Bubbling, Compactness, Nonsqueezing

Thm: For \(l \geq 2, p > 2, \) \(J \in \mathcal{C}^l(\Sigma), \)
\(u : \Sigma \to M \) an \(L^p, J\)-hol. curve.
Then \(u \) is in fact \(L^\infty \) (we smooth \(f \to \infty \))
("elliptic regularity")

Thm: For \(l \geq 2, p > 2, \) \(J_k \in \mathcal{C}^l(\Sigma) \to J \in \mathcal{C}^l(\Sigma), \)
\((\Sigma, J_k) \to (\Sigma, J). \) \(u_k : \Sigma \to M \) \(J_k\)-hol. bd
\(\epsilon \)

[MS, 173] Then on compact subsets of \(\Sigma, J \) subseq. converg. in \(\mathcal{C}^{l-1}. \)

Now: Consider \(u_k \) \(J\)-hol., in homology class \(A, \)
then bounded in \(L^2. \)
Since smooth by above, can only fail to
converge in \(L^p; \) if \(\sup_{z \in Z} |dv_k(z)| \to \infty. \)

Let \(z^k \) a point at which \(|dv_k| \) maximized,
May assume \(z_k \to z_0. \)

Choose a hol. chart \(\varphi: \mathcal{N} \to \Sigma \)
\(0 \to z_0. \)

\(v^k(z) = \varphi \circ u^k (z + z_k/c_k) \)
\(c_k \) chosen so \(|dv^k(0)| = 1. \)

\(\implies \) bad energy seq on growing subset
of \(C. \) By remov. seq.,
yet \(v^\infty : C' \to M \)
Thus we have:

Prop: If \(A \in H^1(M) \), \(w(A) > 0 \) is such that \(A \perp A' \) with \(0 < w(A') < w(A) \), then \(M(A, \epsilon, J) \) compact.

Full Thm: For \(k \geq 2 \), \(p > 2 \), \(J_k \in C^0(\Sigma) \) \((\text{Gromov Compactness})\), \(u_k : \Sigma \rightarrow M \), \(J_k \) J-holo \((\text{with } [u^*_k \Sigma] = A \text{ fixed})\). Suppose \(u_k \) s.t. \(\lim \nabla_{J_k} u_k \) (collapse inessential loops to points)

\[\lim E(u_k) = \Sigma E(\text{pts}) \]

(one more technical point: "bubbles connect")

Link: if don't require \(J_k \rightarrow J \), can collapse essential loops too.

We omit the proof of this "full thm." we mostly have use for the proposition.
Proof:

2: get \(B^{2n}(r) \to S^{2}(\pi \{ \pi(\mathbb{R}^2) \}) \times R^{2n-2} / K \Pi^{2n-2} \),

then \(r \leq R \).

\# J-hol. spheres in \(S^2 \times T^{2n-2} \) in class \((S^2, o)\)

through a point \((x, y) \in S^2 \times T^{2n-2} \) is 1

for \(J_{st} = J_0 \times J_T \), standard

(will show\(\) generic\(\) below)

Thus \(\equiv 1 \) (mod 2), for \(J \) given by \(J_0 \) from \(S^{2n} \) on \(i(B^{2n}(r - \varepsilon)) \), extended \(\equiv 0 \) \(\) (show\(\) generic\(\) below)

By\(\) monotonicity, \(\text{area} \geq \pi \((r - \varepsilon)^2 \)

\(\pi (r + \varepsilon)^2 \to \varepsilon \to 0 \) \(r \leq R \).

(Recall\(\) monotonicity for \(R^k \):

In \(R^k \), if \(0 \in S \), then

\(\text{Area}(S \cap B_0(r)) \geq \pi r^2 \)

Genericity for \(J \): Any hole sphere exits \(i(B^{2n}(r)) \).

Somewhere\(\prime \)jective points are dense, so \(J \) some outside of \(i(B^{2n}(r)) \).
Consider space \(J_i \) of a.c.i.s. \(J \) agreeing with \(J \) from \(\mathfrak{B}^m(\mathbb{R}) \) on \(\mathfrak{B}^m(\mathbb{R} - \mathbb{S}) \).

Claim: \(\forall \omega, (D, d\omega) : T J_i \times L^1(\Sigma, \omega, TM) \rightarrow L^0(\Sigma, \Sigma, \omega, TM) \times TM \)

is surjective.

Proof: Consider element \(\gamma \). \(D^x \gamma = 0 \) so \(\gamma \) smooth, soln to a real Cauchy-Riemann eqn.

Because somewhere inj points are dense in \(\mathfrak{m}(\Sigma) \cap (\mathfrak{B}^m(\mathbb{R} - \mathbb{S})) \), a nonempty open subset of \(\mathfrak{m}(\Sigma) \), we have that \(\gamma = 0 \) there. Thus by unique cont for solns to real CR eqns, \(\gamma = 0 \) everywhere.

Thus \(\exists \) generic choice \(\tilde{J} \).

Check index:

index of halo spheres \(\in \text{class } (S^2, 0) \):

\[
\mathfrak{r}(S^2) + 2 \int \left(S^2 \times T^{m-2} \right) \cdot [S^2] = 2n + 4
\]

Index of \((D, d\omega) \) is \(\text{real } (\text{dim } TM) = 2n + 4 - 2m = 4 \)

Now need to look at \(\text{Aut } \left((\Sigma, x) \right), \) (aut of \(\Sigma = S^2 \) fixing)

4-dimensional.

Yet: “expected dimension” of halo spheres thru a pt is \(0 \), no isolated pts.
This is what we see for L, let us check:

Genericity for L: We'll show the $2n+4$-dim space is cut out smoothly, then observe transversality for L.

We have a splitting as $\Sigma \oplus (\Sigma)^* \oplus K$, for sum of line bundles.

Furthermore, D respects the splitting

$$D: \oplus L_i^2 (\Sigma, L_i) \to \oplus L_i^2 (\Sigma, L_i^0, \Sigma \oplus L_i)$$

$$\ker D = \oplus H^0 \left(\Sigma, L_i \right) \quad \text{coker } D = \oplus H^1 \left(\Sigma, L_i \right)$$

Some duality:

$$H^1 (\Sigma, L_i^*) = H^0 \left(\Sigma, L_i \right) \otimes K$$

where $H_2^{n+1} (\Sigma, L_i^* \otimes K) \cong H^0 \left(\Sigma, L_i^* \right) \cong H^0 (\Sigma, L_i \otimes K)$

$$H^0 (\Sigma, L_i) \text{ nonzero } \Rightarrow c_1 (L) \geq 0$$

$$c_1 (L^* \otimes K) = -c_1 (L) - c_1 (K) = -c_1 (L) - 2$$

Thus $c_1 (L) \text{ nonzero } \Rightarrow c_1 (L) \leq -2$

Thus $\text{coker } D = 0$ since $c_1 (L_0) = 2, c_i (L_i) = 0, i \neq 0$.

Rank: "automatic transversality in dim 4".

Prop: Holomorphic sphere $m: \mathbb{P}^r \to M$, somewhere m injective, D_m onto

$$\Leftrightarrow c_1 (m^* TM) \geq 1$$

Idea: $m^* TM = T\mathbb{P}^r \oplus N, c_1 (m^* TM) \geq 1 \Leftrightarrow c_1 (N) \geq -1$

$$\Rightarrow D_m \text{ onto.}$$

(need for c_1 also too, but OK)
Consider $(S^2 \times S^2, \omega \oplus \omega)$.

Theorem 1 (Gromov): $\text{Symp}(S^2 \times S^2, \omega \oplus \omega)$ has two components. The α-cpt is homotopy equivalent to $SO(3) \times SO(3)$.

Theorem 2 (Gromov): $\text{Symp}(\mathbb{C}P^2, \omega_{FS})$ is homotopy equivalent to $\text{PU}(2)$.

Proof of 1: $\text{Symp}_0 \times J \to J$

\[\psi : J \to J \psi^{-1} \psi \psi^{-1} = \psi \psi^{-1} \]

Remark: $\text{Symp}_0 \times \mathbb{Z}/3 \to J$ infinite codimension (e.g. $\text{Int} \psi^{-1} \text{Int} \psi$)

$\text{Symp}_0 \times \mathbb{Z}/3 \to J$ stabilizer is $SO(3) \times SO(3)$

$\text{Symp}_0 \to J$ (not surj). We provide a left inverse

Then centre of $J = \text{Centre} \text{Symp}_0 \times SO(3)$.

Held curves in class $A = [S^1 \times \mathbb{R}^2]$, $B = [S^1 \times S^2]$: automated tautness $A \cong J$. Thus we get smooth

$2\chi(S^2) + 2c_1(S^2 \times S^2) \cdot A = 4 + 4 = 8$

($\text{mod } \text{Aut}(\mathbb{C}P^1)$ is only 2-twist)

Together with evaluation map, have $8 - 4 = 4$

but then mod $\text{Aut}(\mathbb{C}P^1)$ gives 0.

Count mod 2 is 1 so 3 hole sphere than every pt.

Can't have 0 effective transverse, but not 1. If have 1 can't have more (by proposition of int. as below.)
Claim: We get 2 filtrations by spheres F_A, F_B with a leaf of F_A not a leaf of F_B in one point.

Proof: Positivity of intersections (works even in non-integrable case --- see [W2, 4.2.3])

Thus 2 spheres in class A coincide or are disjoint,
similarly for B (since $A.A = B.B = 0$)
and since $A.B = 1$, only 1 N pt.

Choose params of the two curves thru (0,0).

We have $\mathbb{R} \times 1^2 \text{param} \rightarrow \text{Sym}_2 \rightarrow \text{SO}(3) \text{ Sym}_2 \rightarrow \text{SO}(3) \times \text{SO}(3)$ using equiv.

Given from filtrations of params.