p_{r-1}, \sqrt{-d}).
\]

Most positive integers less than \(N \) have about \(\log \log N \) prime factors.

So the 2-torsion of class groups tends to grow without bound for imaginary quadratic fields.
Cohen-Lenstra-Gerth heuristics

Conjecture (Gerth 1987)

Take \(p \) to be a prime, and take \(H \) to be a finite abelian \(p \)-group. Then

\[
\lim_{N \to \infty} \frac{\# \{ 0 < d < N : 2\text{Cl} \mathbb{Q}(\sqrt{-d})[p^\infty] \cong H \}}{N} \propto \frac{1}{|\text{Aut} \ H|}.
\]

Three theorems have been proved towards this conjecture:

- (Davenport-Heilbronn 1971) The average size of \(\text{Cl} \mathbb{Q}(\sqrt{-d})[3] \) is 2.
- (Fouvry-Klüners 2006) The groups \(2\text{Cl} \mathbb{Q}(\sqrt{-d})[4] \) have a distribution consistent with the conjecture.
- (S. 2017) The conjecture is correct for \(p = 2 \).
Class groups as cokernels

Theorem (Friedman-Washington 1989)

Take \(p \) to be a prime, and take \(H \) to be a finite abelian \(p \)-group. Take \(M_n \) to be a random \(n \times n \) matrix with entries uniformly and independently chosen from \(\mathbb{Z}_p \). Then

\[
\lim_{n \to \infty} \mathbb{P}(\text{coker } M_n \cong H) \propto \frac{1}{|\text{Aut } H|}.
\]

Given \(n \geq j \geq 0 \), take \(P^{\text{Mat}}(j|n) \) to be the probability a uniformly selected \(n \times n \) matrix with entries in \(\mathbb{F}_2 \) has kernel of dimension \(j \).
Main result

Define the 2^k-class rank of $\mathbb{Q}(\sqrt{-d})$ to be the maximal r for which there is an injection from $(\mathbb{Z}/2^k\mathbb{Z})^r$ to $\text{Cl} \mathbb{Q}(\sqrt{-d})$. Write $r_k(d)$ for the 2^k-class rank of $\mathbb{Q}(\sqrt{-d})$.

Theorem (S. 2017)

For $k > 2$ and $r_2 \geq r_3 \geq \cdots \geq r_k \geq 0$,

$$\lim_{N \to \infty} \frac{\# \{ 0 < d < N : r_i(d) = r_i \text{ for } i \leq k \}}{\# \{ 0 < d < N : r_i(d) = r_i \text{ for } i \leq k - 1 \}} = P^{\text{Mat}}(r_k \mid r_{k-1}).$$

Theorem (Fouvry-Klüners 2006)

For $r_2 \geq 0$,

$$\lim_{N \to \infty} \frac{\# \{ 0 < d < N : r_2(d) = r_2 \}}{N} = \lim_{n \to \infty} P^{\text{Mat}}(r_2 \mid n).$$
Class ranks as a Markov chain

Class rank transition probabilities

Table: Probability the 2^k-class rank is r.

<table>
<thead>
<tr>
<th></th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4-class</td>
<td>.29</td>
</tr>
<tr>
<td>8-class</td>
<td>.63</td>
</tr>
<tr>
<td>16-class</td>
<td>.81</td>
</tr>
<tr>
<td>32-class</td>
<td>.91</td>
</tr>
<tr>
<td>64-class</td>
<td>.95</td>
</tr>
<tr>
<td>2^∞-class</td>
<td>1</td>
</tr>
</tbody>
</table>
Results for Selmer groups

For $E : y^2 = x^3 + ax + b$ an elliptic curve over \mathbb{Q}, and for d a positive integer, define a twisted curve

$$E^d : y^2 = x^3 + d^2 ax + d^3 b.$$

For $k \geq 1$, the 2^k-Selmer groups of these objects are analogous to the 2^{k+1}-class groups of quadratic fields.

If E satisfies certain technical conditions, we proved that the 2^k-Selmer ranks of its twists are described by an analogous Markov chain.
Results for Selmer groups

Theorem (S. 2019)

Suppose E/\mathbb{Q} obeys the above conditions. Among the twists E^d,

- 50% have 2^∞-Selmer corank 0,
- 50% have 2^∞-Selmer corank 1, and
- 0% have higher 2^∞-Selmer corank.

Assuming $\text{III}(E^d)$ is finite, the 2^∞-Selmer corank of E^d equals its actual rank.

Under this hypothesis, the above theorem confirms Goldfeld’s conjecture for E.
Controlling 4-class ranks

Choose a sequence \(p_1, \ldots, p_r \) of distinct primes, and write \(d \) for their product. Assume \(d \) equals 3 mod 4.

Given a positive integer \(b \) dividing \(d \), we have

\[
(b, \sqrt{-d}) \in 2\text{Cl} \mathbb{Q}(\sqrt{-d})[4]
\]

iff there is a nonzero ideal \(I \) of \(\mathbb{Q}(\sqrt{-d}) \) and integers \(x, y \) so that

\[
(b, \sqrt{-d}) I^2 = (x + y\sqrt{-d}).
\]

This holds iff there are integers \(x, y, z \) with \(z \) nonzero so that

\[
.bz^2 = x^2 + dy^2.
\]

This is solvable over \(\mathbb{Z} \) if it is solvable in \(\mathbb{Q}_{p_i} \) for each \(i \leq r \).

The 4-class rank can be calculated from the Legendre symbols

\[
\left(\frac{p_i}{p_j} \right), \quad i, j \leq r, \quad i \neq j.
\]
Theorem

Take \(b \) to be a positive integer, and take

\[
K_b = \mathbb{Q} \left(\sqrt{c} : c \in \mathbb{Z}, c \mid 2b \right).
\]

Then, for \(p \) not dividing \(2b \), we can calculate the 4-class rank of \(\mathbb{Q}(\sqrt{-bp}) \) from the value of

\[
\text{Frob } p \quad \text{in} \quad \text{Gal}(K_b/\mathbb{Q}).
\]

The distribution of 4-class ranks can be derived as a consequence of the Chebotarev density theorem and the Bombieri-Vinogradov theorem.
Theorem (Rédei and others)

Given a positive integer b, there is a finite elementary 2-abelian extension

$$M_b/K_b \text{ Galois above } \mathbb{Q}$$

so that, for any p not dividing $2b$, we can determine the 8-class rank of $\mathbb{Q}(\sqrt{-bp})$ from the conjugacy class of

$$\text{Frob}_p \text{ in } \text{Gal}(M_b/\mathbb{Q}).$$

This means there is a function ϕ_b from $\text{Gal}(M_b/\mathbb{Q})$ to the integers so that the 8-class rank of $\mathbb{Q}(\sqrt{-bp})$ is $\phi_b(\text{Frob}_p)$.
Split the positive integers into rectangles with b on one axis, p the other.

For most b, the 8-rank $\phi_b(\sigma)$ has the distribution we expect as σ varies over $\text{Gal}(M_b/\mathbb{Q})$.

Chebotarev
Governing fields for 16-class ranks

They probably don’t exist.
Partial governing fields

Fix $k > 2$.

- We can find tuples $b = (b_1, \ldots, b_m)$ of positive integers so there is a finite Galois extension M_b/\mathbb{Q} and a class function

$$
\Phi : \text{Gal}(M_b/\mathbb{Q}) \longrightarrow \text{Collections of } m\text{-tuples of finite abelian 2-groups}
$$

so that, for p not dividing $2b_1 \ldots b_m$, $\Phi(\text{Frob } p)$ contains

$$
\left(\text{Cl } \mathbb{Q}(\sqrt{-b_1 p})[2^k], \ldots, \text{Cl } \mathbb{Q}(\sqrt{-b_m p})[2^k] \right)
$$

- If m is large, and if σ is chosen in $\text{Gal}(M_b/\mathbb{Q})$ to avoid a certain low-density bad subset, then every tuple of groups in $\Phi(\text{Frob } p)$ has approximately the distribution we expect.
Governing fields vs. partial governing fields

Non-generic M_{b}/\mathbb{Q}

Chebotarev is used to enforce equidistribution
Governing fields vs. partial governing fields

Chebotarev is used to enforce equidistribution

Chebotarev is used to avoid bad Frob p